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ABSTRACT:

The continuous technological improvement of mobile devices opens the frontiers of Mobile Mapping systems to very compact sys-
tems, i.e. a smartphone or a tablet. This motivates the development of efficient 3D reconstruction techniques based on the sensors
typically embedded in such devices, i.e. imaging sensors, GPS and Inertial Navigation System (INS). Such methods usually exploits
photogrammetry techniques (structure from motion) to provide an estimation of the geometry of the scene.

Actually, 3D reconstruction techniques (e.g. structure from motion) rely on use of features properly matched in different images to
compute the 3D positions of objects by means of triangulation. Hence, correct feature matching is of fundamental importance to ensure
good quality 3D reconstructions.

Matching methods are based on the appearance of features, that can change as a consequence of variations of camera position and
orientation, and environment illumination. For this reason, several methods have been developed in recent years in order to provide
feature descriptors robust (ideally invariant) to such variations, e.g. Scale-Invariant Feature Transform (SIFT), Affine SIFT, Hessian
affine and Harris affine detectors, Maximally Stable Extremal Regions (MSER).

This work deals with the integration of information provided by the INS in the feature matching procedure: a previously developed
navigation algorithm is used to constantly estimate the device position and orientation. Then, such information is exploited to estimate
the transformation of feature regions between two camera views. This allows to compare regions from different images but associated
to the same feature as seen by the same point of view, hence significantly easing the comparison of feature characteristics and, con-
sequently, improving matching. SIFT-like descriptors are used in order to ensure good matching results in presence of illumination

variations and to compensate the approximations related to the estimation process.

1. INTRODUCTION

Thanks to their flexibility and their ability to quickly collect a
large amount of geospatial data, mobile mapping technologies
are continuously increasing their importance among the currently
available remote sensing systems.

Nevertheless, most of the already existing mobile mapping sys-
tems suffer of certain issues, among them: quite expensive cost,
limited portability in certain environments, the quality of the ac-
quired data can be checked only a posteriori. Despite these issues
are not so relevant for a number of applications, they can limit the
diffusion of mobile mapping technologies among not specialized
personnel.

In order to tackle the issues mentioned above, it has been recently
proposed the development of a low cost mobile mapping system,
based on the sole use of a smartphone-like device (Saeedi et al.,
2014, Masiero et al., 2014). The proposed systems aim at prop-
erly exploiting the sensors embedded in the device: the device
is typically assumed to be provided with a standard camera and
with a MEMS based Inertial Navigation System. Shots taken by
the embedded camera are used to compute a 3D reconstruction of
the scene by means of a photogrammetry approach.

The limited computational power and battery life of the mobile
device impose challenging requirements on the algorithm used
for the 3D reconstruction procedure. In order to reduce the com-
putational load, very efficient algorithms have been recently pro-
posed, either based on the use of Preconditioned Conjugate Gra-
dients to speed up the bundle adjustment optimization (Agarwal
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etal., 2010, Byrod and Astrom, 2010), or based on the Incremen-
tal Singular Value Decomposition (ISVD) to solve the Structure
from Motion (SfM) problem ((Tomasi and Kanade, 1992, Brand,
2002, Kennedy et al., 2013, Masiero et al., 2014)).

Despite different approaches can be considered for the 3D recon-
struction of the scene, the rationale of such procedures is that
of properly matching features viewed from different cameras and
exploit geometry triangulation to compute the 3D positions of the
points corresponding to the matched features (Ma et al., 2003,
Hartley and Zisserman, 2003, Hartley and Sturm, 1997, Triggs et
al., 1999, Masiero and Cenedese, 2012) (Fig. 1).

From the above considerations, it immediately follows that the
quality (and the efficiency, as well) of the reconstruction proce-
dures strongly depends on the use of features correctly matched
in different images. Due to changes of the camera position and
orientation and illumination variations, the same feature ca ap-
pear significantly differently in different images. This motivates
the use of proper techniques to robustly match features in differ-
ent images.

Several approaches have been proposed in the literature to ex-
tract and properly match features. Among them, Scale-Invariant
Feature Transform (SIFT) is widely known for its ability in com-
puting features invariant to certain transformations (e.g. scale,
rotation and illumination changes). In order to take into account
of object deformations due to perspective changes as well (i.e. de-
formations related to tilts, shifts and camera projection), recently
methods that approximate such deformations with affine trans-
formations have been considered (Affine SIFT (Morel and Yu,
2009, Morel and Yu, 2011)), Hessian affine and Harris affine de-
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tectors (Mikolajczyk and Schmid, 2002), Maximally Stable Ex-
tremal Regions (MSER) (Matas et al., 2004)).

Figure 1: 3D reconstruction based on triangulation.

Such methods for computing invariant features are based on the
information provided by the acquired images. However, in our
case of interest information provided by the INS is available as
well: the goal of this work is that of integrating the information
about device position and orientation in the 3D reconstruction
procedure, in order to improve the obtained results. To be more
specific, here we focus on the feature matching stage.

In this paper we take advantage of a previously developed navi-
gation technique (Masiero et al., 2013): measurements provided
by the Inertial Navigation System are used to estimate the de-
vice position and orientation at the shooting instants. This al-
lows us to compute the approximate coordinate system transfor-
mation between different image views. Then, feature regions can
be mapped into the coordinate system of the other camera views:
hence feature characteristics are compared as seen by the same
point of view.

Actually, a calibrated should be required in order to obtain a very
accurate feature region transformation in other camera views, how-
ever, as shown in the simulation section, quite good results can be
obtained by using uncalibrated systems (by means of a very rough
approximation of the camera interior parameters).

The paper is organized as follows: a brief description of the con-
sidered system and the 3D reconstruction procedure are given in
Section 2. The proposed feature matching procedure is presented
in Section 3. Finally, some simulation results are presented and
discussed in Section 4.

2. SYSTEM DESCRIPTION

This work assumes the use of a (typically low cost) mobile device
(e.g. a smartphone). Such device has to be provided of an imag-
ing sensor (i.e. a camera), and of a navigation system. Specifi-
cally, our tests of the simulation section have been performed by
using a low-cost smartphone, Huawei Sonic U8650. The consid-
ered smartphone is provided with a 3-axis accelerometer (Bosh,
BMAI50, resolution 0.15m/s?, maximum range +39.24m/s?), a
3-axis magnetic field sensor (Asahi Kasei, AK8973, resolution
0.0625u T, maximum range £2000.T), and a 3 Megapixel cam-
era.

During the data acquisition process, the device is moved on sev-
eral locations, where the user takes shots of the scene by means
of the camera embedded in the device. Then, images acquired
by the embedded camera are used to estimate a 3D reconstruc-
tion of the scene: 3D reconstruction is accessed by relating with
each others features in shots taken from different point of views
(Structure from Motion (SfM) approach (Hartley and Zisserman,
2003, Ma et al., 2003)).

Figure 2: Smartphone used to test the reconstruction system:
Huawei U8650 Sonic.

Fig. 3 shows the scheme of the 3D reconstruction procedure: first,
features are extracted from the acquired images; then features
from different images are compared and properly matched; fi-
nally, matched features are used to compute the 3D reconstruction
by solving the SfM problem. An efficient solution of SfM prob-
lem can be obtained either using optimized techniques of bundle
adjustment (Agarwal et al., 2010, Byréd and Astrom, 2010), or
by incremental factorization methods (Brand, 2002, Kennedy et
al., 2013).
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Figure 3: Reconstruction procedure scheme.

In this work we consider the use of INS in addition to the camera
images: the considered positioning system is as in (Masiero et al.,
2013), where simultaneous measurements by the embedded sen-
sors (e.g. accelerometer and magnetometer) allow the estimation
of both the movements of the mobile device, and the attitude of
the device during the camera shot. However, notice that, depend-
ing on the working conditions of interest, different choices can be
considered without affecting the effectiveness of the procedure
(Azizyan et al., 2009, Bahl and Padmanabhan, 2000, Cenedese
et al., 2010, Foxlin, 2005, El-Sheimy et al., 2006, Guarnieri et
al., 2013, Lukianto and Sternberg, 2011, Masiero et al., 2013,
Ruiz et al., 2012, Youssef and Agrawala, 2005, Wang et al., 2012,
Widyawan et al., 2012, Piras et al., 2010, Saeedi et al., 2014).

In order to simplify the use of the system to the user, both imag-
ing and INS sensors are uncalibrated (no specific calibration pro-
cedure is required). However, during data acquisition a rough
calibration of the magnetometer can be considered in order to re-
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duce the error on the estimated device orientation (Masiero et al.,
2013).

In addition, a rough estimate of the interior camera parameters is
usually available. Assume that the camera is well approximated
by a pinhole (projective) camera (no radial distortion is consid-
ered), then its measurements can be expressed as follows (Ma et
al., 2003):

m; >~ PiM (1)

where the measurement m; of a feature on the image plane of
camera view ¢ is related with its corresponding 3D point M. In
the above equation, P; is the projective matrix of camera view 4,
m; and M are written by using homogeneous coordinate notation
(Ma et al., 2003). As usually done when dealing with homoge-
neous coordinates, ~ stands for the equality up to a scale factor.
The effect of the projection is graphically depicted in Fig. 1.

The projection matrix P; can be expressed as follows:

Pi=K;[ Ri| —Rit; | )

where K is the matrix containing the interior camera parameters,
t; and R; correspond to the position and rotation matrix (related
to the camera orientation) of the device, respectively. Hereafter
R; and ¢; are assumed to be (approximately) known, thanks to the
estimates provided by the navigation system. Assuming to use
the same device (with fixed focal length lens) during all image
acquisitions, then K; = K, Vi.

Despite the real value of the interior parameter matrix kK is un-
known, it can be roughly approximated as follows:

0
a vo 3)
0

where pixels are assumed to be approximately squares, sensor
axes are assumed to be orthogonal, and the displacement of the
sensor center with respect to the optical axis is approximated with
(uo,v0) = (5, %), where r and c are the number of image rows
and of columns, respectively (camera coordinate system can be
seen in Fig. 1). The parameter a is related to the focal length
and to the pixel size. When the characteristics of the device are
available the value of a can be quite easily approximated. When
no information on such characteristics is available, the procedure
described in the following section shall be repeated' for different
values of a ranging in the following interval ( (r +c), 3(r +¢)),
where the real value of a is supposed to be (Heyden and Pollefeys,
2005, Fusiello and Irsara, 2011).

In the following we will focus on the integration of the device
position and orientation information in the feature matching step
of the procedure shown in Fig. 3.

IThe value of a that allows to obtain the largest number of matching
features is expected to be the most probable. Since the feature matching
procedure has typically to be repeated for different couples of images,
then the previously estimated value of a can be exploited in order to re-
duce the overall computational load.

3. FEATURE MATCHING

Reconstruction procedures based on a feature matching approach
estimate the geometry of the scene by analyzing the position of
features from different point of views and triangulating the 3D
feature position. Hence, in order to properly estimate the geom-
etry of the scene the same spatial point has to be recognized and
matched in the images where it is visible: the use of a proper fea-
ture matching technique is of fundamental importance in order to
ensure the effectiveness of the reconstruction procedure.

3.1 Approximate epipolar constraints

Let m; and ms2 be the homogeneous coordinates of the features
to be compared (from camera views 1 and 2, respectively). In ad-
dition, let P1, P>, R1, R2, t1, t2 be the corresponding projection
matrices, camera rotation matrices and positions. Notice that, ac-
cording with the assumptions presented in the previous section,
here such variables are approximately known.

Given the above information it is possible to compute an ap-
proximate fundamental matrix F' (Hartley and Zisserman, 2003):
hence, as usual, according with the (approximate) geometry of
the system m and mg2 can be considered to be matched only if
m{ F'my = 0. Since F' is only an approximation of the real fun-
damental matrix, then such condition shall be significantly weak-
ened, i.e. |m1rFm2| < o, where o is a proper threshold that
should be set to a value (significantly) larger than O (such value
depends on the quality of the approximations done to compute F'
and on the value of measurement noise). Hence the search for
features matching m, cannot be reduced to a 1D search as in the
case of availability of the perfect F'. Nevertheless, such (approx-
imate) epipolar constraint can be used to substantially reduce the
number of comparisons to be done.

3.2 Feature matching by region transform

Feature matching is based on the appearance of the 2D image
regions in the neighborhood of the considered features: since
images are taken from different point of views the same feature
can undergo certain appearance changes, then the goal of several
matching techniques recently proposed in the literature is that of
extracting features invariant to such deformations (SIFT ensure
invariance for scale and illumination variations and rotations on
the image plane, while in ASIFT, Harris and Hessian affine de-
tectors tilts and projection deformations are locally modeled as
affine transforms).

Such effort on the formulation of invariant features is motivated
by the usual impossibility of comparing features in similar con-
ditions, while, ideally speaking, the optimal condition for com-
paring two features is that of looking at them from the same point
of view: when such condition holds, then invariance to several
transforms (e.g. rotations, translations) becomes a not desired
condition.

In the working conditions considered here both K and the change
of coordinates between the camera views are approximately known,
hence they can be used to look at the features from approximately
the same point of view as described in the following:

e The 3D point M corresponding to the features m 1, meo can
be computed by triangulation (Hartley and Sturm, 1997, Hart-
ley and Zisserman, 2003, Masiero and Cenedese, 2012) (Fig.
1). For such point (1) can be rewritten as follows

m;z; = P;M s for 7 = {1, 2} (4)
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where z; is the coordinate of M along the optical axis direc-
tion of the ¢th camera view.

e The projection procedure can be (partially) inverted for cam-
era view 1:

M, = z21R 'K 'my (5)

Then M; is obtained by translating M; of A = (M — M),
in order to obtain M; = M.

e M, is projected on the image plane of the second camera
view:

miz ~ PoMy (6)

where m 2 are the homogeneous coordinates of the first fea-
ture projected on the image plane of the second camera view.

Since the feature comparison is done taking into account of the
feature local appearance, then, once A has been computed, the
last two steps of the above procedure should be repeated for the
points in the neighborhood of m;. Let m/ be a point in the neigh-
borhood of m, then its projection on the image plane of the sec-
ond camera view can be obtained as follows:

e The projection procedure can be (partially) inverted for cam-
era view 1:

M| =z R'K™'m} @)
Then, M{ = M{ + A.

e M is projected on the image plane of the second camera
view:

miy ~ PaM;| ®)

where m 2 are the homogeneous coordinates of the first fea-
ture projected on the image plane of the second camera view.

Then the SIFT descriptor of the first feature is computed on its
version projected on the image plane of the second camera view.
Since the points mapped in this way on the image plane of the
second camera view are typically not disposed on a grid, then, for
convenience of computation of the SIFT descriptor, an approxi-
mation of the image values corresponding to a grid disposition
can be easily obtained by interpolation. The resulting descrip-
tor can be compared as usually with the SIFT descriptor of the
second feature.

4. RESULTS AND CONCLUSIONS

In this section SIFT and the approach presented here are com-
pared on the task of matching features computed on images of
the facade of a building of the University of Padova. Images are
taken from 3 different positions and orientations (with mean dis-
tance of approximately 12 m). The mean distance from the facade
is of approximately 20 m.

The sensors of the considered device have not been calibrated and
the parameter a have been varied among 10 possible values in the
interval of values most commonly used.

Feature points to be matched are extracted as in the SIFT algo-
rithm: hence the same feature points to be compared have been
considered by both the approaches. Features have been matched
to their most similar feature on the other image, according with
the distance between the descriptors.

The proposed approach has correctly matched approximately 30%
more couples of features. Fig. 4 shows the features properly
matched by the proposed algorithm in two images of the building.

Fig. 5 compares the image region in the neighborhood of a fea-
ture in different cases: the regions on the images taken by camera
1 (left) and 2 (right), while the image in the middle corresponds
to the region taken by camera 1 projected on the image plane of
camera 2 as described in the previous section. In practice the im-
age in the middle can be considered as an estimation of the image
region in the right obtained by using only the information of the
left image. It is clear that the use of uncalibrated sensors ensure
lower quality results with respect to those expected in a calibrated
case. Nevertheless, the synthetic projection described in the pre-
vious section has partially succeed in producing an image more
similar to the right one with respect to the left one, in particular
close to the feature position.

Some observations are now in order: first, the procedure de-
scribed in the previous section is based on a local description of
the image region in the feature neighborhood as a planar surface
parallel to the image plane. Clearly this is an approximation that
can be more or less realistic depending on the considered case.
Furthermore, in accordance with the above consideration, such
approximation is expected to become less reliable as the distance
from the feature increases.

Interestingly, by comparing the left border of the synthetic win-
dow (middle image in Fig. 5) with that in the left and right win-
dows, it is possible to notice that obviously the system cannot
properly estimate image parts that are not visible in the original
image (e.g. the internal left border of the window is not visible
in the left image, and, consequently, it cannot be estimated in the
middle one as well).

Since by means of the procedure previously presented the fea-
tures are compared approximately from the same point of view,
then, as previously claimed, in these working conditions the fea-
ture descriptor invariance (for instance) to camera rotations and
translations is not a condicio sine qua non. However, in prac-
tice the use of a SIFT descriptor is still useful to compensate the
effects of the considered approximations (e.g. the presented pro-
cedure is applied by using approximate values of the real param-
eters).

According to our simulations the proposed algorithm allows to
improve the matching results of the SIFT technique in presence
of camera tilts. However, this is obtained at the cost of an increase
of the computational complexity: our future work will focus on
the optimization of the technique in order to make it more com-
putationally efficient.

Finally, it is worth to notice that, despite the considered approach
allows to improve the SIFT results on compensating changes in
the feature appearance (due to perspective change), unfortunately
mismatches are unavoidable, in particular when dealing with repet-
itive structures, e.g. in human buildings. In order to make feature
matching more reliable in such critical conditions, another match-
ing step based on the reconstructed system geometry can be use-
ful: after matching points between two images, a RANSAC ap-
proach (Fischler and Bolles, 1981) shall be used in order to obtain
a more reliable estimate of the fundamental matrix (i.e. by using
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Figure 4: Example of different camera views: correctly matched
features by the proposed algorithm are shown (red crosses).

Figure 5: Feature matching: feature region in the first camera
view (left), feature region mapped from the first to the second
camera view (middle), feature region in the second camera view
(right). The considered feature reported (red crosses) in all the
images.

the eight-point algorithm as in (Longuet-Higgins, 1981, Hartley,
1997, Hartley and Zisserman, 2003)), then such matrix can be
used to make a more robust feature selection based on a better
knowledge of the system geometry.
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