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ABSTRACT: 

 

Recently, the unique capabilities of Polarimetric Synthetic Aperture Radar (PolSAR) sensors make them an important and efficient 

tool for natural resources and environmental applications, such as land cover and crop classification. The aim of this paper is to 

classify multi-temporal full polarimetric SAR data using kernel-based fuzzy C-means clustering method, over an agricultural region. 

This method starts with transforming input data into the higher dimensional space using kernel functions and then clustering them in 

the feature space. Feature space, due to its inherent properties, has the ability to take in account the nonlinear and complex nature of 

polarimetric data. Several SAR polarimetric features extracted using target decomposition algorithms. Features from Cloude-Pottier, 

Freeman-Durden and Yamaguchi algorithms used as inputs for the clustering. This method was applied to multi-temporal UAVSAR 

L-band images acquired over an agricultural area near Winnipeg, Canada, during June and July in 2012. The results demonstrate the 

efficiency of this approach with respect to the classical methods. In addition, using multi-temporal data in the clustering process 

helped to investigate the phenological cycle of plants and significantly improved the performance of agricultural land cover mapping.  

 

 

1. INTRODUCTION 

Remote sensing offers an important source of data for studying 

spatial and temporal variability of the environmental parameters 

(Blaes et al., 2005). Crop identification from earth observing 

satellites is essential for monitoring food security, agricultural 

and economic planning. Both optical/infrared and microwave 

satellite data can be used for this purpose. Recently, Synthetic 

Aperture Radar (SAR) imagery, thanks to their potential of data 

collection regardless of weather and illumination conditions, 

has become an essential tool for crop mapping and monitoring 

activities (Jiao et al., 2014). Radar-based crop type 

classification requires earth observations with multiple 

polarization. In particular, Polarimetric Synthetic Aperture 

Radar (PolSAR) sensors can acquire data sensitive to the 

dielectric properties of the crop canopy and its geometric 

structure (i.e., the size, shape, orientation distribution of 

leaves, stalks and fruits) ((Soria-Ruiz et al., 2007) and 

(Skriver et al., 1999)). Fully polarimetric radars record the 

complete characterization of the scattering field. Thus, both 

four mutually coherent channels recorded and  phase 

information are observed and recorded for further  processing. 

As a result, users can synthesize any linear or nonlinear 

polarization and can generate other polarimetric variables 

(McNairn et al., 2004). Consequently, land cover classification 

is one of the most important applications of PolSAR data (Lee 

and Pottier, 2009).  

 

In general, classification methods are divided into two 

categories: supervised and unsupervised or clustering. The most 

important issue with supervised classification approaches is 

providing of high quality and quantity training data, which is 

almost costly and time-consuming. Because of this limitation, 

there is a strong interest in developing of unsupervised 

techniques (Rignot, et al., 1992). 

 

Clustering algorithms aim to identify the unknown structure or 

pattern among the data. These structures can be the natural 

groups or clusters within the multi-dimensional feature space by 

measuring similarities between different pixels’ data. 

 

The C-means clustering families are the best known and robust 

techniques of batch clustering models, due to using the least 

square models (Bezdek, et al., 2005). The most frequently used 

algorithms of these families are C-means and Fuzzy C-means 

(FCM) algorithms. Hard clustering algorithms, such as K-

means, divide data into distinct classes, whereas in fuzzy 

clustering, every pixel has a membership of belonging to all 

clusters rather than belonging to one single cluster. Presence of 

the mixed pixels in the remote sensing data is a potential case 

study to use fuzzy C-means method in clustering. FCM is a 

technique of clustering which permits data points to cluster 

based on spectral similarity and mainly used in pattern 

recognition (Vanisri, 2004). Nonetheless, these models are 

relatively efficient for linearly separable patterns, the inherent 

nature of polarimetric data is very complex. As a result, they 

are not linearly separable. As a solution, the aim of this paper is 

to present a kernel-based fuzzy C-means clustering (KBFCM) 

approach to classify nonlinear data in order to map the 

agricultural crop lands. 

 

Unsupervised PolSAR classification follows three major 

approaches. One based on the inherent statistical characteristics 

of PolSAR data (Bell and Hall, 1967). The second category 

classifies PolSAR imageries by inherent physical scattering 

characteristics (Zyl, 1989). This approach has the advantage of 

providing information for class type identification, but the 

classification results typically lose the details and the number of 

classes is normally small. In the third category, both statistical 

and physical scattering characteristics are considered. As a 

result, they can classify PolSAR data most effectively (Lee and 

Pottier, 2009). However many clustering methods have been 
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proposed, they are not efficient enough to distinguish between 

classes, especially in agricultural crop mapping. 

 

 

This paper presents a framework for classifying multi-temporal 

full polarimetric SAR data using kernel-based fuzzy C-means 

clustering method, over an agricultural region. The paper is 

organized as follows: In Section 2, a brief review of kernel-

based clustering and the proposed method will be defined. 

Section 3 gives some information about used data. Section 4 

presents the results and discussion of the clustering results. 

Finally, Section 5 concludes the paper. 

 

2. METHODOLOGY 

2.1 Kernel Principals 

In the field of remote sensing, descriptive machine learning 

algorithms often focus on land cover classifications (Camps-

Valls and Bruzzone, 2009). In machine learning, kernel 

methods are used for classification, clustering, regression, 

density estimation and visualization with heterogeneous types 

of data, such as time series, images, strings or objects 

(Schölkopf and Smola, 2002). In this subsection, a brief 

description of the notion of kernels is presented. 

 

Kernel methods by using a nonlinear transform, map the dataset 

𝑥 = {𝑥1, 𝑥2, … , 𝑥𝑛} defined over the input or attribute space Χ 

(𝑥 ∈ 𝑋) into a higher dimensional Hilbert space Η, or feature 

space, which enable them to distinguish nonlinear data with 

linear methods. The mapping function is denoted as (Camps-

Valls et al., 2008): 

 

: , ( )X x x                                                              (1) 

 

However, direct computation in the high-dimensional feature 

space consumes much time and sometimes even infeasible. To 

avoid working in the potentially high-dimensional space, the 

dot product can be evaluated directly using a nonlinear function 

in input space by means of the kernel trick (Camps-Valls et al., 

2008). Every function that meets the Mercer’s condition can be 

used as a kernel function. Usually, kernel functions are used 

instead of Mercer kernels or, equivalently, positive definite 

kernels.  

 

The similarities between elements in feature space can be 

measured using inner product. For convenience we introduce 

the following function that does exactly that (Camps-Valls and 

Bruzzone, 2009): 

 
' ': , ( , ) ( , )x x x x                                      (2) 

                        

which is required to satisfy for all 𝑥, 𝑥′ ∈ Χ : 

 
' '( , ) ( ), ( )x x x x                                                       (3) 

 

This function is called a kernel. The mapping φ is referred to as 

its feature map and the space Η as its feature space. 

 

The distances of the elements in H can be evaluated entirely in 

the terms of kernel evaluations (Camps-Valls and Bruzzone, 

2009): 
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                  (4)  

 

The most well-known kernel functions are: Radial Based 

Function (RBF), polynomial and linear. 

 

The RBF kernel: K(𝑥, 𝑥′) = 𝑒𝑥𝑝−
|𝑥−𝑥′|

2

2𝜎2                                   (5)        

 

The polynomial kernel: K(𝑥, 𝑥′) = (< 𝑥, 𝑥′ + 1 >)𝑝             (6) 

 

The linear kernel: K(𝑥, 𝑥′) =< 𝑥, 𝑥′ >                                   (7) 

 

2.2 Kernel-based fuzzy C-means algorithm 

The main idea of using a kernel function in the similarity 

criteria is to compute the distance between pixels in feature 

space (Camps-Valls et al., 2008). Feature space due to its 

inherent properties enable us to clustering nonlinear datasets 

simpler and more efficient.  Kernel-based algorithms, unlike to 

the classical clustering techniques which use the Euclidean 

distance, benefit from kernel distance in order to calculate the 

objective function. The minimized objective function formula is 

given by (Girolami, 2002): 
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where       J = objective function 

                 U = fuzzy partition matrix,  𝑢𝑗𝑖 ∈ [0,1] 

                 C= cluster centers, C={𝑐1, 𝑐2, …,𝑐𝑐} 

                 m = weighting exponent  

 

Optimization of objective function with respect to two variables 

(cluster centers and partition matrix) is one of the most 

important issues facing the partitional clustering models (Chen 

and Zhang, 2004). By an alternative optimization, in each 

iteration, the cluster centers and fuzzy partition matrix can be 

calculated using the following equations: 
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                                                       (10)  

It is worth to note that Equation (10) is derived by using the 

RBF kernel function, which satisfying K(𝑥, 𝑥) =1. In order to 

apply other kernel functions, first the kernel function is replaced 

with K in Equation (8), then, this equation is optimized cluster 

centers and fuzzy partition matrix. For instance, the cluster 

centers for polynomial kernel will be obtained as: 
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The kernel-based fuzzy C-means clustering procedures are 

shown below: 

 

Step 1: Choose the kernel function, the maximum number of 

iterations, m and ε. 

Step 2: Initialize the cluster centers. 

Step 3: Calculate fuzzy partition matrix U according to 

Equation (9). 

Step 4: Update cluster centers by Equation (10) or (11) 

depending on the kernel function and U. 

Step 5: Until termination criterion satisfied (objective function 

(i+1) – objective function (i) ˂ ε) or maximum iterations 

reached stop, otherwise, go to step 3. 

Step 6: Defuzzify the final U in order to obtain a hard 

membership decision. The highest membership was obtained by 

using the maximum membership decision rule. 

 

Figure 1 shows an overview of the proposed method. It starts by 

preprocessing of raw L-band SAR data. This preprocessing step 

consist of multi-looking and speckle filtering. Then the 

decomposition algorithms were applied to the covariance 

matrix of full polarimetric SAR data, in order to extract several 

physically and statistically based features. These features are 

the linear polarization intensities in HH, HV and VV, Freeman-

Durden, Yamaguchi and Cloude-Pottier decompositions. 

Finally, the proposed kernel-based fuzzy C-means clustering 

was applied on these features to map out the various crop types. 

 

 
Figure 1. An overview of the proposed method 

 

3. POLARIMETRIC SAR DATA 

The proposed method has applied to four dates of polarimetric 

SAR data acquired by Uninhabited Aerial Vehicle Synthetic 

Aperture Radar (UAVSAR), over an agricultural area near 

Winnipeg, in Manitoba, Canada, during June and July in 2012. 

The data acquisition was to support the Soil Mapping Active 

Passive Validation Experiment 2012 (SMAPVEX 12) mission 

of the JPL- NASA. The UAVSAR data were collected  14 days 

during which soil and moisture and vegetation conditions 

significantly variant. The campaign started at the period of early 

crop development and finished at the point where crops had 

reached maximum biomass (McNairn et al., 2014). The 

UAVSAR system is an aircraft-based fully polarimetric L-band 

radar system operated by the JPL Radar Science and 

Engineering Section. Though there are plans to fly the system 

aboard a UAV, such as a Global Hawk, in the future, the 

UAVSAR system is currently flying aboard a NASA 

Gulfstream III and nominally operates at 45,000 ft AGL. The 

system has a precision real-time GPS and sensor-controlled 

flight management system which allows for repeatable flight 

paths that remain within a 10 m diameter tube about the 

intended track. This flight precision allows for differential 

interferometric studies of dynamic phenomena. The UAVSAR 

radar has some unique features that are worth noting. First, it 

has quad-pol capability. Second, it has a range bandwidth of 80 

MHz which gives the Single-Look-Complex (SLC) data a 1.66 

m range and 0.6 m azimuth resolution. The third notable feature 

is that the antenna can be steered ±20° along the azimuth line. 

This allows the radar line of sight direction to be independent of 

the wind-induced motion of the aircraft (Rosen et al., 2006). Its 

high spatial resolution allows studies of backscattering from 

homogeneous vegetation covers. Figure 2 shows a 501×501 

subsample of the color composite of Pauli decomposition. 

 

 
 

Figure 2. Color composite of Pauli decomposition  

(R=𝑆ℎℎ + 𝑆𝑣𝑣 , G=𝑆ℎℎ − 𝑆𝑣𝑣 , B= 𝑆ℎ𝑣) 

 

4. RESULTS AND DISCUSSION 

The proposed method has applied to the polarimetric features 

extracted from four datasets. To evaluate the results 

quantitatively, a ground truth image of the study area is used. 
This area consists of four dominant crop types including Wheat, 

Soybeans, Canola and Oats. The reference crop map of the 

study area is presented in Figure 3. The performance of the 

proposed algorithm is evaluated using actually three strategies: 

First, we have investigated the results of using different types of 

kernel functions. In second strategy we compared the best result 

of the kernel functions (RBF) with conventional methods. 

Finally, we evaluated RBF kernel with different number of 

dates to investigate the influence of the multi-temporal data for 

classification. The detailed comparisons and results are shown 

below. 
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Figure 3. Reference map and its legend 

 

4.1 Different kernel functions evaluation 

Table 1 contains accuracy parameters of using different kernel 

functions. The experimental results demonstrate that the 

accuracy of RBF kernel is more than polynomial and linear 

kernels. RBF kernel is the most popular kernel among the 

others in SAR data processing. Its efficiency can be explained 

by the nature of SAR data, because the statistical distribution of 

these data is approximately normally distributed and it is less 

sensitive to the noise. The next one is polynomial kernel, the 

experimental results showed that with increasing the kernel 

parameter the bigger values affect the dot products and the 

kernel values become unreal as a result the accuracy will 

decrease. In addition, the parameters of polynomial kernel are 

usually difficult to determine and it is more time-consuming 

and complicated. The linear kernel is the simplest one that takes 

the least time to process. It has the lowest results among other 

kernels. 

 

 

Kernel type Overall accuracy Kappa coefficient 

RBF 89.95 0.86 

Polynomial 88.43 0.84 

Linear 86.58 0.81 

 

Table 1. Accuracy parameters of different kernel functions 

assessment 

 

4.2 Comparisons with conventional methods 

In this strategy we have compared the result of KBFCM with 

conventional methods such as K-means and FCM. Table 2 

presents the overall accuracies and kappa coefficients of the 

results. Figure 3 shows the visual comparison of resulted 

classification maps. The performance of kernel-based fuzzy C-

means algorithm with RBF kernel is very obvious in Table 1 

and Figure 3. It can be seen that using kernel function to map 

input data into feature space and measuring the similarities with 

kernel rather than Euclidean distance can improve the clustering 

accuracy. Because calculating the distance with Euclidean 

equation is more sensitive to noise. Table 2 also represents the 

better accuracy for FCM algorithm with respect to K-means 

algorithm. This result can be explained by the inherent property 

of the fuzzy clustering. In fuzzy clustering, unlike to hard 

clustering we can consider each pixel to all classes. Existing 

mixed pixels especially in PolSAR data is one of the reasons for 

performance of the fuzzy C-means clustering. 

 

 

Method Overall accuracy Kappa coefficient 

KBFCM-RBF 89.95 0.86 

FCM 77.22 0.69 

K-means 71.85 0.6 

 

Table 2. Comparisons between kernel-based and conventional 

methods 

 

 
 

 
 

 

 
Figure 3. Final Crop maps: KBFCM- RBF (Top), FCM 

(Middle), and K-means (Bottom) 

4.3 Multi-temporal SAR data assessment 

In this strategy we investigate the impact of using more than 

one date in clustering results. The results show that using multi- 

temporal datasets with four dates of data increase the overall 

accuracy up to 27% with   respect to the single-date data. The 

overall accuracies and kappa coefficients of the clustering 

results are provided in Table3. 
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Number 

of dates 

Overall 

accuracy 

Kappa 

coefficient 

Kernel 

type 

4 89.95 0.86 RBF 

3 81.73 0.75 RBF 

2 71.14 0.61 RBF 

1 62.14 0.47 RBF 

 

Table 3. Accuracy parameters of multi-temporal assessment 

 

5. CONCLUSION 

The aim of this paper was to study the capability of multi-

temporal UAVSAR L-band PolSAR data for crop mapping. 

Four full polarimetric images were acquired over an agricultural 

area. Several statistical and physical based decomposition 

features in addition to linear polarization intensities were 

extracted from data. A kernel-based fuzzy C-means clustering 

method based on several kernel functions (i.e. RBF, polynomial 

and linear) was applied to these features in order to classify 

data. The results showed that multi-temporal datasets increases 

the overall accuracy with respect to the single-date, two-dates 

and even three-dates data. Among the different kernels which 

used in this research, RBF kernel has much better accuracy than 

polynomial and linear kernels. Moreover, the proposed 

algorithm because of working in the higher dimensional feature 

space is more efficient than the other well-known classic 

methods such as FCM and K-means algorithms. 
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