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ABSTRACT: 

 

In this paper, we present a novel linear approach for the initial recovery of the exterior orientation parameters (EOPs) of images. 

Similar to the conventional Structure from Motion (SfM) algorithm, the proposed approach is based on a two-step strategy. In the first 

step, the relative orientation of all possible image stereo-pairs is estimated. In the second step, a local coordinate frame is established, 

and an incremental image augmentation process is implemented to reference all the remaining images into a local coordinate frame. 

Since our approach is based on a linear solution for both the relative orientation estimation as well as the initial recovery of the image 

EOPs, it does not require any initial approximation for the optimization process. Another advantage of our approach is that it does not 

require any prior knowledge regarding the sequence of the image collection procedure, therefore, it can handle a set of randomly 

collected images in the absence of GNSS/INS information. In order to illustrate the feasibility of our approach, several experimental 

tests are conducted on real datasets captured in either a block or linear trajectory configuration. The results demonstrate that the initial 

image EOPs obtained are accurate and can serve as a good initialization for an additional bundle adjustment process. 

 

1. INTRODUCTION 

Nowadays, 3D modelling of objects can be achieved using either 

passive or active remote sensing systems. Active sensors, such as 

laser scanners, are able to directly provide precise and reliable 3D 

information of scanned objects. However, the derived point cloud 

usually lacks spectral information (especially when dealing with 

collected data by mobile platforms). On the other hand, passive 

sensors, which commonly use digital frame cameras, can be 

incorporated for 3D reconstruction while providing spectral 

information of the derived coordinates. Compared to active 

sensors, the spectral information from passive sensors would 

allow for the derivation of better and more reliable semantic 

information pertaining to the reconstructed objects (e.g., the type 

and condition of mapped objects could be easily derived from the 

resulting 3D models). Therefore, passive-sensor-based 

reconstruction still remains the most complete, economical, 

flexible, and widely-used 3D modelling option in many areas 

(Remondino and El-Hakim, 2006).  

 

3D reconstruction from digital images captured by passive 

sensors requires the knowledge of the Interior Orientation 

Parameters (IOP) of the utilized camera, the Exterior Orientation 

Parameters (EOP) of the involved images, and the corresponding 

points/features in the set of overlapping images. The IOP of the 

utilized camera can be derived from a camera calibration process. 

The EOP of the involved imagery can be either derived through 

an indirect geo-referencing procedure using tie and control points 

or a direct geo-referencing process through the implementation 

of a GNSS/INS unit on-board the mapping platform. While the 

latter approach provides practical convenience in terms of 

simplifying the geo-referencing process, it requires significant 

initial investment for the acquisition of the high-end GNSS/INS 

Position and Orientation System (POS) – especially, when 

seeking high level of reconstruction accuracy. Therefore, 
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significant research efforts have been exerted towards the 

development of automated procedures for 3D reconstruction and 

derivation of the geo-referencing parameters of the involved 

imagery in the absence of a GNSS/INS unit or in the presence of 

less accurate POS information from consumer-grade 

GNSS/MEMS units.  

 

As far as the 3D reconstruction is concerned, one of two 

approaches could be adopted. In the first approach, a two-step 

procedure is adopted for the 3D reconstruction assuming the 

availability of prior knowledge regarding the EOP of the 

involved images. In the first step, corresponding features are 

identified in the set of available images (i.e., the matching 

problem). In the second step, the 3D positions of the matched 

points are derived using a simple intersection procedure that 

incorporates their image coordinates, IOP of the utilized camera, 

and the EOP of the involved images (Kraus, 2007). The main 

drawback of this procedure is the reliance on the availability of 

highly accurate EOP, which could be only available through the 

utilization of high-end POS units. Within the second approach for 

3D reconstruction, which was mainly initiated by the computer 

vision research community, the feature matching and EOP 

recovery are simultaneously established. A commonly used 

procedure in this approach is known as Structure from Motion 

(SfM), which is usually based on a 3-step strategy. In the first 

step, the relative orientation parameters relating stero-images or 

image triplets are initially estimated using automatically 

identified point and/or line features. Then, in the second step, a 

reference coordinate system is established and utilized to define 

the position and orientation parameters for the involved imagery 

using the derived relative orientation parameters in the first step 

as well as 3D coordinates of the matched points. Finally, in the 

third step, a bundle adjustment procedure is usually implemented 

to refine the derived information in the second step (Triggs et al., 
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2000). Compared to the first approach for 3D reconstruction, 

SfM is more advantageous since it allows for 3D mapping in the 

presence or absence of GNSS/INS units. 

 

In order to overcome the limitations of using GNSS/INS units, 

we adopt a Structure-from-Motion-based procedure for 3D 

reconstruction in this paper. A novel linear approach, which aims 

at the recovery of the EOPs of randomly captured images, is 

proposed. This proposed approach is tested on real image 

datasets, which were acquired by a calibrated camera – i.e., a 

camera with known IOPs. The remainder of the paper presents 

the proposed approach in more details. First, a literature review 

of related work is given. Then, the proposed methodology is 

introduced. Finally, experimental results and conclusions are 

presented for future work. 

 

2. RELATED WORK 

SfM 3D reconstruction approaches usually use either a sequential 

or hierarchical approach to initially estimate the EOP of the 

involved images – the focus of the second step of the 

aforementioned 3-step strategy – in an incremental manner. For 

example, Snavely et al. (2006) proposed an incremental SfM 

procedure, in which images are added one by one into the 

reference frame. In their method, the reference frame is 

established from a single pair of images that has a large number 

of matched points/features and a long baseline. Then, a new 

image is incrementally augmented to the reference frame. The 

EOPs of the augmented image are estimated using the 

reconstructed 3D points from the first pair through a Direct 

Linear Transformation (DLT) procedure. Fitzgibbon and 

Zisserman (1998) developed a hierarchical approach to recover 

the EOPs for either closed or open set of acquired images. In this 

method, trifocal tensors are estimated for all consecutive image 

triplets. Then, a hierarchical approach is applied to gradually 

integrate the image triplets to subsets. Finally, these subsets are 

augmented into a single block. For either the sequential or 

hierarchical approaches, intermediate bundle adjustment – which 

is time consuming – is implemented to ensure successful 

augmentation of the individual images into the final image block. 

Other than the expensive intermediate bundle adjustment, current 

incremental SfM methods suffer from severe error propagation 

during the sequential image augmentation process. Therefore, 

some global methods have been developed to simultaneously 

establish the EOPs for all the available images.  

 

Martinec and Pajdla (2007) developed a two-step global method 

to solve for the EOPs of the images. First, they determine the 

rotational component of the EOPs of the images. Then, the spatial 

component of the EOPs is estimated in the second step. However, 

this two-step approach cannot deal with images that have been 

captured from an almost linear trajectory – those images will be 

denoted here forth as linear-trajectory images. Jiang et al. (2013) 

proposed another two-step global linear method for the 

estimation of EOPs of available images. To handle linear-

trajectory images, they use the baseline/depth ratios from 

neighbouring stereo-pairs for the image augmentation process. 

However, the estimated baseline/depth ratios may not be 

accurate. 

3. METHODOLOGY 

Image-based 3D reconstruction requires the availability of 

accurate image EOPs. In both photogrammetric and computer 

vision research communities, bundle adjustment process, which 

simultaneously refines the 3D coordinates of reconstructed object 

points as well as the EOPs of images, is usually applied as the 

final step of image-based 3D reconstruction. However, bundle 

adjustment is a nonlinear optimization algorithm, and it requires 

close initial approximation of the inputs. In this paper, the 

proposed approach is based on a linear solution for the initial 

recovery of the image EOPs. This approach includes two steps. 

In the first step, the relative orientation parameters relating 

stereo-images are derived from the essential matrix that is 

directly computed from conjugate point features. In the second 

step, a local coordinate frame is initially established, and then the 

EOPs of remaining involved images are sequentially recovered 

in an incremental augmentation process. A workflow of the 

proposed approach is shown in Figure 1. 

 
Figure 1. The proposed workflow for initial recovery of the 

image EOPs 

3.1 Relative Orientation 

In this section, the proposed relative orientation parameters 

(ROPs) estimation is presented. 

 

3.1.1 SIFT Matching:  

 

The estimation of ROPs requires the identification of conjugate 

points and/or line features in the set of available images. In this 

research, the Scale-Invariant Feature Transform (SIFT) features 

(Lowe, 1999), which are invariant to image scaling and rotation, 

are used to identify corresponding point features among the 

available stereo-images. The proposed SIFT feature matching 

process is implemented in two steps. 

 

At the first step, the SIFT operator is applied for the identification 

of corresponding points in the available stereo-pairs. Initial SIFT 

feature correspondences are determined through a Euclidean-

distance-based nearest neighbour matching approach, in which 

the Euclidean distances between the descriptors of the SIFT 

features are computed. At the second step, incorrect feature 

correspondences are detected through forward/backward 

consistency check. As shown in Figure 2, in the forward 

consistency check process, P1 matches Q1, and P2 matches Q2; 

while in the backward consistency check process, Q1 matches 

P1, and Q2 matches P3. Finally, (P1, Q1) is accepted as a correct 

conjugate pair, while (P2, Q2) and (Q2, P3) are discarded as 

mismatches. 

 
Figure 2. Forward/backward consistency check for an image 

pair 
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3.1.2 Initial Estimation of ROPs from the Essential 

Matrix: 
 

The essential matrix is a 3-by-3 matrix comprised from the ROPs 

relating two stereo-images. More specifically, for a calibrated 

camera (i.e., a camera with known IOPs), if 𝑝𝑙 and 𝑝𝑟 are image 

coordinates of the identified conjugate points in the two stereo-

images, the mathematical model relating the essential matrix and 

the conjugate points can be expressed in Equation 1. 

 

𝑝𝑙𝐸𝑝𝑟 = 0 (1) 

 

The essential matrix can be computed from a set of conjugate 

points using either the 8-point or 5-point algorithm (Niste´r, 

2005). Meanwhile, the RANSAC algorithm (Fischler and Bolles, 

1981) is usually implemented with the 8-point or 5-point 

algorithm for identifying incorrect feature correspondences. 

 

Once the essential matrix is established, the initial rotation matrix 

R and translation vector T can be derived through a Singular 

Value Decomposition (SVD) process that is implemented 

according to the following sequence: 

 

1. Apply an SVD on the essential matrix 𝐸: 

 

𝐸 = 𝑈 ∑ 𝑉𝑇 
(2) 

 

Where U and V are two 3-by-3 orthogonal matrices, and ∑ is a 

3-by-3 diagonal matrix. According to the characteristics of the 

essential matrix, the diagonal entries of ∑ are two identical and 

one zero values. 

 

2. Define two matrices 𝑊 and 𝑍: 

 

𝑊 = [
0 −1 0
1 0 0
0 0 1

] and Z = [
0 1 0

−1 0 0
0 0 0

] 
 

(3) 

 

3. Compute two possible solutions for the rotation matrix R: 

 

𝑅 = 𝑈𝑊𝑉𝑇  and 𝑅 = 𝑈𝑊𝑇𝑉𝑇 (4) 

 

4. Compute two possible solutions for the translation vector T: 

 

𝑇 = 𝑉𝑍𝑉𝑇 and 𝑇 = −𝑉𝑍𝑉𝑇  (5) 

 

As shown in Figure 3, four possible solutions for the rotation 

matrix R and translation vector T can be derived from the SVD 

method. Then, two additional constraints can be enforced to 

identify the one valid solution out of the four: 

 

1. The two light rays connecting the object point and 

perspective centres should be on the same side of the 

baseline. 

2. The object points should have depth consistent with the 

definition of the coordinate system. 

 

Instead of using the SVD method, Horn (1990) proposed another 

approach for recovering the rotation and translation parameters 

from the essential matrix. In this method, the rotation matrix and 

translation vector are separately estimated. Similarly, four 

possible solutions are derived from this approach. 

 

 
Figure 3. Four possible solutions for rotation matrix R and 

translation vector T derived from the essential matrix E 

3.1.3  Refinement by Co-planarity Model: 

 

The rotation matrix R and translation vector T derived from the 

essential matrix give a good initial approximation for the ROPs 

of the stereo-pairs. Then, the well-known co-planarity model 

(e.g., Mikhail et al., 2001) is adopted to provide accurate solution 

of the ROPs. The co-planarity model is presented by Equation 6 

for a dependent relative orientation. 

 

𝑝𝑙
𝑇 [

0 𝑇𝑧 −𝑇𝑦
−𝑇𝑧 0 𝑇𝑦
𝑇𝑦 −𝑇𝑥 0

] 𝑅𝑟
𝑙 𝑝𝑟  =  0 

 

(6) 

 

In this equation, 𝑝 = (𝑥 , 𝑦 , −𝑐)𝑇 represents the image 

coordinates corrected for principal offset and lens distortions. 

The rotation matrix 𝑅𝑟
𝑙  describes the rotation relating the right 

image to the left one. ( 𝑇𝑥,T𝑦,𝑇𝑧 ) are the translation vector 

connecting the two images of the stereo-pair in question. Based 

on the direction of the baseline, either 𝑇𝑥 or 𝑇𝑦 is assigned an 

arbitrary value since the co-planarity model does not recover the 

scale. The co-planarity model can be solved through a least-

squares adjustment. At least five pairs of corresponding points 

are needed to recover the ROPs for a stereo-pair (i.e., three 

rotation angles and two translations). 

 

3.2 Local Frame Initialization 

Once the ROPs of all possible stereo-pairs are estimated, an 

incremental approach is proposed for the initial recovery of the 

image EOPs. This incremental approach is initiated by defining 

a local coordinate frame. Then, all the images are sequentially 

augmented into a final image block or trajectory.  

 

In this paper, the local coordinate system is established using an 

image triplet that satisfies both a large number of corresponding 

points and good compatibility configuration. The first condition 

can be easily satisfied by maximizing the total number of 

corresponding points within the image triplet. The second 

condition is evaluated through a method referred to as 

compatibility analysis, which was developed by He and Habib, 

in 2014. 

 

The compatibility analysis assumes a triangular relationship 

within an image triplet.  Then, by using the estimated ROPs, both 

the rotational and translational errors within the image triplet are 

computed. These two types of errors indicate the image 

compatibility within the image triplet. In practice, an image 

triplet with good compatibility configuration usually leads to 

small rotational and translation errors. Therefore, the 

compatibility analysis of the initial image triplet can be 

performed by selecting the image triplet with the minimum 

rotational and translation errors.  

1 2 

3 4 
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Since the proposed compatibility analysis assumes a triangular 

relationship among the three images, it cannot handle a set of 

images along a linear trajectory configuration. To resolve this 

problem, rather than selecting an initial image triplet, a single pair 

of images that satisfies a large number of corresponding points 

as well as good intersection geometry is utilized to establish the 

local coordinate frame. In this case, the initial stereo-pair is 

evaluated through the baseline/depth ratio, which is derived from 

the estimated stereo-pair ROPs and 3D coordinates of 

reconstructed object points. 

 

3.3 Incremental Image Augmentation 

Once the local coordinate frame is established, the remaining 

images are sequentially augmented into the final image block or 

trajectory. The proposed approach utilizes a geometric structure, 

which is referred to as the reverse tree structure for the 

augmented images (Martinec and Pajdla, 2007), as the basis for 

the EOP recovery. In this paper, the proposed reverse tree-

structure-based approach incorporates a linear approach for the 

estimation of the image EOPs. In the proposed procedure, the 

rotational and positional components of the image EOPs is 

conducted separately according to the following sequence. 

 

3.3.1 Rotational Component Estimation: 

 

The proposed approach for rotational component estimation 

is similar to the one suggested by Martinec and Pajdla, 2007. This 

approach is based on the relative orientation between the images 

of a stereo-pair. For a given stereo-pair including a referenced 

image i and an unreferenced image j, the relative orientation 

between these images and their orientation relative to the local 

coordinate frame can be formulated as Equation 7. 

 

(𝑅𝑖
𝑙)𝑇 = 𝑅𝑗

𝑖(𝑅𝑗
𝑙)𝑇 (7) 

 

Where 𝑅𝑗
𝑖 represents rotation matrix relating images i and j, 

which can be derived from the relative orientation estimation as 

explained in Section 3.1. 𝑅𝑖
𝑙 represents rotation of the referenced 

images i in the local coordinate frame. From a single stereo-pair, 

a system of nine linear equations can be established. Then, the 

nine unknown elements of the rotation matrix 𝑅𝑗
𝑙, which 

represents the rotation of the unreferenced image j in the local 

coordinate frame, can be estimated through a least-squares 

adjustment. In this research, all referenced images which have 

overlap with the unreferenced image j is utilized to estimate the 

unknown rotational component. However, the orthogonal 

constraint of the rotation matrix is not enforced in Equation 7. 

 

3.3.2 Positional Component Estimation: 

 

Once the rotational component estimation is completed, the 

positional components of the image EOPs can be estimated. 

Based on the proposed reverse tree structure, the positional 

component of the image EOPs can be derived through an 

intersection of multiple vectors, which are the translation vectors 

connecting the referenced and unreferenced images. Meanwhile, 

in order to reduce the effects of error propagation, the proposed 

approach is based on augmenting images that exhibit the best 

compatibility with previously referenced images during the 

incremental image augmentation. Similar to the approach 

introduced in Section 3.2, the rotational and translational errors 

that are derived from the estimated image EOPs are utilized to 

evaluate the image compatibility configuration. In this research, 

at each step of the image incremental augmentation, only the 

image that exhibits the highest compatibility with the previously 

referenced imagery is selected and referenced into the local 

frame. 

 

3.4 Linear Trajectory Configuration 

It is important to note that the utilized multi-vector intersection 

model in Section 3.3.2 assumes non-collinear relationship within 

the reverse tree structure. Given a set of images captured in a 

linear trajectory configuration, the proposed approach for 

positional component estimation suffers from a rank-deficiency, 

and cannot recover the position of the involved images. 

 

In order to recover the positions of the linear-trajectory images, 

conjugate points, which are obtained from the aforementioned 

SIFT matching process, are first tracked through all images in the 

reverse tree structure. Then, the 3D object coordinates of these 

conjugate points are derived through a linear spatial intersection. 

Finally, the position of the unreferenced linear-trajectory image 

is recovered from these reconstructed object points. In the 

proposed approach, at least two object points are required for the 

positional component estimation. In order to obtain more reliable 

estimation, more object points with good spatial distribution are 

needed.  Different from the single photo resection approach, 

which simultaneously estimates the rotational and positional 

components of the image EOPs, we only recover the positional 

components for the linear-trajectory image EOPs, while the 

rotational component of the image EOPs can be derived through 

the approach introduced in Section 3.3.1. 

 

4. EXPERIMENTAL RESULTS 

To illustrate the feasibility of the proposed procedure, we 

conducted several tests on real image datasets that have been 

captured in different configurations.  

 

4.1 Dataset Description 

The test site involved in the experimental tests was a building 

with complex roof structure. Two sets of images were captured 

at the test site. The first image dataset includes a block of 28 

images captured by a low-cost DJI Phantom 2 UAV with a GoPro 

3 camera (see Figure 7). The second image dataset consists of 21 

images captured by a hand-held Canon Rebel T3 digital camera. 

For both datasets, the utilized cameras are calibrated (i.e., the 

IOPs of the GoPro camera and the Canon Rebel T3 camera are 

known). Figure 8 illustrates the sample images captured by the 

UAV and hand-held canon cameras. 

 
Figure 4. The DJI Phantom 2 UAV drone with GoPro camera 
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Figure 5. (a) A sample UAV image and (b) a sample image 

captured by the hand-held Canon Rebel T3 digital camera 

4.2 Results of the Proposed Approach 

The proposed procedure for the initial recovery of the EOPs was 

tested on both image datasets. Figure 9 illustrates the estimated 

image position and orientation as well as the reconstructed sparse 

point cloud from the UAV image dataset. Figure 10 illustrates the 

results obtained from the Canon image dataset. 

 

For both image datasets, we apply a final bundle adjustment 

using the initial EOPs that are derived through the proposed 

approach. The re-projection errors of both image datasets 

obtained from the bundle adjustment process are less than half a 

pixel. This quality indicates that the initial EOPs recovered from 

the proposed procedure can server as a good initialization for a 

final bundle adjustment. Since the two available image datasets 

for the experiments are based on different image configurations, 

the results also indicate that the proposed procedure can handle 

sets of images that are captured with either a block or linear 

trajectory configuration. 

 

 
Figure 6. A top-view and (b) a side-view of the UAV image 

dataset and the reconstructed sparse point cloud 

 

 
Figure 7. (a) A top-view and (b) a side-view of the Canon image 

dataset and the reconstructed sparse point cloud 

5. CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE WORK 

This paper presents a novel approach for the initial recovery of 

image EOPs. The experimental results demonstrate that the 

proposed approach has the following characteristics: 

 

1. It is based on a linear approach for the estimation of the 

ROPs among the available stereo-pairs as well as the 

sequential estimation of the rotational and positional 

components of the image EOPs relative to a local coordinate 

frame, 

 

2. The incremental image augmentation is based on 

augmenting images that exhibit the highest compatibility 

with the previously referenced imagery. It reduces the 

effects of error propagation during the recovery of image 

EOPs. 

 

3. It can handle a set of randomly collected image set (i.e., it 

doesn’t assume any prior knowledge regarding the sequence 

of the image collection procedure). This would be 

advantageous in dealing with images that have been 

captured from different campaigns, 

 

4. It can handle image that have been captured in a block or 

linear trajectory configuration. 

 

It is important to notice that the proposed approach follows an 

incremental approach for image augmentation. Therefore, it may 

be less efficient compared to global approaches, especially for 

datasets containing a large number of images. For future work, 

more experiments will be carried out to compare obtained results 

from our approach with results derived from other approaches. 

Meanwhile, to improve the efficiency of this proposed approach, 

we also plan to investigate parallel processing and GPU, which 

can efficiently reduce the computational time of the proposed 

approach. 

 

(a) (b) 

(a) 

(b) 

(a) 

(b) 
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