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ABSTRACT: 
 
Evolutionary computation is used for improved information extraction from high-resolution satellite imagery. The utilization of 
evolutionary computation is based on stochastic selection of input parameters often defined in a trial-and-error approach.  However, 
exploration of optimal input parameters can yield improved candidate solutions while requiring reduced computation resources.  In 
this study, the design and implementation of a system that investigates the optimal input parameters was researched in the problem of 
feature extraction from remotely sensed imagery.  The two primary assessment criteria were the highest fitness value and the overall 
computational time. The parameters explored include the population size and the percentage and order of mutation and crossover. 
The proposed system has two major subsystems; (i) data preparation: the generation of random candidate solutions; and (ii) data 
processing: evolutionary process based on genetic programming, which is used to spectrally distinguish the features of interest from 
the remaining image background of remote sensed imagery. The results demonstrate that the optimal generation number is around 
1500, the optimal percentage of mutation and crossover ranges from 35% to 40% and 5% to 0%, respectively. Based on our findings 
the sequence that yielded better results was mutation over crossover. These findings are conducive to improving the efficacy of 
utilizing genetic programming for feature extraction from remotely sensed imagery.  
 

1. INTRODUCTION 

Remote sensing can aid studies on earth surface processes, 
homeland security, disaster response, agricultural and 
environmental resource management, weather forecasting and 
global change research (Momm & Easson, 2011a). However, as 
a result of significant advances in technology, many 
organizations face the challenge developing timely and cost-
effective techniques that can successfully identify certain types 
of features from remotely sensed imagery (Momm & Easson, 
2011a). The main challenge lies in managing a large number of 
images over a long period of time and converting and analysing 
images for actionable intelligence by extracting specific 
features. In addition, the relationship between the different 
image regions is too complex to be solved by explicit 
programming (Momm & Easson, 2011a). Evolutionary 
computation is one of methods that can be used to improve 
feature extraction. However, the efficiency of this technique is 
seldom to be considered and optimized during the extraction of 
features from several images (Momm & Easson, 2011b). 
Although, the performance of the mutation and crossover has 
been compared (Luke S, Spector L, 1997), the range of 
parameter setting involving mutation and crossover operations 
specifically for remote sensing applications has not been 
assessed. 
 
The efficiency of genetic programming algorithms was 
quantified based on the highest fitness value produced and the 
smallest computation time spent. Variations of input parameters 
controlling the evolutionary process were used to generate result 
datasets and to identify the optimal combination of input 
parameters based on the two assessment criteria. The paper 
describes the design and implementation of the proposed 
system. The proposed system contains two stages: (i) 
preliminary stage and (ii) formal exploratory stage. These two 
exploration stages were implemented to evaluate the optimal 
input parameter set based on the two different assessment 
criteria. These two stages were implemented sequentially and 
the findings from the preliminary exploration stage were used to 
select the range of parameter needed in the subsequent 
exploration stage.  

 
The two exploratory stages were performed using an 
evolutionary computation framework composed of two major 
components: (i) data preparation and (ii) data processing. In the 
data preparation component, random candidate solutions were 
generated representing spectral band combinations. In the data 
processing component, traditional image processing and genetic 
programming algorithms were used to iteratively evolve 
spectral indices designed to improve the spectral separation of 
the feature of interest from the remaining image background. In 
this study, the selection of the input parameters controlling the 
evolutionary process was investigated. The manuscript is 
organized as follows:  section 2 contains an overview of the 
remote sensing and genetic programming; section 3 provides 
details of the design and implementation of the system, while 
section 4 involves the evaluation of optimal parameters. In 
Section 5, we show the limitations and future work. Finally, the 
conclusion of the paper will be presented in the section 6. 
 

2. BACKGROUND 

2.1 Remote Sensing Data 

Remote sensed data comprises of most digital images, captured 
by sensors which has four types of resolution: spatial, spectral, 
temporal and radiometric. There are three independently stages 
when processing the remote sensing data, which are pre-
processing, processing and post-processing, respectively. Pre-
processing operations prepare the raw data for subsequent 
operations by minimizing imperfections and/or enhancing 
certain spectral characteristics (Momm & Easson, 2011a; 
Khorram et al., 2012). Algebraic operations of the spectral 
bands, such as division, addition, subtraction, or multiplication, 
are examples of the way in which images can be pre-procesed in 
order to enhance information. After pre-processing, satellite 
images are ready for an image classification process that 
converts the original spectral data, which are variable and may 
show complex relationships across several image bands, into a 
simple thematic map for end users (Khorram et al., 2012). The 
classification procedure extracts important and valid 
information from multidimensional data set that is otherwise 
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difficult to understand. Each pixel in an image is assigned to a 
particular category in a set of categories of interest such as a set 
of land cover types. In the proposed system, K-means was the 
unsupervised classification algorithm that was used to 
automatically cluster image pixels with similar spectral 
characteristics (Momm & Easson, 2011a).  This algorithm was 
selected due to its simplicity and low computational cost; 
however, any other clustering/classification algorithm could had 
been used. 
  
The quantitative measure of the classification accuracy 
constitutes a post-processing step. In this step, accuracy is 
calculated by comparing the resultant thematic image with user 
provided reference information through the utilization of the 
kappa coefficient of agreement (Momm & Easson, 2011b; 
Gong, 2003). 
 
2.2 Genetic Programming 

Genetic programming (GP) is an automated method for 
generating computer programs that solve specific problems 
based on principles of natural selection (Robinson, 2001; 
(Abraham et al., 2006). Genetic programming starts with 
thousands of randomly created computer programs where the 
only successful individuals are progressively evolved over a 
series of generations. Fitness function in genetic programming 
determines the successful individuals according to how well 
they are able to solve the problem. The new generations are 
created based on mutation and crossover operations. Mutation is 
the operation where a function only replaces a function in a 
solution, while the crossover operation means two solutions are 
combined to form two new solutions or offspring (Robinson, 
2001). Table 1 shows genetic programming steps (Robinson, 
2001; Abraham et al., 2006; Koza, 1992). In the proposed 
system, solutions are images that are created based on one 
satellite image. 
 

Step Detail 
Initial Population Random population of possible solutions is 

generated. The solutions are randomly 
generated programs and may not solve the 
problem. 

Fitness Ranking Using fitness metric, the individual solutions 
are rated and sorted based on the ability to solve 
the problem. 

Selection The solutions with highest fitness values are 
selected to generate a new generation of 
solutions. 

Crossover Parts of selected solutions are replaced with 
other solutions’ parts to form new candidate 
solutions. 

Mutation Some of the more fit programs are selected and 
modified to generate new solutions. 

Repetition Until 
Reaching Stopping 
Criteria 

Repeat Fitness Ranking, Selection, Crossover, 
and Mutation steps until reaching stopping 
criteria (e.g. limited generation number or 
threshold fitness). 

Table 1. Genetic programming steps 

 
3. PROPOSED SYSTEM 

The proposed system has two subsystems:  
• Data preparation: representing the input data in the 

format expected by the data processing subsystem. 
• Data processing: is responsible for performing 

evolutionary computation and identifies the feature of 
interest from the remote sensed image. 

 

3.1 Data Preparation: 

One of the most common pre-processing methods used in 
remote sensing applications is the use of spectral 
transformations (mathematical operations using the spectral 
channels as arguments). These spectral indices apply pixel-to-
pixel operations to create a new value for individual pixels 
according to some pre-defined function of spectral values 
(Momm & Easson, 2011a). These operations enhance the image 
and some features become more discernible. The proposed 
system generates a set of candidate solutions that are internally 
stored as binary expression trees and externally represented as 
computer programs (Momm & Easson, 2011a)(Figure 1). The 
candidate solutions are created such that they meet the 
requirements of image bands combinations. The leaves of these 
binary expression trees are image spectral bands, and the nodes 
are operands such as summation, subtraction, multiplication, 
division, logarithms, and square root. The proposed system 
generates the number of candidate solutions with predefined 
heights and these candidate solutions are used for the data 
processing subsystem.  

 
Figure 1. Example of candidate solution represented as hierarchical tree 

expression (internally) and computer program (externally). 

3.2 Data processing:  

The input to this subsystem consists of the multispectral image 
to be classified, reference data, and the parameters controlling 
the execution of the system. The reference data consists of 
positive examples (pixels where the feature is found) and 
negative examples (pixels where the feature is not found). The 
input parameters include the number of image channels, 
generation number, population size (number of candidate 
solution simultaneously considered), percentage of mutation 
and crossover and the order of mutation and crossover. 
 
The proposed system applies each candidate solution 
independently to the original multi-spectral image, in order to 
produce transformed images (processed image). Each processed 
image is used as input to the K-means clustering method to 
produce a two-class binary image using the (Moore, 2011). The 
two classes in the binary images indicate the presence and 
absence of the target feature (Momm & Easson, 2011b). Then, 
the system individually compares each binary image to the 
reference image, which consists of both positive examples 
(where the feature is found) and negative examples (where the 
feature is not found), to produce fitness value using Kappa 
coefficient of agreement. All candidate solutions are sorted 
according to their fitness values to produce the next generation 
of candidate solutions. The system stops, if the user-defined 
stopping criteria are met, and it outputs the highest fitness value 
of each generation in the fitness exploration stage, generation 
number, and their respective computation time. If none of these 
criteria are met, the system will apply the genetic operations on 
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top most fit candidate solutions. Assuming that the parameter of 
the mutation and crossover are x% and y%, respectively, and 
the order of the mutation and crossover is mutation over 
crossover, then mutation operation is applied on the highest x% 
and the crossover operation that is applied on the next highest 
y% of the generation (Momm & Easson, 2011a; 2001b), the 
remaining (100-x-y)% individuals of the population are copied 
to the next generation with no change (replication). The system 
iteratively repeats until the stop criteria are met. Multi-thread 
techniques are applied with the process of generating initial 
candidate solutions and the genetic evolution. Each thread of 
generating individual candidate solution and calculating 
individual fitness values is mutually independent and executed 
simultaneously. Figure 3 displays the overview of the 
evolutionary framework. 
  

 
Figure 2. Main datasets and processing operations of the evolutionary 

framework. 

3.3 Preliminary stage  

The preliminary exploration stage was designed to explore the 
approximate optimal input parameters controlling the genetic 
programming algorithm applied in image processing. In this 
stage, the maximum generation number, used as the main the 
stopping criterion in this stage, is a fixed value (e.g. 100) and 
the explored parameters include the population size and the 
order and percentage of mutation and crossover. The primary 
assessment criterion in this stage is the highest fitness value that 
can be achieved from different parameters setting. However, the 
tendency of the highest fitness obtained from each generation is 
not sufficiently regular. Therefore, multiple replications were 
carried out to provide additional auxiliary assessment criteria 
such as the mean, minimum, and standard deviation of fitness 
for all generations. The fitness exploration supported to identify 
the approximate maximum fitness value after specific 
generations. This preliminary investigation contributed to the 
definition of the fitness value used as the other stopping criteria 
for the iterative evolutionary process. The approximate optimal 
parameters obtained from the fitness exploration will reduce the 
range of the parameter setting, which need be explored in the 
subsequent formal exploration stage. 
 
The search space containing all the possible input parameters 
values is very large and therefore it is not feasible to explore all 
possible values for each parameter. Instead, limited and 
representative range of parameters setting was selected to 
explore possible values set. The set of investigated values was 
also used to predict the possible performance of other values of 
each parameter, which were not explored to estimate the overall 
tendency of different parameter setting. Table 2 illustrates the 
explored range of values of each parameter in the stage of 
fitness exploration. 
 
 

Parameter                                        Explored Values 
Generation Number Fixed value (100), which is the 

stopping criteria 
Population Size Vary from 100 to 2000, common 

difference is 100 
Percentage of 
Mutation & 
Crossover 

The total percentage of Mutation and 
Crossover is 20%, 30% and 40%. If the 
total percentage is 20% and mutation 
varies percentage from 0 to 20%, then 
crossover takes priority. 

Order of Mutation & 
Crossover 

Mutation is over Crossover and 
Crossover is over Mutation 

Table 2 Range of parameter setting explored in the fitness exploration 
stage 

  
3.4 Formal stage  

The results of the preliminary exploration stage indicates that 
the trend of the maximum, minimum, average and standard 
deviation of the fitness gradually stabilizes when population 
size or total percentage of mutation and crossover reaches a 
relative fixed value. The results of the maximum and average 
fitness also indicate that the it is more difficult for the system to 
generate higher fitness values when the fitness already reaches a 
relative fixed value (e.g. 0.95 for image 2003). In other words, 
the system is unable to find a lower minimum independent of 
the number of generations and genetic operations. Therefore, 
computation time is also accounted in this stage to achieve more 
meaningful and accurate optimal parameters and the desirable 
fitness (a relative high fitness) is used as stopping criteria in this 
stage.  
 
Based on analysis of the result from the preliminary exploration 
stage, an approximate range of fitness values have been 
selected. Hence, the fitness threshold is set as 0.95, which is 
selected between average and highest fitness. System running 
time and generation number are collected from each explored 
parameter setting after fitness threshold (stopping criterion) 
reached. All explored range of the parameter setting is 
illustrated in Table 3. 
 

Parameter                                        Explored Values 
Generation Number Not consider 
Population Size Vary from 800 to 1500, common 

difference is 100 
Percentage of 
Mutation & 
Crossover 

The total percentage of Mutation and 
Crossover is 20%, 30% and 40%. If the 
total percentage is 20% and mutation 
varies percentage from 0 to 20%, then 
crossover has priority.  

Order of Mutation & 
Crossover 

Mutation is over Crossover and 
Crossover is over Mutation 

Table 3 Range of parameter setting explored in the time exploration 
stage 

 
4. PERFORMANCE EVALUATION 

We implemented our system on a computer cluster that 
consisted of 8 blade servers, with each server consisting of two 
CPU-Intel Xeon CPU E5-2450 2.10GHz, eight cores and 47 GB 
internal memory size. The total available number of processing 
cores of each server was 32. The operating system was the 
Ubuntu 12.04. The original satellite image used for the 
performance evaluation was acquired with the QuickBird  
sensor of Oxford, Mississippi, USA, and was composed of four 
spectral bands: Blue (485 nm), Green (560 nm), Red (660 nm), 
and Near Infra-red (830 nm) (Momm et al., 2008) (Figure 3). 
The system was evaluated based on two primary performance 
benchmarks: highest fitness value in the preliminary exploration 
stage and the computation time in the formal exploration stage.  
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Figure 3. Example of a satellite image obtained with the 

QuickBird Sensor (RGB – 432) 
 
4.1 Highest Fitness Value 

Obtaining the higher possible fitness value (also referred to as 
global minimum) is the primary objective of stochastic methods 
such as genetic programming. Therefore, highest fitness is the 
one major assessment criterion. Due to the randomness 
associated with the development of the first generation in the 
genetic programming algorithm, the highest fitness generated in 
each generation has no obvious regularity. Hence, multiple 
replications for each configuration were used. All diagrams in 
Figure 4 illustrate the mean, minimum, maximum and standard 
deviation of all highest fitness obtained from each generation 
when using different parameter setting.  
 
Investigations of population size demonstrate the relationship 
between population size and mean, minimum, and standard 
deviation of all highest fitness is exponential and when the 
population size is increased into 1,500, the growing trend of 
mean, minimum, and standard deviation become less noisy (e.g. 
Figure 4.X.1, Figure 4.X.2, and Figure 4.X.4). Although the 
exponential relationship between the population size and 
highest fitness is not explicit, it can be noted that the growing 
trend of highest fitness become slowly when the population size 
increasing into 1,500 (e.g. Figure 4.1.3, Figure 4.2.3, and Figure 
4.3.3 and Figure 4.4.3). These evidences demonstrate that the 
difference of the performance is extremely small when the 
population size exceeds 1,500. However, the larger population 
size will consume more computer resource (e.g. CPU and 
Memory) and execution time. There is a tradeoff between 
computational time and additional generations (additional 
iterations). Therefore, the optimal population size derived from 
results of the fitness exploration stage is around 1,500. 
 
Regarding the percentage of mutation and crossover, the results 
reflect that there is no significant difference between the mean, 
minimum, maximum and standard deviation of top fitness 
values when using different parameter setting. However, it still 
worth noting that better performance arises from higher 
percentage of mutation and crossover and the growing trend of 
mean, maximum, minimum, and standard deviation of all 
highest fitness becomes smother when increasing the total 
percentage of mutation and crossover. This can be attributed to 
higher percentages of crossover and mutation contributes to 
increased population diversity and therefore faster convergence. 
When the total percentage is 20%, the best percentage of 
mutation is arranges from 12% to 20% (that is, the percentage 
of crossover is result of using 20% subtract the percentage of 
mutation and the remaining 80% is replication). When the total 
percentage is 30% or 40%, mutation is arrange 25% to 30% and 
from 30% to 40%, respectively. Moreover, the performance of 
mutation over crossover and crossover over mutation indicate 
the optimal order of mutation and crossover is mutation over 

crossover when the total percentage of mutation and crossover 
is 20%. 

 
Figure 4.1.1 Mean Fitness of All Highest Fitness 

  
Figure 4.1.2 Minimum Fitness of All Highest Fitness 

 
Figure 4.1.3 Maximum Fitness of All Highest Fitness 

  
Figure 4.1.4 Standard Deviation of All Highest Fitness 

 
Figure 4.1 Total Percentage of Mutation and Crossover is 20% 

(Crossover over Mutation) 
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 Figure 4.2.1 Mean Fitness of All Highest Fitness 

 
Figure 4.2.2 Minimum Fitness of All Highest Fitness 

 
Figure 4.2.3 Maximum Fitness of All Highest Fitness 

  
Figure 4.2.4 Standard Deviation of All Highest Fitness 

 
Figure 4.2 Total Percentage of Mutation and Crossover is 20% 

(Mutation over Crossover) 
 
 

 
Figure 4.3.1 Mean Fitness of All Highest Fitness 

 
Figure 4.3.2 Minimum Fitness of All Highest Fitness 

 
Figure 4.3.3 Maximum Fitness of All Highest Fitness 

 
Figure 4.3.4 Standard Deviation of All Highest Fitness 

 
Figure 4.3 Total Percentage of Mutation and Crossover is 30% 

(Mutation over Crossover) 
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Figure 4.4.1 Mean Fitness of All Highest Fitness 

 
Figure 4.4.2 Minimum Fitness of All Highest Fitness 

 
Figure 4.4.3 Maximum Fitness of All Highest Fitness 

 
Figure 4.4.4 Standard Deviation of All Highest Fitness 

 
Figure 4.4 Total Percentage of Mutation and Crossover is 40% 

(Mutation over Crossover) 
 

Figure 4.  Mean, Min, Max and Standard Deviation of all highest fitness 
generated in each generation for various population size and percentage 

of mutation and crossover 
 

 
4.2 Computation Time: 

The generation number directly impacts on the computation 
time, hence the total generation number is also considered as an 
auxiliary factor to measure the computation time. Figure 4 
shows the total generation number and computation time taken 
by different parameter setting after reaching the threshold of 
fitness. The results also demonstrate that the trend of generation 
number is extremely similar with the computation time for 
different parameter setting. 
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Figure 5.1.3 Computation Time for Population Size, 1,500 

Figure 5.1 Total Percentage of Mutation and Crossover is 20% (Mutation over 
Crossover) 

 
Figure 5.2.1 Generation Number when Total Percentage is 20% 

 
Figure 5.2.2 Computation Time when Total Percentage is 30% 

 
Figure 5.2.3 Computation Time for Population size, 1,500 

Figure 5.2 Total Percentage of Mutation and Crossover is 30% (Mutation over 
Crossover) 

 
Figure 5.3.1 Generation Number when Total Percentage is 40% 

  

 
Figure 5.3.2 Computation Time when Total Percentage is 40% 

 
Figure 5.3.3 Computation Time for Population Size, 1,500 

 
Figure 5.3 Total Percentage of Mutation and Crossover is 40% (Mutation over 

Crossover) 
 

Figure 5 Generation Number, Computation Time, and Computation 
Time when Population Size is 1,500 after reaching the threshold of 

fitness 
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is an important characteristic for successful evolution of the 
algorithm.  In both preliminary and formal exploration stages, a 
large number of input parameters have been explored. The 
result data from both two stages indicates the approximate 
performance tendency. Additional range of parameter setting 
will be explored to complement the experiment and make a 
complete evaluation of optimal parameters more accurately in 
the future.  
 
Due to the randomness of the genetic algorithm, it would be 
beneficial to run additional replications of the system to 
generate a larger experiment data set. Moreover, working with 
additional images would assure that the solutions developed are 
not too specific to the training dataset and therefore it would 
ensure the optimal parameters are more representative when 
applied to images with different characteristics. 
 
Finally, the most significant factor to estimate the optimal 
parameters is the selection of the assessment. Different 
assessment criterion could lead to different optimal parameters.  
 

6. CONCLUSION 

The findings we have presented in this paper is from a large 
number of runs over a wide range of parameters. Our analysis of 
the data indicates that the difference between the performance 
of different parameter setting is small, and often statistically 
insignificant, especially the performance of achieving a pre-
determined fitness value. However, it still demonstrates that 
some particular range of parameter setting can result in better 
performance than others. The overall finding from this study is 
that better performance, measured through pre-defined fitness 
value and less computation time, is obtained from larger values 
of population size and percentage of genetic operations. 
However, the increasing performance trend gradually levels off 
after some parameters are reached. Therefore, the optimal 
parameters were selected among these fixed values after 
carefully comparing the subtle difference between the 
performances achieved by these fixed values.  Based on the 
analysis of the results obtained from the fitness and time 
exploration stage, the final optimal population size is around 
1500, the optimal percentage of mutation and crossover ranges 
from 35% to 40% and from 5% to 0, respectively, and the 
mutation should be applied with the top best candidate solutions 
before crossover. 
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