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ABSTRACT: 

 

Discrete return and waveform lidar have demonstrated a capability to measure vegetation height and the associated structural 

attributes such as aboveground biomass and carbon storage. Since discrete return lidar (DRL) is mainly suitable for small scale 

studies and the only existing spaceborne lidar sensor (ICESat-GLAS) has been decommissioned, the current question is what the 

future holds in terms of large scale lidar remote sensing studies.  The earliest planned future spaceborne lidar mission is ICESat-2, 

which will use a photon counting technique. To pre-validate the capability of this mission for studying three dimensional vegetation 

structure in savannas, we assessed the potential of the measurement approach to estimate canopy height in a typical savanna 

landscape. We used data from the Multiple Altimeter Beam Experimental Lidar (MABEL), an airborne photon counting lidar sensor 

developed by NASA Goddard. MABEL fires laser pulses in the green ( 532 nm) and near infrared (1064 nm) bands at a nominal 

repetition rate of 10 kHz and records the travel time of individual photons that are reflected back to the sensor. The photons’ time of 

arrival and the instrument’s GPS positions and Inertial Measurement Unit (IMU) orientation are used to calculate the distance the 

light travelled and hence the elevation of the surface below. A few transects flown over the Tejon ranch conservancy in Kern County, 

California, USA were used for this work. For each transect we extracted the data from one near infrared channel that had the highest 

number of photons. We segmented each transect into 50 m, 25 m and 10 m long blocks and aggregated the photons in each block 

into a histogram based on their elevation values. We then used an expansion window algorithm to identify cut off points where the 

cumulative density of photons from the highest elevation resembles the canopy top and likewise where such cumulative density from 

the lowest elevation resembles mean ground elevation. These cut off points were compared to DRL derived canopy and mean ground 

elevations. The correlation between MABEL and DRL derived metrics ranged from R2 = 0.70, RMSE = 7.9 m to R2 = 0.83, RMSE = 

2.9 m. Overall, the results were better when analysis was done at smaller block sizes, mainly due to the large variability of terrain 

relief associated with increased block size. However, the increase in accuracy was more dramatic when block size was reduced from 

50 m to 25 m than it was from 25 m to 10 m. Our work has demonstrated the capability of photon counting lidar to estimate canopy 

height in savannas at MABEL’s signal and noise levels. However, analysis of the Advanced Topography Laser Altimeter System 

(ATLAS) sensor on ICESat-2 indicate that signal photons will be substantially lower than those of MABEL while sensor noise will 

vary as a function of solar illumination, altitude and declination, as well as the topographic and reflectance properties of surfaces. 

Therefore, there are reasons to believe that the actual data from ICESat-2 will give poorer results due to a lower sampling rate and 

use of only the green wavelength. Further analysis using simulated ATLAS data are required before more definitive results are 

possible, and these analyses are ongoing.    

 

 

1. INTRODUCTION 

Lidar remote sensing provides a means to directly estimate the 

three dimensional biophysical parameters of vegetation using 

the physical interactions of the emitted pulse with the vegetation 

structure being illuminated. One widely demonstrated 

application of lidar has been the estimation of canopy height, 

which is in turn related to aboveground woody biomass, an 

important quantity in monitoring carbon storage and dynamics 

in vegetation systems and central to global carbon cycle studies. 

Small footprint discrete return lidar (DRL) systems are ideally 

useful for small extents while large footprint waveform lidar 

systems are the most ideal for studies at larger extents (Hall et 

al., 2011). The Geoscience Laser Altimeter System (GLAS) 

aboard the Ice, Cloud and land Elevation Satellite (ICESat) has 

been the only available spaceborne lidar sensor and it has 

provided waveform data with a proven capability to estimate 

canopy height in various ecosystems (Lefsky, et al., 2007; 

Duncanson et al., 2010; Xing et al., 2010; Lefsky, 2010; 

Simard et al., 2011; Gwenzi & Lefsky, 2014a). However, 

ICESat was decommissioned in 2010 and the earliest planned 

future mission is its successor, ICESat-2, which will use the 

Advanced Topography Laser Altimeter System (ATLAS). 

Unlike GLAS, that used a full waveform recording technique, 

ATLAS will use a single photon counting technique. A single 

photon counting lidar (SPL) system fires thousands of laser 

pulses per second and records the travel time of individual 

photons that are reflected back to the sensor. The photons’ time 

of arrival and the instrument’s Global Positioning System 

(GPS) position and Inertial Measurement Unit (IMU) 

orientation are used to calculate the distance the light travelled 

and hence the elevation of the surface below. The high level of 

sensitivity of a SPL at low energy expenditure promises 

extended laser lifetimes and makes it possible to fly at higher 

altitudes, thus providing a larger coverage. The plan for ATLAS 

is to use a single pulse which will be split into 6 transmit beams 

that are arranged in 3 pairs. The configuration will give a 

distance of 3.3 km between each pair with a 90 m separation 

between the members of each pair. Using a 10 kHz repetition 

rate at an altitude of ~500 km will produce footprints of 10 m 

diameter at 70 cm intervals along track (Abdalati et al., 2010). 

The primary objective of ICESat-2 will be the quantification of 

ice sheets and sea ice but just like ICESat-GLAS, vegetation 

height retrieval for biomass assessment is a science objective, 

although not a mission requirement. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1, 2014
ISPRS Technical Commission I Symposium, 17 – 20 November 2014, Denver, Colorado, USA

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-1-141-2014 141



 

The Multiple Altimeter Beam Experimental Lidar (MABEL) is 

an airborne simulator of ATLAS that was developed by NASA 

Goddard to pre-validate the ICESat-2 mission. MABEL flights 

were carried out on NASA’s ER-2, a high altitude aircraft 

(http://www.nasa.gov/centers/armstrong/aircraft/ER-2/index.html). The 

sensor uses laser pulses in the red (532 nm) and near infrared 

(1064 nm) wavelengths at a variable repetition rate of 5-25 kHz. 

Typically, it uses a 10 kHz repetition rate and laser pulse length 

of 2 ns. At the platform’s nominal speed of 200 ms-1, a pulse 

will be emitted every 4 cm along the track (McGill et al., 2013). 

At the ER-2’s operational altitude of 20 km, the laser 

illuminates a spot (footprint) of ~2 m in diameter, within the 

telescope’s field of view of ~4 m. The output of the MABEL 

laser at the two wavelengths is split into 16 channels; 8 near 

infrared (1064 nm) and 16 red (532 nm) beams which can be 

off-nadir pointed at 3°. With this configuration, a flight 

altitude of 20 km can give a swath of 2.10 km. The details of 

MABEL configuration are given in (McGill et al., 2013).   

 

The MABEL instrument has been flown aboard the ER-2 on 

several missions above various earth surfaces between the years 

2010 and 2014 at different times of the day. This variation of 

conditions under which it was flown provides different levels of 

solar background and other atmospheric conditions necessary to 

test signal detection algorithms for different surfaces, including 

vegetation. The aggregation of the time tagged photons along 

the ground track allows for vertical profiles to be created, on 

which vegetation and ground elevations can be computed.  

MABEL was not intended to be an exact duplicate of ATLAS 

but was meant to provide the measurement concept and data for 

algorithm development with the flexibility to explore science 

and engineering trade spaces (McGill et al., 2013). This paper 

reports work that used MABEL data from one selected channel 

to generally investigate the prospects of photon counting lidar 

in retrieving 3-D vegetation structural attributes in a savanna 

landscape. We hope to provide a base for any other photon 

counting lidar remote sensing work that aims at calculating 

canopy height, biomass and consequently carbon 

storage/dynamics in such ecosystems. 

 

 

2. METHODS AND MATERIALS 

2.1 Study Site 

This research was conducted in the oak savannas of Tejon 

Ranch Conservancy (figure 1). The 2008 Tejon Ranch 

Conservation and Land Use Agreement between Tejon Ranch 

Company and a group of conservation organizations resulted in 

the creation of this 72 000 Ha conservancy. The conservancy 

was created to protect the ranch and implement science based 

stewardship, thus preserving, enhancing and restoring the native 

biodiversity and ecosystem values of the Tejon Ranch and 

Tehachapi Range for the benefit of California’s future 

generations (Tejon Ranch Conservancy, 2013). These oak 

savannas comprise mainly of Blue oaks (Quercus douglasii), 

Black oaks (Quercus kelloggii) and Valley oaks (Quercus 

lobata). Other species found in this ecosystem are Canyon live 

oak (Quercus chrysolepis), Interior live oak (Quercus 

wislizeni), the California Buckeye (Aesculus californica) and a 

few conifers. Blue oak woodlands are dominant at the lower 

elevations (between 500 and 1 000 m), Black oak woodlands 

are dominant in higher elevation areas (> 1 200 m) while Valley 

oak woodlands are found on both lower (400- 600 m) and 

higher (1400- 1800 m) elevations. Grass dominates the 

understories of Blue and Valley oaks while shrubs are found in 

combination with grass in the understory of Black oaks. 

 

2.2 Data 

We used data from the February 2012 day time flights. MABEL 

transects that were coincident with available DRL data were 

selected for the analysis. For all the transects, we used a single 

channel (number 49) in the near infrared wavelength since on 

average it had the highest number of detected photons for the 

data available. For demonstration and validation purposes, we 

present the results of one transect (herein referred to as transect 

5, shown in figure 1) that had the highest variability in terms of 

vegetation cover and relief. The height metrics calculated from 

the MABEL data were validated by comparing them with the 

equivalent metrics derived from the DRL data. The DRL data 

was obtained in May 2012 by a commercial lidar vendor at an 

average density of 1 point per m2 and was validated by field 

data as explained in (Gwenzi & Lefsky, 2014b).   

 

Figure 1. Map showing Landsat TM false color (432) image of 

study area and location of DRL data extent and transect 5. 

 

2.3 Height Calculation 

For each transect the channel 49 photons were aggregated at 

different length segments, herein referred to as blocks. We 

tested the derivation of canopy height at 3 block lengths (50 m, 

25 m, and 10 m). We chose the 10 m block to represent the 

ICESat-2’s footprint size. The location of the ICESat-2 

footprint will be known but the location of any recorded photon 

within the footprint will be unknown (Rosette et al., 2011). The 

25 m block size was chosen to compare with footprint sizes of a 

prior successful medium resolution lidar sensor, the Laser 

Vegetation Imaging Sensor (LVIS) and a planned future 

mission, the Global Ecosystem Dynamics Investigation (GEDI) 

lidar. We also evaluated the 50 m block size to compare with 

ICESat-GLAS and determine the effect of analysis at a much 

coarser resolution. For each block length, the aggregated 

photons were modeled into a histogram at 0.5 m vertical 

resolutions according to their elevation above the World 

Geodetic System (WGS 1984). The raw data for each channel 

has a lot of noise photons as shown in figure 2. To filter out 
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much of the noise photons we used only those photons whose 

elevation was within the µ±2.5σ range for each block. The 

histogram for each block was used to derive two main height 

metrics for that corresponding block: Hmax defined as the 

maximum canopy height minus mean ground elevation and H90 

defined as the 90th percentile canopy height minus mean ground 

elevation.    

  
Figure 2. Transect 5’s raw data 

 

For each block length, we randomly selected a few blocks for 

which the distribution of the photons showed clear breaks, (i.e. 

a likely canopy top and ground elevation). These breaks were 

then matched to the canopy top and mean ground elevation 

calculated from the DRL data. We related the values for the 

canopy top and mean ground elevation to the bins of their 

respective histograms, relative to the highest elevation for 

canopy top and relative to the lowest elevation for mean ground 

elevation. From the histograms, we found out that on average 

for a 50 m block, the break for canopy top corresponded to the 

elevation of the lowest of the top 10 % photons while that for 

mean ground elevation corresponded to the elevation of the 

highest of the bottom 25 % of photons. The corresponding bins 

for the other block sizes were 10 % and 20 % (25 m) and 5 % 

and 7.5 % (10 m) for the canopy top and mean ground elevation 

respectively.  Using these results we then implemented an 

expansion window algorithm (figure 3) in R (R Core Team, 

2014) that identified the canopy top and mean ground elevation 

for every other block for all the block sizes in all transects.  

 

To identify the canopy top, the algorithm starts by drawing a 2 

m length window that starts at the highest elevation bin for each 

histogram and counts the number of photons in that window 

relative to the total number of photons in the whole histogram. 

The window then expands by 0.5 m downwards and again 

counts the number of cumulative photons and the process 

repeats until the number of counted photons are equal to or 

greater than the cut off point (i.e. 10 %, 10 %, and 7.5 %  for 

the 50 m, 25 m, and 10 m blocks respectively). The elevation of 

the bin at which the window stops expanding is therefore the 

canopy top elevation. For mean ground elevation, the algorithm 

works the same way but the window starts from the other end of 

the histogram, i.e. the bin of the lowest elevation and stops at 

the respective cut off points for the concerned block size. Hmax 

is therefore calculated as canopy top minus mean ground 

elevation. For H90 the procedure is almost the same but after 

identifying the canopy top, and the mean ground elevation, the 

algorithm then orders the photons in between according to their 

elevation and identifies the photon at the 90th percent index. H90 

will then be calculated as the elevation of the photon at the 90th 

percent index minus mean ground elevation.  To check our 

algorithm’s ability to derive these height metrics well, we 

created vegetation profiles along each transect by plotting each 

block’s canopy top and mean ground elevation at its centre’s 

coordinates and connect them with a continuous line.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Diagrammatic representation of the height calculation 

algorithm (an example of a 25 m block from transect 5) 

 

We also checked the accuracy of the height metrics derived 

from MABEL data by comparing the results of transect 5 to the 

equivalent metrics calculated from the DRL data along the same 

transect. To achieve this, we created a 2 m wide polygon 

through the geographic location of the channel 49 transect to 

represent the approximate footprint diameter of MABEL. This 

polygon was then divided into blocks of the same length 

coincident with those used in MABEL data analysis to extract 

the validation metrics. From the DRL data we created a Digital 

Terrain Model and Digital Surface Models (maximum and 90th 

percentile canopy height) at 2 m resolution using LAStools 

(Isenburg, 2014). Like with the MABEL data height extraction 

algorithm, Hmax and H90 for each block were obtained by 

subtracting the mean ground elevation from the maximum and 

90th percentile canopy elevations respectively.  We then used 

the R2 and RMSE statistics to determine the deviation of the 

MABEL derived metrics from the DRL derived metrics. 

 

 

3. RESULTS 

Profiles at the 25 m and 10 m block sizes showed a better 

representation of the vegetation than those at 50 m, mainly due 

to limited terrain extents (max-min ground elevation) in the 

former block sizes compared to the latter.  As examples, figure 

4 shows the profiles for a 1 km section of transect 5 at the 3 

different block sizes and figure 5 shows the validation statistics 

for the Hmax and H90 metrics for all the blocks within this same 

transect 5. The H90 height metric was estimated with a slightly 

better accuracy than the Hmax metric. For both metrics, the 

results were better when block size was reduced and the 

increase in accuracy was more dramatic from 50 m to 25 m 

block sizes than it was from 25 m to 10 m. Grouping the blocks 

according to the validation residuals and match them with their 
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Figure 4. Examples of profiles at different bock sizes from a 1 km stretch of transect 5
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physical locations showed that most of the blocks with the 

higher prediction errors were on Easterly aspect.  From the DRL 

data and previous field work experience (Gwenzi &Lefsky 

2014b), it turned out that Easterly aspect areas generally have 

sparse vegetation with short height. 

 

 

4. DISCUSSION 

Our algorithm provided encouraging results but were not 

impressive when compared to other high spatial resolution lidar 

techniques. We suspect that besides the lower quality of the day 

time MABEL data, our results could have been affected by the 

differences in vegetation phenology over the different seasons 

in which the MABEL and DRL data were collected. MABEL 

data was collected in February, a season during which the 

majority of tree species in the study site are leaf off and grass 

growth is at peak. DRL data was collected in July, a reverse 

season characterized by leaf on trees and dead grass. The 

consequences of these differences are twofold: MABEL 

penetrated more the canopy under leaf off conditions and hence 

had more ground returns in densely vegetated deciduous tree 

areas where DRL may not have penetrated well under leaf on 

conditions. On the other hand, MABEL under leaf off 

conditions had a higher probability of missing the canopy tips 

where DRL had higher chances of capturing these tips as 

surface area is greatly increased by the leaf on conditions. These 

effects would be compounded because the lower pulse energy 

of MABEL is less likely to record energy from the very highest 

elevations and more likely to penetrate to the ground. Moreover 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

different understory herbaceous vegetation grows over these 

different seasons in the study area, which can also contribute to 

the differences in the minimum vegetation heights obtained 

from each data set.  

 

As with any other georefrenced data, there could be geolocation 

problems with either the MABEL or DRL data or both. We 

however do not expect this to have been a big contributor since 

the profiles drawn by our algorithm were capable of picking 

well both tree tops and valley bottoms, especially at 10 m block 

sizes and the DRL data was validated with field data (Gwenzi 

and Lefsky, 2014b).  

 

Profiles drawn at the 50 m block size do not represent well the         

vegetation along the transect because of the high heterogeneity 

of both relief and vegetation within this area.  The variability of 

these two factors is finer than the aggregation length of 50 m. 

The less dramatic change in accuracy from 25 to 10 m block 

sizes hints that 25 m is an optimum aggregation length. This 

concurs with waveform lidar studies where 25 m footprint data 

from LVIS (Blair et al., 1999; Drake et al., 2002; Anderson et 

al., 2006) provided better results compared to GLAS data with 

footprint sizes greater than 50 m in diameter. The generally high 

prediction error on blocks found on the Eastern aspect is most 

likely related to the structure of the vegetation. The Easterly 

aspect in this area is characterized by short and sparse 

vegetation that is tolerant to the associated drier conditions. 

Photons that fall on very short and open stands are difficult to 

discriminate between noise, canopy and ground. This confirms 

with results from waveform data where we demonstrated that 

Figure 5. Validation plots for the height metrics at the different block sizes 
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short height stands on steep terrain pose the main height 

modeling challenge (Gwenzi & Lefsky, 2014a). 

 

During daylight conditions, part of solar noise may be mixed 

with valid vegetation returns making it difficult to accurately 

identify vegetation profiles. Use of night time data with less 

background noise would have produced better results. 

 

For vegetation studies, we do not expect actual data from 

ICESat-2’s ATLAS sensor to give better results due to the 

higher background noise levels and lower sampling rates 

associated with the larger footprint and use of only the green 

wavelength. Having few photons in areas that already have low 

vegetation cover makes it difficult to characterize the vertical 

distribution of the vegetation at small aggregation blocks. 

Increasing the aggregation block size will also increase the 

variability in both relief and tree height. Full waveform lidar has 

already proven to provide good results for vegetation and the 

optimum block size of 25 m identified in this work suggests that 

future missions like GEDI will be a better option than ICESat-2 

for canopy height and biomass studies.  

 

Our results are comparable with the few vegetation height 

studies done using SPL lidar.  For forest studies Awadallah et 

al. (2013) employed active contour models on Sigma Space 

Micro Pulse Lidar and MABEL data to estimate median and 

mean canopy height with RMSE values ranging between 0.5 

and 2.5 m but over shorter validation transects (100m – 1km). 

Reliable height estimation from SPL data will also lead to 

reliable biomass estimation since this relationship has been 

demonstrated well with discrete return and waveform lidar. 

Rosette at al. (2011) related canopy height simulated from data 

collected by a photon counting lidar system (Sigma Space’s 3D 

mapper ) to biomass and reported promising results in a forest 

area (R2 = 0.72, SE = 53 Mg/Ha). 

 

 

5. CONCLUSIONS 

For such a structurally complex savanna system, the results we 

obtained are quite encouraging.  We however believe that the 

actual data from ICESat-2 will give poorer results in light of 

higher background noise, a lower sampling rate and use of only 

the green wavelength.  Given the history of full waveform lidar 

work, it is our conclusion and recommendation that for 

vegetation studies, future missions should consider the 

continued use of full waveform lidar systems such as GEDI. 

ICESat-2 can however be a useful bridge between ICESat-

GLAS and any such future waveform lidar mission to ensure 

continuity of monitoring canopy height, biomass and carbon 

stocks using spaceborne lidar. 
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