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ABSTRACT: 

 

This paper presents the ongoing development of a small unmanned aerial mapping system (sUAMS) that in the future will track its 

trajectory and perform 3D mapping in near-real time. As both mapping and tracking algorithms require powerful computational 

capabilities and large data storage facilities, we propose to use the RoboEarth Cloud Engine (RCE) to offload heavy computation and 

store data to secure computing environments in the cloud.  While the RCE’s capabilities have been demonstrated with terrestrial 

robots in indoor environments, this paper explores the feasibility of using the RCE in mapping and tracking applications in outdoor 

environments by small UAMS.   

 

The experiments presented in this work assess the data processing strategies and evaluate the attainable tracking and mapping 

accuracies using the data obtained by the sUAMS.  Testing was performed with an Aeryon Scout quadcopter.  It flew over York 

University, up to approximately 40 metres above the ground.  The quadcopter was equipped with a single-frequency GPS receiver 

providing positioning to about 3 meter accuracies, an AHRS (Attitude and Heading Reference System) estimating the attitude to 

about 3 degrees, and an FPV (First Person Viewing) camera.  Video images captured from the onboard camera were processed using 

VisualSFM and SURE, which are being reformed as an Application-as-a-Service via the RCE.  The 3D virtual building model of 

York University was used as a known environment to georeference the point cloud generated from the sUAMS’ sensor data.  The 

estimated position and orientation parameters of the video camera show increases in accuracy when compared to the sUAMS’ 

autopilot solution, derived from the onboard GPS and AHRS.  The paper presents the proposed approach and the results, along with 

their accuracies.  

 

1. INTRODUCTION 

 

This paper presents the development of a small unmanned aerial 

mapping system (sUAMS) aiming at self-localization and 3D 

mapping in near-real time.  The main goal is to deliver 

autonomy related to situational awareness and spatial 

intelligence in reconnaissance tasks while reducing the 

workload of the ground operator. 

 

The mapping system is integrated with an Aeryon Scout 

quadcopter.  It is equipped with a GPS sensor that provides 

positioning to about 3 meter accuracies, and an AHRS (Attitude 

and Heading Reference System) that estimates attitude to about 

3 degrees.  The quadcopter is also equipped with an FPV (First 

Person Viewing) camera, which streams video to a ground 

control station, giving the operator a perspective view from the 

aerial vehicle’s “cockpit”.  It is used as a visual aid in piloting 

the small unmanned aerial vehicle (UAV). 

 

As both mapping and tracking algorithms require powerful 

computational capabilities and large data storage facilities, an 

Application-as-a-Service is being developed on top of the 

RoboEarth Cloud Engine (RCE) to offload heavy computation, 

store data to secure computing environments in the Internet 

cloud, and share and re-use data (RoboEarth, 2014).  The 

RoboEarth library provides software components commonly 

used in robotic applications, such as object databases, object 

recognition and learning models, and a visual SLAM system 

that is based on a distributed framework. 

 

RoboEarth has demonstrated its capabilities with terrestrial 

robots in indoor environments.  For example, an omni-wheel 

service robot was tasked to serve a drink to a patient in a 

hospital room. The robot first queried the RoboEarth database 

for relevant information and downloaded the knowledge 

previously collected by other robots; such knowledge included 

object descriptions and instructions on how to complete tasks.  

The robot then successfully constructed a model of the 

environment and localized itself, then recognized objects that 

were downloaded and performed appropriate actions to 

complete the task (Waibel et al., 2011).  

 

This paper demonstrates that RoboEarth can also be applied to 

mapping and tracking applications in outdoor environments by 

sUAMS.  At the current stage of development, the presented 

experiments assess the data processing strategies and evaluate 

the attainable tracking and mapping accuracies using data 

obtained by the sUAMS.  An Aeryon Scout quadcopter flew 

over York University, up to approximately 40 metres above the 

ground, while its onboard camera focused on buildings, 

walkways, and trees. The 3D virtual building model of York 

University’s Keele Campus was used as a known environment 

to georeference the map.  The model consists of photorealistic 

reconstructions of buildings, trees, and the terrain.   

 

Video images captured from the onboard camera were 

reconstructed using VisualSFM (Wu, 2011) and densely 

matched using SURE (Rothermel et al., 2012). Both are being 

reformed as an Application-as-a-Service via the RCE.  The 

correct building models were identified from the generated 

point cloud and the sUAMS localized itself and mapped the 3D 

environment in a geodetic coordinate system.  The estimated 

position and orientation parameters of the video camera show 

increases in accuracy when compared to the sUAMS’ autopilot 

solution, derived from the onboard single frequency GPS 

receiver and MEMS-IMU.  The paper presents the proposed 

approach and the obtained results, along with their accuracies.  
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2. THE ROBOEARTH CLOUD ENGINE (RCE) 

 

The RoboEarth Cloud Engine (RCE), also called Rapyuta, is an 

open source robotics Platform-as-a-Service (Paas) on top of 

which robotics developers can design robotics Software-as-a-

Service (SaaS) applications.   

 

Its main difference to similar PaaS frameworks, like the Google 

App Engine, is that it is specifically designed for multi-process 

and high-bandwidth robotics applications, such as mapping and 

object recognition.  Further, the RCE is able to launch almost all 

of the current 3000+ ROS packages in its cloud environment 

(Mohanarajah et al., 2014; ROS, 2014). 

 

Similar systems include the DAvinCI project (Arumugam et al., 

2010), which used ROS to implement a cloud-based parallel 

implementation of Fast-SLAM (Thrun et al., 2005).  

Unfortunately, the DAvinCi project is not publicly available.  

Riazuelo et al. (2013) presented a collaborative mapping system 

where they moved the computationally intensive bundle 

adjustment process of the Parallel Tracking and Mapping 

(PTAM) algorithm (Klein and Murray, 2009) to a server.  

Heroku (Lindenbaum et al., 2007) provides access to program 

APIs and sockets, however it does not allow the server to send 

data to the robot, and does not allow robots to share information 

through networked computing environments.  Rosbridge (Crick 

et al., 2012) is open source, and enables communication 

between a robot and one ROS environment in the cloud 

(Gherardi et al., 2014). 

 

 

3. MAPPING AND TRACKING IN THE CLOUD  

 

The following sections describe the ongoing development of a 

small unmanned aerial mapping system with the objective to 

track its trajectory and perform 3D mapping of its environment 

in near-real time.  An overview of the system architecture is 

provided in Figure 1. 

 

 
Figure 1:  Blue rectangles depict ROS nodes, green rectangles 

for the RCE’s endpoints, red rectangles for topics, small yellow 

squares for topic publishers, small blue squares for topic 

subscribers, small green squares for service servers, and small 

red squares for server clients.  The direction of the arrows 

indicates the flow of data from the publishers to the topics and 

topics to subscribers, and arrows with labels connect service 

servers to service clients.  Notably, this architecture was derived 

from the developers of the RCE (Gherardi et al., 2014). 
 

 

 

 

3.1 The small Unmanned Aerial Mapping System (sUAMS) 

 

An embedded board with a multicore ARM processor, running a 

Linux operating system, is used for computations onboard the 

sUAMS.  The embedded board connects to the RCE through a 

wireless USB adapter. 

 

The RGB Camera ROS node, running on the onboard processor, 

reads data from the RGB camera and outputs (publishes) an 

RGB image (topic).  Similarly, the Autopilot ROS node reads 

data from sUAMS’ sensors (GPS, IMU, magnetometer) and 

publishes GPS position and AHRS attitude topics.  Given the 

frames produced by RGB Camera and the GPS and attitude data 

from the Autopilot node, the iSfM ROS node, also running on 

the onboard processor, estimates the pose of the camera and a 

3D point cloud representing the environment.  It publishes 

keyframes to the RCE every time the camera’s estimated pose 

passes a certain threshold relative to the previous keyframe.  A 

keyframe mainly consists of an RGB image, the camera pose, 

image features and correspondences, and a frame ID. 

 

3.1.1 Incremental Structure from Motion (iSfM) 

 

In the iSfM (Wu, 2013) ROS node running on the onboard 

processor, a two-view reconstruction is first estimated by 

triangulating successful feature matches between two images.  

Incoming images are then repeatedly matched and the 3D model 

is extended from the two-view reconstruction.  One image is 

added at each iteration.  In order alleviate error accumulation, 

partial bundle adjustments (BAs) are run onboard the sUAMS, 

using a constant number of recently added images (e.g., 20) and 

their associated 3D points.  Following the BA step, filtering 

removes the points that have large re-projection errors or small 

triangulation angles.  Finally, the next iteration starts or a re-

triangulation occurs (Section 3.2.2).   

 

The exterior orientation of the cameras and the 3D point 

estimations typically converge quickly during reconstruction, 

thus full BAs (on all cameras and 3D points) are performed in 

the RCE when the size of a model increases by a certain ratio 

(e.g. 5%).  Although the latter added cameras are optimized by 

fewer full BAs, there are normally no accuracy problems 

because full BAs improve more for the least accurate parts.  

Notably, as the model gets larger, more cameras are added 

before running a full BA (Wu, 2013). 

 

3.1.2 Feature Matching 

 

Image matching is one of the most time-consuming steps of 

SfM.  Due to the wide range of viewpoints in a large collection 

of photos, Wu (2013) states that the majority of image pairs do 

not match (75% - 98%).  A large portion of matching time is 

saved by identifying the good pairs robustly and efficiently.  For 

instance, the approximate GPS tags are used to match images 

only to the nearby ones (Frahm et al., 2010).  Further, pre-

emptive feature matching (Wu, 2013) filters correspondence 

candidates based on the scales of SIFT features (Lowe, 2004), 

as the chances of correctly matching the top-scale features is 

higher than matching randomly selected features.  Finally, 

increases in matching speed can be achieved by parallelizing the 

search with multiple machines (Agarwal et al., 2010) and 

multiple GPUs (Frahm et al., 2010). 

 

3.2 Inside The RoboEarth Cloud Engine 

 

The Map Optimizer ROS node, running in the RCE, (Figure 1) 

receives the image keyframes as input, and optimizes the 
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keyframe poses and triangulated 3D point positions.  After each 

full BA, Map Optimizer updates the keyframe poses and the 3D 

point cloud, and then stores them in the Database. The Map 

Merger ROS node retrieves two maps from the Database and 

tries to find correspondence that will combine the two maps. 

 

The Map Optimizer ROS Node consists of three processes:  1) 

Bundle Adjustment, 2) Clustering views for multi-view stereo 

(CMVS), and 3) Patch-based multi-view stereo (PMVS).  These 

processes have been moved to the cloud because they are 

computationally intensive, but have been optimized through 

parallel computing.  The following sections describe each 

process. 

 

3.2.1 Bundle Adjustment (BA) 

 

A set of measured image feature locations and correspondences 

are input into a bundle adjustment, with the goal to find the 

triangulated 3D point positions and camera parameters that 

minimize the reprojection error (Triggs et al, 1999).  This 

optimization problem is treated as a non-linear least squares 

problem, where the error is the squared norm of the difference 

between the observed feature location and the reprojection of 

the corresponding 3D point on the image plane of the camera.  

The Levenberg-Marquardt (LM) algorithm (Nocedal and 

Wright, 2000) is used for solving non-linear least squares 

problem.   

 

Wu et al. (2011) demonstrated a CPU-based BA that is up to 10 

times and a GPU-based system that is up to 30 times faster than 

the current state of the art.  The RCE takes advantage of this 

parallelized BA by spawning multiple secure computing 

environments and connecting them to build parallel computing 

architectures on the fly. 

 

3.2.2 Re-triangulation 

 

When GPS is not available, the online iSfM solution is prone to 

drift because of the accumulated errors of relative camera poses.  

The initially estimated poses and even the poses after a partial 

BA may not be accurate enough and this may result in some 

correct feature matches failing a quality test.  As the drift is 

attributed mainly to the accumulated loss of correct feature 

matches, failed feature matches are re-triangulated (Wu, 2013) 

when the model size increases (e.g., by 25%).  After re-

triangulating, a full BA and point-filtering is run to improve the 

reconstruction.  This strategy of reducing the drift is analogous 

to loop-closing. 

 

3.2.3 Clustering Views for Multi-View Stereo    

(CMVS) 

 

Multi-view Stereo (MVS) algorithms aim to correlate 

measurements from a collection of images to derive 3D surface 

information.  Many MVS algorithms reconstruct a single 3D 

model by using all the images available simultaneously.  As the 

number of images grows the processing time and memory 

requirements become infeasible.  To solve this problem, subsets 

of overlapping images are clustered into manageable pieces that 

are processed in parallel, and then the resulting reconstructions 

are merged (Furukawa et al., 2010).  The clustering algorithm is 

designed to satisfy the following three constraints: 1) redundant 

images are excluded from the clusters, 2) each cluster is small 

enough for an MVS reconstruction (a size constraint determined 

by computational resources), and 3) MVS reconstructions from 

these clusters result in minimal loss of content and detail 

compared to that obtained by processing the full image set. 

Having extracted image clusters, a patch-based MVS software 

(PMVS) is used to reconstruct 3D points for each cluster 

independently.   

 

3.2.4 Patch-Based Multi-View Stereo (PMVS) 

 

The patch-based multi-view stereo (PMVS) algorithm 

(Furukawa and Ponce, 2011) represents scene surfaces by 

collections of small oriented 3D rectangular patches (essentially 

local tangent planes).  The algorithm consists of a simple match, 

expand, and filter procedure:   

 

1) Matching:  Features found by Harris (Harris and Stephens, 

1988) and difference-of-Gaussians operators (Lowe, 2004) are 

first matched within each cluster of pictures, yielding a sparse 

set of patches associated with salient image regions.  A 

matching patch is considered to be an inlier if the search along 

the epipolar lines of other images yields low photometric 

discrepancies (one minus the normalized cross correlation 

score) in a minimum number of images (e.g. 2 or 3).  Given 

these initial matches, the following two steps are repeated.   

 

2) Expansion:  The initial matches are spread to nearby pixels 

and obtain a dense set of patches.   

 

3) Filtering:  Visibility constraints are used to eliminate 

incorrect matches lying either in front or behind the observed 

surface. 

 

3.2.5 Map Merger 

 

The Map Merger ROS node retrieves maps from the Database 

and attempts to merge them into a larger map using a modified 

version of the Iterative Closest Point (ICP) algorithm (Besl and 

McKay, 1992).  Further, the density of the point clouds are 

increased using SURE (Rothermel et al., 2012), a dense stereo 

matching software tool based on the semi-global matching 

(SGM) algorithm (Hirschmüller, 2008).   

 

3.2.5.1 Iterative Closest Point (ICP) 

 

Given two point clouds that are roughly aligned, ICP uses all of 

the points to refine their relative transformation.  

Correspondence is established by pairing points in one point 

cloud with the closest points in the other.   The initial alignment 

is provided by metre-level GPS positioning in this application.  

Several additional heuristics have been developed to address the 

problem of not knowing the extent of overlap and avoiding false 

point matches.  The approach used here is similar to Iterative 

Closest Compatible Point (ICCP) algorithm (Godin et al., 

1994), where points are matched only if their associated feature 

(colour, normal vector, etc.) are within a given threshold.  ICCP 

can be interpreted as a set of rigidly coupled ICP subproblems 

between subsets of mutually compatible points.  ICCP is 

equivalent to ICP when all points have compatible attributes. 

  

Further, the point-plane (Chen and Medioni, 1992) method is 

chosen over the original point-point ICP as it converges an 

order of magnitude faster, it is more robust against outliers, and 

produces more accurate results (Pulli, 1999). 

 

3.2.5.2 SURE:  Photogrammetric surface reconstruction 

 

The SURE algorithm densifies a point cloud by using the 

oriented images generated from the bundle adjustment.  These 

images are first rectified to generate epipolar images and dense 

disparities are calculated across stereo pairs using SGM.  
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Briefly, the SGM algorithm performs the image alignment 

required to estimate disparities by the maximizing the mutual 

information (i.e. minimizing the joint entropy) between two 

overlapping images.  Instead of using the entire image in this 

calculation (global matching), 16 one-dimensional directional 

paths are constructed to approximate the image (semi-global 

matching).    

 

3D points or depth images are then triangulated from the stereo 

models.  Finally, redundant depth measurements are used to 

remove outliers and increase the accuracy of the depth 

measurements.  

 

 

4. DATA COLLECTION  

 

Initial testing was carried out by processing video images with 

VisualSFM and SURE.  The video was collected by a Photo3S 

high resolution camera onboard of an Aeryon Scout quad-copter 

UAV (Aeryon, 2013).  The UAV flew over York University, up 

to approximately 40 metres above the ground level (AGL), 

while the gyro-stabilized camera focused on buildings, 

walkways, and trees.  The imagery was downsampled from 12 

megapixels to 1 megapixel to enable fast image processing. 

 

The 3D virtual building model of York University’s Keele 

campus (Armenakis and Sohn, 2009) was used as a known 3D 

map environment (Figure 2). The model consists of 

photorealistic 3D polygon reconstructions of buildings, trees, 

and terrain, generated from building footprint vector data, 

Digital Surface Model (DSM) with 0.75m ground spacing, 

corresponding orthophotos at 0.15 m spatial resolution and 

terrestrial images.  The 3D building model was further refined 

with airborne lidar data having a point density of 1.9 points per 

square metre (Corral-Soto et al., 2012). This 3D CAD model 

serves two purposes in the proposed approach. Firstly, it 

provides the necessary level of detail such that individual 

buildings can be uniquely identified via point cloud matching. 

Secondly, it provides ground control points to achieve 

photogrammetrically sub-meter accuracies of the positional 

elements of the exterior orientation.  The geometric accuracy of 

the building models is in the order of 10 to 40 cm. 

 

 
Figure 2:  York University's 3D virtual campus model 

 

 

5. 3D BUILDING MODEL TO 3D POINT CLOUD  

 

The RCE’s communication server allows robotic platforms to 

wirelessly access the RoboEarth knowledge repository. This 

provides services to download, upload, update, delete, and 

query object models and maps that are stored in the RoboEarth 

repository.  As such, the York University’s georeferenced 3D 

building models were loaded into the RoboEarth database.  If a 

building model is recognized in the sUAMS’ image-derived 

point cloud, it is used either as photogrammetric ground control 

to georeference the sUAMS’ camera trajectory and the 3D point 

cloud, or to improve the georeferencing accuracy provided by 

the onboard GPS receiver. 

 

To adhere to RoboEarth’s object modelling paradigm, each 

building in the York University campus model was converted to 

a point cloud before being loaded into RoboEarth’s object 

recognition database.  To generate each building’s point cloud, 

the 3D polygon faces were converted to triangular surfaces, then 

each triangle was sampled at a specified point interval (e.g. 50 

cm point spacing was used in the presented experiments).  

Figures 3 and 4 show the Lassonde and the Vari Hall building 

models, respectively, along with their corresponding point 

clouds. 

 

 
Figure 3:  Converting 3D polygon building models to 3D point 

clouds:  The Lassonde Building. 

 

 
Figure 4:  Converting 3D polygon building models to 3D point 

clouds: The Vari Hall building. 
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Figure 5:  VisualSFM and SURE used to generate a dense point 

cloud of the Lassonde buiding from the sUAMS' video imagery.  

 

 

5. VisualSFM and SURE 

 

VisualSFM (Wu, 2011) and SURE (Rothermel et al., 2012 were 

used to generate dense 3D point clouds from the sUAMS’ video 

imagery (Figures 5 and 6).  The reconstruction system integrates 

all of the above mentioned algorithms.  Explicitly, a GPU-based 

SIFT module parallelized matching, a multicore and GPU-based 

SfM module estimated the camera parameters and generated a 

sparse point cloud, and the PMVS/CMVS tool chain efficiently 

densified the sparse point cloud. SURE was then used to further 

densify the points clouds. 

 

 

5. POINT CLOUD GEOREFERENCING 

 

The GPS coordinates stored in the image tags were used to 

transform the point cloud to a geodetic coordinate system.  

These coordinates were noisy (σ3D ≈±3m) as they were provided 

by the onboard single frequency GPS receiver.  To increase the 

georeferencing accuracy, the sUAMS’ point cloud was used to 

search the database for the corresponding York University 

building model point cloud.  The search matched the geodetic 

locations of the buildings.   

 

Once the building was identified, the ICCP algorithm detailed 

in Section 3.2.5.1 was used to improve the geographic position 

of the sUAMS’ point cloud.  ICCP iteratively refined the rigid-

body transformation between the SfM point cloud and the 3D 

building model point cloud by repeatedly generating pairs of 

corresponding points and minimizing the point Euclidean 

distance error metric.   

 

 

 

 

 

 

Figure 6:  VisualSFM and SURE used to generate a dense point 

cloud of Vari Hall from the sUAMS' video imagery. 

 

 

Firstly the point clouds were segmented into groups of similar 

normal vectors.  Figures 7 (the Lassonde building) and 8 (Vari 

Hall) show the three groups:  points with normal vectors (1) 

pointing in the positive Y direction (±45o), (2) pointing in the 

negative X direction (±45o), and (3) pointing in the positive X 

direction (±45o).  For each group, a point-plane ICP was 

applied, and points with the smallest residuals were used to 

further refine the estimated transformation parameters.  Figure 9 

shows the registered point clouds for the Lassonde building 

(top) and Vari Hall (bottom). 

 

 
6. ACCURACY ASSESSMENT 

 

Check points were used to assess the accuracy of the 

georeferenced point clouds generated from the sUAMS’ sensor 

data.  The ground truth coordinates were extracted from the 

York University 3D campus model.  The results from manually 

comparing corresponding points between the sUAMS’ point 

cloud and building model are in Table 1. 

 

Table 1:  Accuracy assessment of the generated point clouds 

Building 

 
# Check 

Points 

RMSE [m] 

 

Average 

Error [m] 

Lassonde 7 0.32 0.29 

Vari Hall 13 0.73 0.69 

 

Registering the sUAMS’ point cloud with the York University’s 

3D building model resulted in sub-meter mapping accuracies 

(root mean square error (RMSE)), an improvement from the 

georeferencing provided by the onboard GPS receiver (3 meters 

in positioning accuracies) and the AHRS (3 degrees in attitude 

accuracies).   
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Figure 7:  Segmentation of the Lassonde building model (top) 

and corresponding point cloud generated from the sUAMS’ data 

(bottom).  Points are segmented into three groups based on their 

normal vector:  Group 1 (red triangles):  normals pointing in the 

positive Y direction (±45o), Group 2 (green triangles): normals 

pointing in the negative X direction (±45o), and Group 3 (blue 

triangles): normal pointing in the positive X direction (±45o).  

 
 

Figure 8:  Segmentation of the Vari Hall building model (top) 

and corresponding point cloud generated from the sUAMS’ data 

(bottom).  Points are segmented into three groups based on their 

normal vector:  Group 1 (red triangles):  normals pointing in the 

positive Y direction (±45o), Group 2 (green triangles): normals 

pointing in the negative X direction (±45o), and Group 3 (blue 

triangles): normal pointing in the positive X direction (±45o).  
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Figure 9:  Registered point cloud after ICCP.  Top: The Lassonde building.  Bottom: The Vari Hall building. 

 

 

7. CONCLUSTIONS & FUTURE WORK 

 

This paper presents the ongoing development of a small 

unmanned aerial mapping system (sUAMS) that, in near-real 

time, will track its trajectory and perform 3D mapping.  An 

approach was developed to offload the computationally 

expensive mapping and tracking processes to the RoboEarth 

Cloud Engine (RCE).  While RoboEarth has demonstrated the 

RCE’s capabilities with terrestrial robots in indoor 

environments, this project is exploring the feasibility of using 

the RCE in mapping and tracking applications in outdoor 

environments by small UAVs.   

 

Initial testing used VisualSFM and SURE to generate point 

clouds of buildings from imagery collected from an Aeryon 

Scout UAV.  The correct building models were recognized from 

the point cloud and the UAV localized itself and mapped the 3D 

environment.  The sUAMS’ derived building point clouds 

resulted in sub-meter mapping accuracies, indicating that the 

estimated position and orientation parameters of the video 

camera are of improved accuracy when compared to the UAV’s 

autopilot solution, derived from the onboard GPS and AHRS.   

 

 

 

 

Future work involves moving forward from the testing phase 

and implementing the real-time unmanned aerial mapping 

system (sUAMS).  Finally, more robust object recognition 

techniques will be adapted to more accurately and reliably 

match the model and SfM point clouds. 
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