
SCALABLE EVOLUTIONARY COMPUTATION FOR EFFICIENT INFORMATION

EXTRACTION FROM REMOTE SENSED IMAGERY

L. M. Almutairia, S. Shetty a, H. G. Momm b

a Dept. of Electrical and Computer Engineering, Tennessee State University, Nashville, TN 37209 USA- (lalmutai

,sshetty)@tnstate.edu
b Department of Geosciences, Middle Tennessee State University, Murfreesboro, TN 37132 USA- henrique.momm@mtsu.edu

KEY WORDS: genetic programming, cloud computing, Hadoop, MapReduce, Hadoop Distributed File System.

ABSTRACT:

Evolutionary computation, in the form of genetic programming, is used to aid information extraction process from high-resolution

satellite imagery in a semi-automatic fashion. Distributing and parallelizing the task of evaluating all candidate solutions during the

evolutionary process could significantly reduce the inherent computational cost of evolving solutions that are composed of multi-

channel large images. In this study, we present the design and implementation of a system that leverages cloud-computing

technology to expedite supervised solution development in a centralized evolutionary framework. The system uses the MapReduce

programming model to implement a distributed version of the existing framework in a cloud-computing platform. The proposed

system has two major subsystems; (i) data preparation: the generation of random spectral indices; and (ii) distributed processing: the

distributed implementation of genetic programming, which is used to spectrally distinguish the features of interest from the

remaining image background in the cloud computing environment in order to improve scalability. The proposed system reduces

response time by leveraging the vast computational and storage resources in a cloud computing environment. The results

demonstrate that distributing the candidate solutions reduces the execution time by 91.58%. These findings indicate that such

technology could be applied to more complex problems that involve a larger population size and number of generations.

1. INTRODUCTION

Remote sensing can aid studies on earth surface processes,

homeland security, disaster response, agricultural and

environmental resource management, weather forecasting and

global change research (Momm & Easson, 2011a). However, as

a result of significant advances in technology, many

organizations face the challenge developing timely and cost-

effective techniques that can successfully identify certain types

of features from remotely sensed imagery (Momm & Easson,

2011a). The main challenge lies in analysing a large number of

images over a long period of time and converting image data

into actionable intelligence by extracting specific features. In

addition, the relationship between the different image regions is

too complex to be solved by explicit programming (Momm &

Easson, 2011a). Evolutionary computation is one of methods

that can be used to improve feature extraction. However, this

technique suffers from heavy computational overheads, as

multi-channel images have to be processed thousands of times

during the evolutionary process (Momm & Easson, 2011b).

Cloud computing has emerged as a popular platform with

availability of elastic on-demand computation, storage and

networking resources. The platform provides benefits to

applications by offering large storage capabilities that allow

huge amounts of data to be collected and managed together with

vast computational resources that allow the effective

implementation of cost-effective computation in a timely

fashion (Hwang et al., 2012). In this paper, we present the

design and implementation of a scalable genetic algorithm in

the cloud-computing platform to accelerate the evolutionary

computation process for feature extraction from remotely

sensed imagery. The paper provides an overview of the design

and implementation of a system that leverages cloud-computing

technology to develop a scalable genetic algorithm that is

capable of expediting the feature extraction process in an

evolutionary framework. The scalable genetic algorithm was

designed using the distributed Hadoop/MapReduce

environment. The proposed system has two major subsystems;

(i) data preparation: the generation of random image band

combinations; and (ii) distributed processing: the distributed

implementation of genetic programming, which can be

employed to spectrally distinguish the feature of interest from

the remaining image background of remote sensed imagery in a

cloud computing environment in order to improve scalability.

The proposed system reduces response time by leveraging the

vast computational and storage resources available in a cloud

computing environment. This manuscript is organized as

follows: section 2 contains an overview of the remote sensing,

genetic programming, cloud-computing platform and

Hadoop/MapReduce programming environment; section 3

provides details of the design and implementation of the system,

while section 4 involves the performance evaluation of the

system. Finally, section 5 presents the conclusion and an

overview of the main findings of the study.

2. BACKGROUND

2.1 Remote Sensing Data

Remote sensed data comprises of most digital images, captured

by sensors that record electromagnetic energy reflected and/or

emitted by features. The processing of remote sensing data can

be divided into three stages: pre-processing, processing and

post-processing. Pre-processing operations prepare the input

data for the actual image processing stage by minimizing the

distortions and/or errors in an image that could prevent

successful classification, or by extracting the most critical

information from an image (Momm & Easson, 2011a; Khorram

et al., 2012). Algebraic spectral band combinations (referred to

as spectral indices), such as division, addition, subtraction, or

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1, 2014
ISPRS Technical Commission I Symposium, 17 – 20 November 2014, Denver, Colorado, USA

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-1-27-2014 27

multiplication, are examples of the way in which images can be

pre-processed in order to enhance information. Furthermore,

different spectral indices are used for improved change

detection and spectral enhancement studies. For instance,

infrared band over red band is used for vegetation distribution,

green band over red band is used for mapping surface water

bodies and wetland delineation, red band over infrared band is

used for mapping turbid waters, and red band over green band is

used for mineral mapping (Momm & Easson, 2011a; Khorram

et a.l, 2012). After pre-processing, satellite images are ready for

image classification process that converts the original spectral

data, which are variable and may show complex relationships

across several image bands, into a simple thematic map for end

users (Khorram et al., 2012). The classification procedure

extracts important and valid information from multidimensional

data set that is otherwise difficult to understand. Each pixel in

an image is assigned to a particular category in a set of

categories of interest such as a set of land cover types. In the

proposed system, K-means was the classification algorithm used

to automatically cluster image pixels with similar spectral

characteristics (Momm & Easson, 2011a). The selection of the

K-means algorithm was based on its simple implementation and

low computational cost. Any other classification algorithm

could have been employed instead.

The quantitative measure of the classification accuracy

constitutes a post-processing step. In this step, accuracy is

calculated by comparing the resultant thematic image with user

provided reference information (Momm & Easson, 2011b).

Kappa coefficient (K) is a common metric that is used to

measure the agreement between thematic maps by accounting

for any agreement due to random chance of agreement (Momm

& Easson, 2011a). Kappa coefficient lies on a scale between -1

and 1, where 1 indicates complete agreement beyond random

chance and 0 indicates agreement solely by chance. Kappa

values greater than 0.80 represent strong agreement beyond the

random change of agreement, values between 0.40 and 0.80

represent moderate agreement beyond the random change of

agreement, and values below 0.40 represent poor agreement

beyond the random change of agreement (Momm & Easson,

2011a; Gong, 2003). Kappa statistics can be computed as:

The observed proportional agreement between two images

𝑃0 =
1

𝑛
∑ 𝑓𝑖𝑖
𝑔
𝑖=1 (1)

the expected agreement by chance is:

 𝑃𝑒 =
1

𝑛2
∑ 𝑓𝑖+𝑓+𝑖
𝑔
𝑖=1 (2)

𝑓𝑖+ is the total of the ith row, f+iis the total for the ith column.

The kappa statistic is:

 𝐾 =
𝑃0−𝑃𝑒

1−𝑃𝑒
 (3)

2.2 Genetic Programming

Genetic programming (GP) is an automated method for

generating computer programs that solve specific problems

based on principles of natural selection (Robinson, 2001;

(Abraham et al., 2006). Genetic programming starts with

thousands of randomly created computer programs where the

only successful individuals are progressively evolved over a

series of generations. Fitness function in genetic programming

determines the successful individuals according to how well

they are able to solve the problem. The new generations are

created based on mutation and crossover operations. Mutation is

the operation where a function is replaced by another function

in a solution, while the crossover operation means two solutions

are combined to form two new solutions or offspring

(Robinson, 2001). Table 1 shows genetic programming steps

(Robinson, 2001; Abraham et al., 2006; Koza, 1992). In the

proposed system, solutions are images that are created based on

one satellite image.

Step Detail

Initial Population Random population of

possible solutions is

generated. The solutions are

randomly generated programs

and may not solve the

problem.

Fitness Ranking Using fitness metric, the

individual solutions are rated

and sorted based on the ability

to solve the problem.

Selection The solutions with highest

fitness values are selected to

generate a new generation of

solutions.

Crossover Parts of selected solutions are

replaced with other solutions’

parts to form new candidate

solutions.

Mutation Some of the more fit programs

are selected and modified to

generate new solutions.

Repetition Until Success Repeat Fitness Ranking,

Selection, Crossover, and

Mutation steps until the

solution with highest fitness

value is found.

Table 1. Genetic programming steps

2.3 Cloud Computing

Cloud computing allocates dynamic computing, storage and

network resources to deliver large numbers of services to end-

users and enable them to share access to these resources from

anywhere, at any time, through their connected devices (Hwang

et al., 2012). Cloud data storage services provide large disk

capacity and service interfaces that allow users to place and

fetch data. Furthermore, cloud infrastructure provides thousands

of computing nodes for any application, which allows

programmers to use the power of these machines without

considering infrastructure management issues such as handling

network failure. Providers of cloud computing have developed

workflow and data query platforms to support distributed

computing and storage applications. Runtime support of cloud

computing providers includes distributed monitoring services, a

distributed task scheduler, distributed locking and other services

(Hwang et al., 2012). One of the popular distributed

programming models on the cloud computing platform is

MapReduce/Hadoop. This model is commonly employed to

process large data sets in distributed mode over the cloud

(Apache, 2014). It is mainly used in data analytics, indexing,

reputation systems, and data mining.

2.4 Hadoop

Hadoop is a software framework that allows writing and

running user applications on large data sets. It can easily

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1, 2014
ISPRS Technical Commission I Symposium, 17 – 20 November 2014, Denver, Colorado, USA

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-1-27-2014 28

expand to store and process petabytes of data on a thousand or

more client machines (Apache, 2014; White, 2012). Some

features of Hadoop are:

 Scalable: New nodes can be added to the Hadoop cluster

when needed.

 Flexible: It can join multiple data sets in different ways to

analysis them easily.

 Fault tolerant: When a node fails, the system replicates

data to another node in the cluster and continues

processing data.

Hadoop has two major subprojects: MapReduce and Hadoop

Distribute File System (HDFS). MapReduce is a programming

model that understands and allocates work to the nodes in the

cloud. The map function within MapReduce divides the input

dataset into distinct blocks and then generates a set of

intermediate key/value pairs. Next, Reduce function merges all

intermediate values with the same intermediate key and sorts

the complete job output. HDFS is the distributed file system that

includes all the nodes in a Hadoop cluster for data storage.

HDFS has master/workers architecture including a master node

called NameNode and a number of workers called DataNode

(Apache Software, 2014; White, 2012).

2.5 MapReduce

MapReduce is parallel programming that was developed by

Google for large-scale data processing in distributed

environment. As described in the previous subsection,

MapReduce involves two main functions that are map and

reduce. The mechanism of the MapReduce framework (Dean &

Ghemawat, 2004 copies the MapReduce job into all cluster

nodes (Figure 1). The input data set is then divided into smaller

segments that are assigned into individual map tasks. Each map

task takes a set of input <key,value> pairs and performs

operations that were written by the user to produce a set of

intermediate <key,value> pairs. Then, the MapReduce library

merges all intermediate values that have the same intermediate

key to send them into the Reduce function that written by the

programmers. Reduce function performs programmer’s

predefined operations on all values to produce a new set of

<key,value> pairs, which will be the final output of the

MapReduce job. Sometimes, programmers need to perform a

partial merge of the map tasks outputs before reduce stage. In

this case, combiner function can be used where its output is

passed to reduce function through an intermediate file (Miner &

Shook, 2012; (Apache Software, 2013).

Figure 1. Diagram of MapReduce programming model.

3. PROPOSED SYSTEM

We developed a system based on distributed genetic

programming technology on a cloud-computing platform to

efficiently extract features for high-resolution remote sensing.

The proposed system has two subsystems:

 Data Preparation: Data preparation subsystem is

representing the input data in the format expected by the

distributed processing subsystem.

 Distributed Processing: Distributed processing

subsystem is responsible for performing evolutionary

computation and identifies the feature of interest from the

remote sensed image.

3.1 Data Preparation:

The first step of identifying and distinguishing certain types of

features from multispectral images is preparing image for

processing. Multispectral image includes multiple spectral

bands, and spectral band indices are the most common spectral

transformations used in remote sensing. These spectral indices

apply pixel-to-pixel operations to create a new value for

individual pixels according to some pre-defined function of

spectral values (Momm & Easson, 2011a). These operations

enhance the image and some features become more discernible.

A set of candidate solutions is randomly generated to initiate the

genetic programming procedure. These candidate solutions are

stored in hierarchical tree structures (Figure 2). The candidate

solutions are created such that they meet the requirements of

image bands combinations. The candidate solutions are

internally stored as hierarchical expression trees and externally

represented as computer programs (Momm & Easson, 2011a).

The leaves of these binary expression trees are image spectral

bands, and the nodes are operands such as summation,

subtraction, multiplication, division, logarithms, and square

root. The proposed system generates the number of candidate

solutions with predefined heights and stores them in one or

more text files in the Hadoop Distributed File System on the

cloud (HDFS). Figure 3 shows the data flow for the data

preparation subsystem.

Figure 2. Example of candidate solution represented as

hierarchical tree expression (internally) and computer program

(externally).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1, 2014
ISPRS Technical Commission I Symposium, 17 – 20 November 2014, Denver, Colorado, USA

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-1-27-2014 29

Figure 3. Data flow for data preparation subsystem.

3.2 Distributed processing:

The distributed processing subsystem employs a MapReduce

programming model to implement and process operations of

feature extraction in the HDFS. The proposed system applies

each candidate solution independently to the original multi-

spectral image, which is stored in the cache distributed memory

and contains the interested feature, in order to produce

transformed images (processed image). Each processed image

produces a two-class binary image using the K-means clustering

method, which is one of the simplest unsupervised learning

algorithms for the purposes of attempting to identify hidden

structures in unidentified data (Moore, 2011). The two classes

in the binary images indicate the presence and absence of the

target feature (Momm & Easson, 2011b). Then, the system

individually compares each binary image to the reference

image, which is stored in the cache distributed memory and

consists of both positive examples (where the feature is found)

and negative examples (where the feature is not found), to

produce fitness value using Kappa coefficient of agreement. All

candidate solutions are sorted according to their fitness values

and stored in HDFS to produce the next generation of candidate

solutions. The system stops and outputs the most fitting solution

if the criteria are met, which are the highest fitness value and

the maximum number of generations. If none of these criteria

are met, the system will apply the genetic operations on top

most fit candidate solutions. The genetic operations used were

mutation that was applied on the highest 3% and the crossover

operation that was applied on the next highest 20% of the

generation (Momm & Easson, 2011a; 2001b). The system

iteratively repeats until the stop criteria are met. The proposed

system employs two MapReduce jobs: one for the first

generation of candidate solutions and one for the following

generations. The first MapReduce receives the first population

input from the data preparation subsystem and automatically

generates the number of map tasks required to handle the input

records (candidate solutions). The map tasks emit the original

candidate solutions with the fitness values. Then, the reducer

task reads all records from the map tasks and sorts them

according to their fitness values. The output files from the

reducer are categorized as follows: 3% for mutation, 20% for

crossover, and 77% for replication (remaining individuals of the

population). The output files from the first job will be stored in

HDFS to be used as input files for the next MapReduce job.

Figure 4 shows the first MapReduce job that contains Map and

Reduce stages.

Figure 4. Main steps in the first MapReduce job used to create

the first generation.

The second MapReduce job involves mutation and crossover

operations that are required to evolve next generations. Map

tasks send each candidate solution and its fitness value to the

combiner, which implements the genetic operations and

generates the new processed and binary images with the new

fitness value. The combiner sends the results to the reducer,

which sorts and produces the new candidate solutions and

fitness values. The second MapReduce job will be repeated

iteratively until the stopping criteria are met. Figure 5 shows the

second MapReduce job and figure 6 shows the complete

system, including the two MapReduce jobs. The final result of

the system represents the optimal candidate solution to

spectrally identify the target feature in the original image.

Figure 5. Main steps in the second MapReduce job designed to

perform the evolutionary process.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1, 2014
ISPRS Technical Commission I Symposium, 17 – 20 November 2014, Denver, Colorado, USA

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-1-27-2014 30

Figure 6. Diagram of the proposed system.

4. PERFORMANCE EVALUATION

We implemented our system on a Hadoop-based cloud

computing environment that consisted of 15 Dell blade servers,

with each server consisting of two CPU, six core-Intel Xeon

processors and two TB internal memory size. The total number

of processing cores available was 90. The operating system was

the Ubuntu 12.04 with 14 lives nodes and 6395 blocks. The

original satellite image used for the performance evaluation was

acquired with the QuickBird sensor of Oxford, Mississippi,

USA, and was composed of four spectral bands: Blue (485 nm),

Green (560 nm), Red (660 nm), and Near Infra-red (830 nm)

(Momm et al., 2008). The system was evaluated based on three

performance benchmarks: number of distributed map tasks, size

of population and number of generations.

4.1 Number of distributed map tasks

Hadoop automatically allocates input, after dividing it into

blocks, with map tasks. Since the number of map tasks cannot

be controlled, the number of input files can be used to define the

number of input blocks. Therefore, a different number of input

files (1, 2, 5, 10, 20, and 25) were used to test time and memory

size. The average number of map tasks automatically generated

by Hadoop increased in accordance with the number of input

files (Figure 7). In addition, when the number of distributed

map tasks increased the actual time decreased by 91.58%

(Figure 8). There is an optimal number of map tasks (around 10)

that beyond that does not reduce the time much. However, the

relationship between the number of distributed Map tasks and

memory size was linear. If the average number of distributed

Map tasks increased from 1 to 31, the total memory size used

for the job increased by 95.25% (physical memory) and 92.90%

(virtual memory). Figures 9 and 10 show the relationship

between increasing the average number of map tasks and

physical and virtual memory sizes respectively.

Figure 7. Number of input files versus number of generated

Map tasks by Hadoop.

 Figure 8. Number of map tasks versus elapsed real time of the

job.

Figure 9. Number of Map tasks versus physical memory size

(GB).

Figure 10. Number of map tasks versus virtual memory size

(GB).

y = 1.2604x - 0.5674

R² = 0.9983
0

5

10

15

20

25

30

35

0 10 20 30

N
u

m
b

er
 o

f
M

a
p

 t
a
sk

s

Number of input files

y = 2905.7x-0.73

R² = 0.988

0

5

10

15

20

25

30

35

0 10 20 30 40

E
la

p
se

d
 r

ea
l

ti
m

e
(s

ec
)

1
0

^
2

Number of map tasks

y = 0.6052x + 0.5819

R² = 0.996
0

5

10

15

20

25

0 10 20 30 40

P
h

y
si

ca
l

m
e
m

o
ry

si
ze

(G
B

)

Number of map tasks

y = 2.5771x + 3.2251

R² = 0.9981
0

10

20

30

40

50

60

70

80

90

0 10 20 30 40

V
ir

tu
a
l

m
em

o
ry

 s
iz

e
(G

B
)

Number of map tasks

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1, 2014
ISPRS Technical Commission I Symposium, 17 – 20 November 2014, Denver, Colorado, USA

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-1-27-2014 31

4.2 Size of Population

Testing the performance of the MapReduce job for the first

generation of candidate solutions involved studying eight test

cases of various sizes (250, 500, 750, 1000, 1250, 1500, 1750,

and 2000). We chose 10 as the average number of map tasks

since it is an optimal number. The average elapsed time

increased when the size of the population increased to reach

1.67 hour for 2000 candidate solutions (Figure 11), while the

CPU time increased to reach approximately the same amount of

real time (Figure 12). Furthermore, the physical memory size

oscillated between 0.8 GB and 1 GB for all population sizes

(Figure 13), and 5-8 GB with a slight increase in the virtual

memory size (Figure 14).

Figure 11. Size of population versus average versus elapsed

real time of the job.

Figure 12. Relationship between the size of population and

average CPU time of the job.

Figure 13. Relationship between the size of population and

average physical memory size (GB).

Figure 14. Size of population versus average virtual memory

size (GB).

4.3 Number of Generations

Testing the performance of the MapReduce job involves

varying the number of generations. The test cases include from

two generations to 101 generations. The result indicated that

increasing the number of generations increased the elapsed real

time required to accomplish the complete job. The total time for

the highest test case (101 generations) was 5.45 hours (Figure

15). In addition, the test cases from one generation to ten

generations showed that the real time increased by 73.1% and

the CPU time also increased by 55.85%, as shown in Figures 16

and 17 respectively.

Figure 15. Number of generations versus average elapsed real

time.

Figure 16. Relationship between the number of generations (1-

10) and average elapsed real time.

y = 2.8881x + 164.04

R² = 0.9971
0

1000

2000

3000

4000

5000

6000

7000

0 500 1000 1500 2000 2500

E
la

p
se

d
 r

ea
l

ti
m

e
(s

ec
)

Size of population

y = 3.0401x + 107.78

R² = 0.9968
0

1000

2000

3000

4000

5000

6000

7000

0 500 1000 1500 2000 2500

C
P

U
 t

im
e

(s
ec

)

Size of population

y = 1E-07x2 - 0.0002x + 0.9966
R² = 0.4641

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 1000 2000 3000

P
h

y
si

ca
l

m
e
m

o
ry

si
ze

 (
G

B
)

Size of population

y = 2.4655x0.15

R² = 0.7531
0

2

4

6

8

10

0 500 1000 1500 2000 2500

V
ir

tu
a
l

m
em

o
ry

 s
iz

e

(G
B

)

Size of population

y = 190.81x + 123.46

R² = 0.9976
0

5

10

15

20

25

0 50 100 150

E
la

p
se

d
 r

ea
l

ti
m

e
(s

ec
)

1
0

^
3

Number of generations

y = 161.06x + 413.07

R² = 0.9994
0

500

1000

1500

2000

2500

0 1 2 3 4 5 6 7 8 9 10 11

E
la

p
se

d
 r

ea
l

ti
m

e
(s

ec
)

Number of generations

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1, 2014
ISPRS Technical Commission I Symposium, 17 – 20 November 2014, Denver, Colorado, USA

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-1-27-2014 32

Figure 17. Relationship between the number of generations (1-

10) and the average CPU time.

5. CONCLUSION

A distributed programming model can be used within a cloud

computing environment to improve the performance of the

genetic programming-based feature extraction system.

MapReduce is a distributed programming model that can be

successfully used to speed up the implementation of the genetic

algorithm in a Hadoop-based cloud computing environment.

The results show that speedup is achieved by dividing the input

data into several blocks to decrease the execution time. Dividing

the input data (the candidate solutions population) forces

Hadoop to handle these data blocks by generating the

approximate number of map functions. These map functions

handle these blocks in a distributed manner. However, the

system has one Reduce function that is pre-defined to handle all

candidate solutions forwarded from the map functions. The

reason for using one Reduce function is to sort all candidate

solutions on one machine. Moreover, because implementing the

MapReduce job requires an initial input data, the data

preparation subsystem cannot be implemented using the

MapReduce model. The results show that increasing the number

of distributed map tasks decreased the average elapsed real time

by 91.58%, while increasing the population size and number of

generations increased the time. Therefore, we suggest

improving the algorithm to find the optimal population size and

number of generations to handle the increasing in execution

time. The system could be improved to include more than six

mathematical operations that used to in bands combinations to

enhance the results. The performance of the system could be

improved by including multithreads that may increase

distributing tasks among cluster nodes.

The results produced in this pilot study demonstrate the

potential of leveraging distributed-cloud computing technology

to address remote sensing problems arising from the ever

growing number of imagery data being produced. The

developed technology provides the basic infrastructure to

additional research in converting large mounts of image data

into actionable intelligence in a cost-effective way.

ACKNOWLEDGEMENTS

This work is supported in part by a National Science

Foundation (NSF) Grant HRD-1137466, Department of

Homeland Security (DHS) SLA grant 2010-ST-062-0000041,

2011-ST- 062-0000046 and 2014-ST-062-000059. Laila

Almutairi would like to acknowledge the financial support from

Saudi Arabian Cultural Mission (SACM).

REFERENCES

Abraham, A., Nedjah, N. and Mourelle, L. D. M., 2006.

Evolutionary Computation: from Genetic Algorithms to Genetic

Programming. In: Genetic Systems Programming: Theory and

Experiences, Vol. 13, pp 1-20.

http://www.softcomputing.net/gpsystems.pdf (July 2014).

Dean, J. and Ghemawat, S., 2004. “MapReduce: Simplified Data

Processing on Large Clusters”. In: Sixth Symposium on

Operating System Design and Implementation, San Francisco

CA.https://www.usenix.org/legacy/event/osdi04/tech/full_paper

s/dean/dean.pdf (Oct 2013).

Gong, P., 2003. “Information Extraction: In Remote Sensing

and Image Analysis,” University of California at Berkeley

http://nature.berkeley.edu/~penggong/textbook/chapter7/html/se

ct73.htm (Sept. 2013).

Hwang, K., Dongarra, J. and Fox, G. C., 2012. Distributed and

Cloud Computing: Clusters, Grids, Clouds, and the Future

Internet. Morgan Kaufmann, Watham, MA.

Khorram S., Nelson S. A.C., Koch, F. H. and Van Der Wiele, C.

F., 2012. Remote Sensing, Springer-Verlag, US, pp: 17-28. 39-

56.

Koza, J. R., 1992. On the Programming of Computers by Means

of Natural Selection, Cambridge, MA: The MIT Press.
http://www.ru.lv/~peter/zinatne/ebooks/MIT%20-

%20Genetic%20Programming.pdf (Sept. 2013).

Miner, D. and Shook, A., 2012. MapReduce Design Patterns:

Building Effective Algorithms and Analytics for Hadoop and

Other Systems. O'Reilly Media.

Momm, H. and Easson, G., 2011a. Feature Extraction from

High-Resolution Remotely Sensed Imagery using Evolutionary

Computation. In: Evolutionary Algorithms, Prof. Eisuke Kita,

Ed..

Momm, H. and Easson, G., 2011b. Evolving spectral

transformations for multitemporal information extraction using

evolutionary computation. Journal of Applied Remote Sensing,

5(1).

Momm, H., Easson, G. and J. Kuszmaul, 2008. Uncertainty

analysis of an evolutionary algorithm to develop remote sensing

spectral indices, in Image Processing: Algorithms and Systems

VI, edited by Jaakko T. Astola, Karen O. Egiazarian, Edward R.

Dougherty, Proceedings of SPIE-ISandT Electronic Imaging,

SPIE Vol. 6812, 68120A.

Moore, A., (2001). “K-means and Hierarchical Clustering–

Tutorial Slides,” http://www-

2.cs.cmu.edu/~awm/tutorials/kmeans.html (Jan 2014).

Robinson, A., 2001. Division III thesis “Genetic Programming:

Theory, Implementation, and the Evolution of Unconstrained

Solutions”, Hampshire College, Amherst, MA.

http://faculty.hampshire.edu/lspector/robinson-div3.pdf (Sept.

2013).

The Apache Software Foundation, 2013. “MapReduce

Tutorial,”http://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.

html (Oct. 2013).

y = 545.9x + 3320.7

R² = 0.9995
0

2000

4000

6000

8000

10000

0 1 2 3 4 5 6 7 8 9 10 11

C
P

U
 t

im
e

(s
ec

)

Number of generations

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1, 2014
ISPRS Technical Commission I Symposium, 17 – 20 November 2014, Denver, Colorado, USA

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-1-27-2014 33

The Apache Software Foundation, 2014. “Apache Hadoop,”

http://wiki.apache.org/hadoop/ (Jan. 2014).

White, T., 2012. Hadoop: The Definitive Guide. 3rd edition,

O'Reilly Media / Yahoo Press.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1, 2014
ISPRS Technical Commission I Symposium, 17 – 20 November 2014, Denver, Colorado, USA

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-1-27-2014 34

