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ABSTRACT: 

 

Evolutionary computation, in the form of genetic programming, is used to aid information extraction process from high-resolution 

satellite imagery in a semi-automatic fashion. Distributing and parallelizing the task of evaluating all candidate solutions during the 

evolutionary process could significantly reduce the inherent computational cost of evolving solutions that are composed of multi-

channel large images. In this study, we present the design and implementation of a system that leverages cloud-computing 

technology to expedite supervised solution development in a centralized evolutionary framework. The system uses the MapReduce 

programming model to implement a distributed version of the existing framework in a cloud-computing platform. The proposed 

system has two major subsystems; (i) data preparation: the generation of random spectral indices; and (ii) distributed processing: the 

distributed implementation of genetic programming, which is used to spectrally distinguish the features of interest from the 

remaining image background in the cloud computing environment in order to improve scalability. The proposed system reduces 

response time by leveraging the vast computational and storage resources in a cloud computing environment. The results 

demonstrate that distributing the candidate solutions reduces the execution time by 91.58%. These findings indicate that such 

technology could be applied to more complex problems that involve a larger population size and number of generations.  

 

 

1. INTRODUCTION 

Remote sensing can aid studies on earth surface processes, 

homeland security, disaster response, agricultural and 

environmental resource management, weather forecasting and 

global change research (Momm & Easson, 2011a). However, as 

a result of significant advances in technology, many 

organizations face the challenge developing timely and cost-

effective techniques that can successfully identify certain types 

of features from remotely sensed imagery (Momm & Easson, 

2011a). The main challenge lies in analysing a large number of 

images over a long period of time and converting image data 

into actionable intelligence by extracting specific features. In 

addition, the relationship between the different image regions is 

too complex to be solved by explicit programming (Momm & 

Easson, 2011a). Evolutionary computation is one of methods 

that can be used to improve feature extraction. However, this 

technique suffers from heavy computational overheads, as 

multi-channel images have to be processed thousands of times 

during the evolutionary process (Momm & Easson, 2011b).  

 

Cloud computing has emerged as a popular platform with 

availability of elastic on-demand computation, storage and 

networking resources. The platform provides benefits to 

applications by offering large storage capabilities that allow 

huge amounts of data to be collected and managed together with 

vast computational resources that allow the effective 

implementation of cost-effective computation in a timely 

fashion (Hwang et al., 2012). In this paper, we present the 

design and implementation of a scalable genetic algorithm in 

the cloud-computing platform to accelerate the evolutionary 

computation process for feature extraction from remotely 

sensed imagery. The paper provides an overview of the design 

and implementation of a system that leverages cloud-computing 

technology to develop a scalable genetic algorithm that is 

capable of expediting the feature extraction process in an 

evolutionary framework. The scalable genetic algorithm was 

designed using the distributed Hadoop/MapReduce 

environment. The proposed system has two major subsystems; 

(i) data preparation: the generation of random image band 

combinations; and (ii) distributed processing: the distributed 

implementation of genetic programming, which can be 

employed to spectrally distinguish the feature of interest from 

the remaining image background of remote sensed imagery in a 

cloud computing environment in order to improve scalability. 

The proposed system reduces response time by leveraging the 

vast computational and storage resources available in a cloud 

computing environment. This manuscript is organized as 

follows:  section 2 contains an overview of the remote sensing, 

genetic programming, cloud-computing platform and 

Hadoop/MapReduce programming environment; section 3 

provides details of the design and implementation of the system, 

while section 4 involves the performance evaluation of the 

system. Finally, section 5 presents the conclusion and an 

overview of the main findings of the study. 

 

 

2. BACKGROUND 

2.1 Remote Sensing Data 

Remote sensed data comprises of most digital images, captured 

by sensors that record electromagnetic energy reflected and/or 

emitted by features. The processing of remote sensing data can 

be divided into three stages: pre-processing, processing and 

post-processing. Pre-processing operations prepare the input 

data for the actual image processing stage by minimizing the 

distortions and/or errors in an image that could prevent 

successful classification, or by extracting the most critical 

information from an image (Momm & Easson, 2011a; Khorram 

et al., 2012). Algebraic spectral band combinations (referred to 

as spectral indices), such as division, addition, subtraction, or 
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multiplication, are examples of the way in which images can be 

pre-processed in order to enhance information. Furthermore, 

different spectral indices are used for improved change 

detection and spectral enhancement studies. For instance, 

infrared band over red band is used for vegetation distribution, 

green band over red band is used for mapping surface water 

bodies and wetland delineation, red band over infrared band is 

used for mapping turbid waters, and red band over green band is 

used for mineral mapping (Momm & Easson, 2011a; Khorram 

et a.l, 2012). After pre-processing, satellite images are ready for 

image classification process that converts the original spectral 

data, which are variable and may show complex relationships 

across several image bands, into a simple thematic map for end 

users (Khorram et al., 2012). The classification procedure 

extracts important and valid information from multidimensional 

data set that is otherwise difficult to understand. Each pixel in 

an image is assigned to a particular category in a set of 

categories of interest such as a set of land cover types. In the 

proposed system, K-means was the classification algorithm used 

to automatically cluster image pixels with similar spectral 

characteristics (Momm & Easson, 2011a).  The selection of the 

K-means algorithm was based on its simple implementation and 

low computational cost. Any other classification algorithm 

could have been employed instead. 

 

The quantitative measure of the classification accuracy 

constitutes a post-processing step. In this step, accuracy is 

calculated by comparing the resultant thematic image with user 

provided reference information (Momm & Easson, 2011b). 

Kappa coefficient (K) is a common metric that is used to 

measure the agreement between thematic maps by accounting 

for any agreement due to random chance of agreement (Momm 

& Easson, 2011a). Kappa coefficient lies on a scale between -1 

and 1, where 1 indicates complete agreement beyond random 

chance and 0 indicates agreement solely by chance. Kappa 

values greater than 0.80 represent strong agreement beyond the 

random change of agreement, values between 0.40 and 0.80 

represent moderate agreement beyond the random change of 

agreement, and values below 0.40 represent poor agreement 

beyond the random change of agreement (Momm & Easson, 

2011a; Gong, 2003). Kappa statistics can be computed as:  

The observed proportional agreement between two images 

 

𝑃0 =
1

𝑛
∑ 𝑓𝑖𝑖
𝑔
𝑖=1     (1) 

 

the expected agreement by chance is: 

  

    𝑃𝑒 =
1

𝑛2
∑ 𝑓𝑖+𝑓+𝑖
𝑔
𝑖=1         (2) 

 

𝑓𝑖+ is the total of the ith row, f+iis the total for the ith column. 

The kappa statistic is: 

 

  𝐾 =
𝑃0−𝑃𝑒

1−𝑃𝑒
                                    (3) 

 

2.2 Genetic Programming 

Genetic programming (GP) is an automated method for 

generating computer programs that solve specific problems 

based on principles of natural selection (Robinson, 2001; 

(Abraham et al., 2006). Genetic programming starts with 

thousands of randomly created computer programs where the 

only successful individuals are progressively evolved over a 

series of generations. Fitness function in genetic programming 

determines the successful individuals according to how well 

they are able to solve the problem. The new generations are 

created based on mutation and crossover operations. Mutation is 

the operation where a function is replaced by another function 

in a solution, while the crossover operation means two solutions 

are combined to form two new solutions or offspring 

(Robinson, 2001). Table 1 shows genetic programming steps 

(Robinson, 2001; Abraham et al., 2006; Koza, 1992). In the 

proposed system, solutions are images that are created based on 

one satellite image. 

 

Step Detail 

Initial Population Random population of 

possible solutions is 

generated. The solutions are 

randomly generated programs 

and may not solve the 

problem. 

Fitness Ranking Using fitness metric, the 

individual solutions are rated 

and sorted based on the ability 

to solve the problem. 

Selection The solutions with highest 

fitness values are selected to 

generate a new generation of 

solutions. 

Crossover Parts of selected solutions are 

replaced with other solutions’ 

parts to form new candidate 

solutions. 

Mutation Some of the more fit programs 

are selected and modified to 

generate new solutions. 

Repetition Until Success Repeat Fitness Ranking, 

Selection, Crossover, and 

Mutation steps until the 

solution with highest fitness 

value is found. 

Table 1. Genetic programming steps 

 

2.3 Cloud Computing 

Cloud computing allocates dynamic computing, storage and 

network resources to deliver large numbers of services to end-

users and enable them to share access to these resources from 

anywhere, at any time, through their connected devices (Hwang 

et al., 2012). Cloud data storage services provide large disk 

capacity and service interfaces that allow users to place and 

fetch data. Furthermore, cloud infrastructure provides thousands 

of computing nodes for any application, which allows 

programmers to use the power of these machines without 

considering infrastructure management issues such as handling 

network failure. Providers of cloud computing have developed 

workflow and data query platforms to support distributed 

computing and storage applications. Runtime support of cloud 

computing providers includes distributed monitoring services, a 

distributed task scheduler, distributed locking and other services 

(Hwang et al., 2012). One of the popular distributed 

programming models on the cloud computing platform is 

MapReduce/Hadoop. This model is commonly employed to 

process large data sets in distributed mode over the cloud 

(Apache, 2014). It is mainly used in data analytics, indexing, 

reputation systems, and data mining. 

 

2.4 Hadoop 

Hadoop is a software framework that allows writing and 

running user applications on large data sets.  It can easily 
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expand to store and process petabytes of data on a thousand or 

more client machines (Apache, 2014; White, 2012). Some 

features of Hadoop are:  

 Scalable: New nodes can be added to the Hadoop cluster 

when needed. 

 Flexible: It can join multiple data sets in different ways to 

analysis them easily. 

 Fault tolerant: When a node fails, the system replicates 

data to another node in the cluster and continues 

processing data. 

 

Hadoop has two major subprojects: MapReduce and Hadoop 

Distribute File System (HDFS). MapReduce is a programming 

model that understands and allocates work to the nodes in the 

cloud. The map function within MapReduce divides the input 

dataset into distinct blocks and then generates a set of 

intermediate key/value pairs. Next, Reduce function merges all 

intermediate values with the same intermediate key and sorts 

the complete job output. HDFS is the distributed file system that 

includes all the nodes in a Hadoop cluster for data storage. 

HDFS has master/workers architecture including a master node 

called NameNode and a number of workers called DataNode 

(Apache Software, 2014; White, 2012).  

 

2.5 MapReduce 

MapReduce is parallel programming that was developed by 

Google for large-scale data processing in distributed 

environment. As described in the previous subsection, 

MapReduce involves two main functions that are map and 

reduce. The mechanism of the MapReduce framework (Dean & 

Ghemawat, 2004 copies the MapReduce job into all cluster 

nodes (Figure 1). The input data set is then divided into smaller 

segments that are assigned into individual map tasks. Each map 

task takes a set of input <key,value> pairs and performs 

operations that were written by the user to produce a set of 

intermediate <key,value> pairs. Then, the MapReduce library 

merges all intermediate values that have the same intermediate 

key to send them into the Reduce function that written by the 

programmers. Reduce function performs programmer’s 

predefined operations on all values to produce a new set of 

<key,value> pairs, which will be the final output of the 

MapReduce job. Sometimes, programmers need to perform a 

partial merge of the map tasks outputs before reduce stage. In 

this case, combiner function can be used where its output is 

passed to reduce function through an intermediate file (Miner & 

Shook, 2012; (Apache Software, 2013). 

 

 
Figure 1. Diagram of MapReduce programming model. 

 

 

3. PROPOSED SYSTEM 

We developed a system based on distributed genetic 

programming technology on a cloud-computing platform to 

efficiently extract features for high-resolution remote sensing. 

The proposed system has two subsystems:  

 Data Preparation: Data preparation subsystem is 

representing the input data in the format expected by the 

distributed processing subsystem. 

 Distributed Processing: Distributed processing 

subsystem is responsible for performing evolutionary 

computation and identifies the feature of interest from the 

remote sensed image. 

 

3.1 Data Preparation: 

The first step of identifying and distinguishing certain types of 

features from multispectral images is preparing image for 

processing. Multispectral image includes multiple spectral 

bands, and spectral band indices are the most common spectral 

transformations used in remote sensing. These spectral indices 

apply pixel-to-pixel operations to create a new value for 

individual pixels according to some pre-defined function of 

spectral values (Momm & Easson, 2011a). These operations 

enhance the image and some features become more discernible. 

A set of candidate solutions is randomly generated to initiate the 

genetic programming procedure. These candidate solutions are 

stored in hierarchical tree structures (Figure 2). The candidate 

solutions are created such that they meet the requirements of 

image bands combinations. The candidate solutions are 

internally stored as hierarchical expression trees and externally 

represented as computer programs (Momm & Easson, 2011a). 

The leaves of these binary expression trees are image spectral 

bands, and the nodes are operands such as summation, 

subtraction, multiplication, division, logarithms, and square 

root. The proposed system generates the number of candidate 

solutions with predefined heights and stores them in one or 

more text files in the Hadoop Distributed File System on the 

cloud (HDFS). Figure 3 shows the data flow for the data 

preparation subsystem. 

 

 
Figure 2. Example of candidate solution represented as 

hierarchical tree expression (internally) and computer program 

(externally). 
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Figure 3. Data flow for data preparation subsystem. 

 

3.2 Distributed processing:  

The distributed processing subsystem employs a MapReduce 

programming model to implement and process operations of 

feature extraction in the HDFS. The proposed system applies 

each candidate solution independently to the original multi-

spectral image, which is stored in the cache distributed memory 

and contains the interested feature, in order to produce 

transformed images (processed image). Each processed image 

produces a two-class binary image using the K-means clustering 

method, which is one of the simplest unsupervised learning 

algorithms for the purposes of attempting to identify hidden 

structures in unidentified data (Moore, 2011). The two classes 

in the binary images indicate the presence and absence of the 

target feature (Momm & Easson, 2011b). Then, the system 

individually compares each binary image to the reference 

image, which is stored in the cache distributed memory and 

consists of both positive examples (where the feature is found) 

and negative examples (where the feature is not found), to 

produce fitness value using Kappa coefficient of agreement. All 

candidate solutions are sorted according to their fitness values 

and stored in HDFS to produce the next generation of candidate 

solutions. The system stops and outputs the most fitting solution 

if the criteria are met, which are the highest fitness value and 

the maximum number of generations. If none of these criteria 

are met, the system will apply the genetic operations on top 

most fit candidate solutions.  The genetic operations used were 

mutation that was applied on the highest 3% and the crossover 

operation that was applied on the next highest 20% of the 

generation (Momm & Easson, 2011a; 2001b). The system 

iteratively repeats until the stop criteria are met. The proposed 

system employs two MapReduce jobs: one for the first 

generation of candidate solutions and one for the following 

generations. The first MapReduce receives the first population 

input from the data preparation subsystem and automatically 

generates the number of map tasks required to handle the input 

records (candidate solutions). The map tasks emit the original 

candidate solutions with the fitness values. Then, the reducer 

task reads all records from the map tasks and sorts them 

according to their fitness values. The output files from the 

reducer are categorized as follows: 3% for mutation, 20% for 

crossover, and 77% for replication (remaining individuals of the 

population). The output files from the first job will be stored in 

HDFS to be used as input files for the next MapReduce job. 

Figure 4 shows the first MapReduce job that contains Map and 

Reduce stages.  

 

 
Figure 4. Main steps in the first MapReduce job used to create 

the first generation. 

 

The second MapReduce job involves mutation and crossover 

operations that are required to evolve next generations. Map 

tasks send each candidate solution and its fitness value to the 

combiner, which implements the genetic operations and 

generates the new processed and binary images with the new 

fitness value. The combiner sends the results to the reducer, 

which sorts and produces the new candidate solutions and 

fitness values. The second MapReduce job will be repeated 

iteratively until the stopping criteria are met. Figure 5 shows the 

second MapReduce job and figure 6 shows the complete 

system, including the two MapReduce jobs. The final result of 

the system represents the optimal candidate solution to 

spectrally identify the target feature in the original image.   

 

 
Figure 5. Main steps in the second MapReduce job designed to 

perform the evolutionary process. 
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Figure 6. Diagram of the proposed system.  

 

 

4. PERFORMANCE EVALUATION 

We implemented our system on a Hadoop-based cloud 

computing environment that consisted of 15 Dell blade servers, 

with each server consisting of two CPU, six core-Intel Xeon 

processors and two TB internal memory size. The total number 

of processing cores available was 90. The operating system was 

the Ubuntu 12.04 with 14 lives nodes and 6395 blocks. The 

original satellite image used for the performance evaluation was 

acquired with the QuickBird sensor of Oxford, Mississippi, 

USA, and was composed of four spectral bands: Blue (485 nm), 

Green (560 nm), Red (660 nm), and Near Infra-red (830 nm) 

(Momm et al., 2008). The system was evaluated based on three 

performance benchmarks: number of distributed map tasks, size 

of population and number of generations.  

 

4.1 Number of distributed map tasks 

Hadoop automatically allocates input, after dividing it into 

blocks, with map tasks. Since the number of map tasks cannot 

be controlled, the number of input files can be used to define the 

number of input blocks. Therefore, a different number of input 

files (1, 2, 5, 10, 20, and 25) were used to test time and memory 

size. The average number of map tasks automatically generated 

by Hadoop increased in accordance with the number of input 

files (Figure 7). In addition, when the number of distributed 

map tasks increased the actual time decreased by 91.58% 

(Figure 8). There is an optimal number of map tasks (around 10) 

that beyond that does not reduce the time much. However, the 

relationship between the number of distributed Map tasks and 

memory size was linear. If the average number of distributed 

Map tasks increased from 1 to 31, the total memory size used 

for the job increased by 95.25% (physical memory) and 92.90% 

(virtual memory). Figures 9 and 10 show the relationship 

between increasing the average number of map tasks and 

physical and virtual memory sizes respectively. 

 

 
Figure 7. Number of input files versus number of generated 

Map tasks by Hadoop. 

 

 
 Figure 8.  Number of map tasks versus elapsed real time of the 

job. 

 

 
Figure 9.  Number of Map tasks versus physical memory size 

(GB). 

 

 
Figure 10.  Number of map tasks versus virtual memory size 

(GB). 
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4.2 Size of Population 

Testing the performance of the MapReduce job for the first 

generation of candidate solutions involved studying eight test 

cases of various sizes (250, 500, 750, 1000, 1250, 1500, 1750, 

and 2000). We chose 10 as the average number of map tasks 

since it is an optimal number. The average elapsed time 

increased when the size of the population increased to reach 

1.67 hour for 2000 candidate solutions (Figure 11), while the 

CPU time increased to reach approximately the same amount of 

real time (Figure 12). Furthermore, the physical memory size 

oscillated between 0.8 GB and 1 GB for all population sizes 

(Figure 13), and 5-8 GB with a slight increase in the virtual 

memory size (Figure 14). 

 

Figure 11.  Size of population versus average versus elapsed 

real time of the job. 

 

 
Figure 12.  Relationship between the size of population and 

average CPU time of the job. 

 

 
Figure 13.  Relationship between the size of population and 

average physical memory size (GB). 

 

Figure 14.  Size of population versus average virtual memory 

size (GB). 

 

4.3 Number of Generations 

Testing the performance of the MapReduce job involves 

varying the number of generations. The test cases include from 

two generations to 101 generations. The result indicated that 

increasing the number of generations increased the elapsed real 

time required to accomplish the complete job. The total time for 

the highest test case (101 generations) was 5.45 hours (Figure 

15). In addition, the test cases from one generation to ten 

generations showed that the real time increased by 73.1% and 

the CPU time also increased by 55.85%, as shown in Figures 16 

and 17 respectively.  

 

Figure 15.  Number of generations versus average elapsed real 

time. 

 

 
Figure 16.  Relationship between the number of generations (1-

10) and average elapsed real time. 
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Figure 17.  Relationship between the number of generations (1-

10) and the average CPU time. 

 

5. CONCLUSION 

A distributed programming model can be used within a cloud 

computing environment to improve the performance of the 

genetic programming-based feature extraction system. 

MapReduce is a distributed programming model that can be 

successfully used to speed up the implementation of the genetic 

algorithm in a Hadoop-based cloud computing environment. 

The results show that speedup is achieved by dividing the input 

data into several blocks to decrease the execution time. Dividing 

the input data (the candidate solutions population) forces 

Hadoop to handle these data blocks by generating the 

approximate number of map functions. These map functions 

handle these blocks in a distributed manner. However, the 

system has one Reduce function that is pre-defined to handle all 

candidate solutions forwarded from the map functions. The 

reason for using one Reduce function is to sort all candidate 

solutions on one machine. Moreover, because implementing the 

MapReduce job requires an initial input data, the data 

preparation subsystem cannot be implemented using the 

MapReduce model. The results show that increasing the number 

of distributed map tasks decreased the average elapsed real time 

by 91.58%, while increasing the population size and number of 

generations increased the time. Therefore, we suggest 

improving the algorithm to find the optimal population size and 

number of generations to handle the increasing in execution 

time. The system could be improved to include more than six 

mathematical operations that used to in bands combinations to 

enhance the results. The performance of the system could be 

improved by including multithreads that may increase 

distributing tasks among cluster nodes.  

The results produced in this pilot study demonstrate the 

potential of leveraging distributed-cloud computing technology 

to address remote sensing problems arising from the ever 

growing number of imagery data being produced.  The 

developed technology provides the basic infrastructure to 

additional research in converting large mounts of image data 

into actionable intelligence in a cost-effective way. 
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