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ABSTRACT: 

 

Spatial resolution plays an important role in remote sensing technology as it defines the smallest scale at which surface features may 

be extracted, identified, and mapped. Remote sensing technology has become a vital component in recent developments for landslide 

susceptibility mapping. The spatial resolution is essential, especially when landslides are small and the dimensions of slope failures 

vary. If the spatial resolution is relevant to the surface features found in the landslide morphology, it will help improve the 

extraction, identification and mapping of landslide surface features. Although, the spatial resolution is a well-known issue, few 

studies have demonstrated the potential effects it may have on small landslide susceptibility mapping. For these reasons, an 

evaluation to assess the impact of spatial resolution was performed using data acquired along a transportation corridor in Zanesville, 

Ohio. Using a landslide susceptibility mapping algorithm, landslide surface features were extracted and identified on a cell-by-cell 

basis from Digital Elevation Models (DEM) generated at 50, 100, 200 and 400 cm spatial resolution. The performance of the 

landslide surface feature extraction algorithm was then evaluated using an inventory map and a confusion matrix to assess the effects 

of spatial resolution. In addition to assessing the performance of the algorithm, we statistically analyzed the surface features and their 

relevant patterns. The results from this evaluation reveal patterns caused by the varying spatial resolution. From this study we can 

conclude that the spatial resolution has an effect on the accuracy and surface features extracted for small landslide susceptibility 

mapping, as the performance is dependent on the scale of the landslide morphology. 

 

 

1. INTRODUCTION 

Spatial resolution is one of the fundamental characteristics of 

remote sensing (Chen et al., 2004; Vander Jagt et al., 2013). 

The spatial resolution defines the smallest scale at which 

surface features may be extracted, identified, and mapped from 

remote sensing technology. The spatial resolution may range 

from coarse (10 meters < ) to fine ( 1 cm > ) scales depending 

on the capabilities of the remote sensing technology used for 

mapping (e.g. spaceborne and airborne imagery, airborne and 

terrestrial LiDAR). Spatial resolution may refer to the ground 

sampling distance in an image or the grid size in a Digital 

Elevation Model (DEM), etc.  

 

The information in a DEM is dependent on the spatial 

resolution (Chen et al., 2004). Spatial resolution exposes the 

surface features and patterns contained in a DEM. Improper 

choice of spatial resolution may lead to misinterpretation of the 

surface features, for example, coarse spatial resolutions will 

overlook fine scale surface features. For this reason, selecting 

an appropriate spatial resolution requires understanding the 

spatial scales of the surface features mapped.  

 

An appropriate spatial resolution depends on surface 

complexity (Li et al., 2005), information desired and methods 

used to extract such information. To determine the appropriate 

spatial resolution, the scale of the available data, techniques for 

analysis, environmental settings, and objectives should be 

considered (Chen et al., 2004). For these reasons, evaluating the 

effects of spatial resolution is complex. In this paper, the impact 

of spatial resolution, measured in DEM grid size on processing 

performance is investigated. 

 

Many studies using remote sensing technology have explored 

the effects of spatial resolution (Irons et al., 1985; Turner et al., 

1989; Benson and MacKenzie, 1995; Atkinson and Curran, 

1995; Pax-Lenney and Woodcock, 1996; Qi and Wu, 1996; 

Schoorl et al., 2000; Chen et al., 2004; Lee et al., 2004; 

Claessens et al., 2005; Razak et al., 2011; Vander Jagt et al., 

2013; Wang et al., 2013) to analyze landscape pattern (Turner 

et al., 1989; Qi and Wu, 1996) and landslide-susceptibility 

mapping (Lee et al., 2004; Claessens et al., 2005; Razak et al., 

2011; Wang et al., 2013). Although, there have been studies 

focused on the effects of spatial resolution for landslide 

susceptibility mapping, to our best knowledge, none have 

focused on small failures.  

 

Spatial resolution is an important component of landslide 

susceptibility mapping, especially when landslides are small and 

the dimensions of slope instability vary. The spatial resolution 

needs to be relevant to the scale apparent in the landslide 

morphology (Glenn et al., 2006). Spatial resolution affects all 

stages of landslide susceptibility mapping, from surface feature 

extraction to the classification of a DEM grid cell. Since the 

extents and surface features of small failures can be overlooked 

with coarse resolutions, an analysis is necessary to demonstrate 

the effects of spatial resolution on small landslide susceptibility 

mapping. However, landslide susceptibility is not only 

dependent upon the morphology; the geologic structure is 
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important as well as underground water flow. Nevertheless, in a 

geologically homogenous area the investigation is useful. 

 

The objective of this paper is to demonstrate how spatial 

resolution affects small landslide susceptibility mapping at 

varying spatial resolutions, in addition to analyzing its effects 

on the geomorphological features. A 50 cm spatial resolution 

DEM was used to generate a series of coarser spatial resolutions 

at 100, 200, and 400 cm. Each DEM is classified using a 

Support Vector Machine (SVM). The classification and 

geomorphological features at each spatial resolution are 

examined to determine the effects of spatial resolution on small 

failures. 

  

 

2. STUDY AREA AND DATA 

2.1 Study Area 

The study area is along the transportation corridor of state route 

(SR) 666 located at approximately Latitude: N39° 58’ 00”, and 

Longitude: W81° 59’ 00” beside the east side of the 

Muskingum River in Zanesville, Ohio. The area is characterized 

by high vegetation densities, stream and river channelling, and 

some residential development. Figure 1 presents an overview 

map of the study area. However, only a small section (see 

Figure 2) was used for the study. For more information 

regarding the study area refer to Mora et al., 2014. 

 

 
Figure 1. Study area along SR-666, north of Zanesville, OH. 

 

2.2 LiDAR Data 

Airborne LiDAR is a remote sensing technology capable of 

penetrating the land cover and mapping surface models 

precisely. The airborne LiDAR data used in this research was 

acquired in the spring of 2012 with a point density of 5 pts/m2. 

The vertical accuracy of the points was assessed by the root 

mean square error (RMSE), which was 9 cm for soft- and 5 cm 

for hard-surfaces. The bare-earth, filtered from the LiDAR data, 

was subsequently used for this investigation. For more details in 

relation to the LiDAR data see Mora et al., 2014. 

 

2.3 Landslide Geohazard Inventory 

For the project area, a geohazard inventory and evaluation of 

mass movement affecting the transportation network was 

completed in 2006 by the Ohio Department of Transportation 

(ODOT) Office of Geotechnical Engineering (OGE). An 

updated landslide inventory map was compiled in the summer 

of 2012. The updated landslide inventory compiled in 2012 was 

used for the investigation. A total of 80 landslides were mapped 

in the updated reference inventory map. Typical landslides 

affecting the road prism are: rotational, translational, complex, 

rockfall, debris and mudslides. The slopes for areas of 

instability range from 18° to 80°, in which the most frequently 

observed slope was 45°. The landslides described vary in age 

and have areas that range from 200 to 27,000 m2. For more 

information on the landslide Geohazard inventory map refer to 

Mora et al., 2014. 

 

 

3. METHODOLOGY 

The objective is to identify and map landslide surface features at 

varying spatial resolutions. This evaluation will determine the 

effects of spatial resolution on landslide susceptibility mapping 

and reveal patterns of its surface features. 

 

3.1 Fine to Coarse DEM Generation 

The coarse 100, 200, and 400 cm spatial resolution DEMs were 

built by resampling the base 50 cm DEM. The resampled DEMs 

were determined without interpolation due to the points lying at 

specific locations of the base DEM, where elevations were 

available, thus not requiring interpolation (Li et al., 2005). This 

technique can be regarded as a simple resampling method 

(decimation). However, if interpolation is required, the common 

interpolation methods used are: nearest point, bilinear and 

bicubic interpolation (Li et al., 2005). 

 

3.2 Landslide Susceptibility Mapping 

The landslide mapping technique characterizes and delineates 

the topographic variability of morphological features typical to 

landslides, including hummocky terrain, scarps and displaced 

blocks of material. The approach employs several 

geomorphologic features to analyze the local topography, 

specifically: the direction cosine eigenvalue ratios (λ1/ λ2 and λ1/ 

λ3), resultant length of orientation vectors, aspect, roughness, 

hillshade, slope, a customized Sobel operator and soil type 

(Mora et al., 2013). A sample set extracted from the data is used 

as observations of landslide and stable terrain to train the 

supervised classification algorithm of Support Vector Machine 

(SVM). The trained SVM model is subsequently used to 

classify the LiDAR-derived DEM based on the extracted 

surface features. Then, as a post-classification step, flat terrain 

is filtered and classified as stable terrain. Consequently, a 

conditional dilation/erosion filter is applied to minimize 

misclassified locations by the SVM algorithm, in addition to 

suppressing noise and generating landslide susceptible regions 

(clusters). Landslide susceptible regions are then analyzed to 

map areas of potential landslide activity. The feature extraction 

algorithm used is described in detail in Mora et al., 2013. The 

parameters were used as described in the manuscript for all 

spatial resolutions.  

 

3.3 Performance Evaluation 

The performance evaluation was assessed by analyzing the 

resulting landslide susceptibility map to the independently 

compiled landslide inventory map. A common form to evaluate 

the performance of a landslide susceptibility model is to use a 

confusion matrix (Frattini et al., 2010). The model performance 

is analyzed by assessing the correctly and incorrectly classified  
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Figure 2. DEM maps with 50 (A), 100 (B), 200 (C), and 400 (D) cm spatial resolution.  

The areas outlined in black are the inventory mapped landslides. 

 

landslide and stable areas, cell-by-cell. There are two types of 

errors involved in this type of accuracy assessment (see Table 

1): Type I and Type II. Type I error is associated with the 

incorrect rejection of a true null hypothesis, while a Type II 

error is the failure to reject a false null hypothesis. The costs 

related to Type II error are usually larger than those of Type I 

(Frattini et al., 2010). Table 1 represents a two-class confusion 

matrix, as the one used.  

 

Actual 

Class 

Predicted Class 

Landslide Stable 

Landslide True Positive (+|+) 
False Negative (-|+), 

Error Type II 

Stable 
False Positive (+|-), 

Error Type I 
True Negative (-|-) 

Table 1. Confusion matrix for performance evaluation 

 

4. RESULTS AND DISCUSSION 

Visibly, it is noticed in Figure 2 that the details in the DEM are 

lost as the spatial resolution decreases, meaning the surface 

features are no longer distinct in the DEM. One particular 

feature that looses detail is the transportation corridor. In the 

base (50 cm) DEM the corridor is easily depicted, but as the 

DEM becomes coarser it is no longer noticeably apparent, thus 

illustrating that surface features are lost as the spatial resolution 

decreases. This is due in part by selecting a landslide that 

provides adequate surface feature variety necessary to illustrate 

the objective of the study. In this paper, the term surface 

roughness refers to the topographic variability of the surface.  

 

The statistics for each geomorphological feature were tabulated 

in Table 2 - Table 9. In the case of aspect and any surface 

feature extractor that uses any form of it in its evaluation, it is 

crucial to understand that flat surfaces will have high surface 

roughness caused by slight changes due to the variations of 

aspect on relatively flat surfaces. Any small change in aspect 

will cause the slope orientation, which is the compass direction 

a land surface faces to vary, thus mimicking landslide 

morphology. For this reason, it was determined that after 

classification was performed on the DEM, flat terrain that is 

safe from landsliding should be filtered as stable. The threshold 

(15° ≥ Slope) was selected based on the unstable slopes for 

various types of mass movement described in Soeters and van 

Westen (1996) and those found in the study area. The surface 

features with this issue are: the direction cosine eigenvalue 

ratios ln(λ1/λ2) and ln(λ1/λ3), aspect, and the mean resultant 

length of orientation vectors (R) of the direction cosines. 

 

Topographic variability maps were made using the roughness 

surface feature extractor as shown in Figure 3. The surface 

roughness is shown to increase numerically along slope 

segments, however on relatively flat surfaces it tends to stay the 

same, as the spatial resolution decreases. These effects are 

caused by selecting to use the same parameters for all spatial 

resolutions. Therefore, the coarser the DEM the greater extents 

the local operator will cover when evaluating the surface 

roughness for each individual cell. This relationship is shown 

both visibly and quantifiably. The reason for this pattern is that 

as the spatial resolution decreases the DEM becomes coarser 

causing the local surface features to become dissimilar, however 

this may not be the case for all terrain types (e.g. flat surfaces). 

Therefore, the coarser the DEM, the more dissimilar the local 

surface features are within a local operator. This trend is only 

numerical, as in general the surface is smoothened over coarser 

spatial resolutions. This pattern is expected for both types of 

terrain due to the loss of detail. Although, the surface roughness 

does increase for both terrains the landslide terrain is shown to 

be rougher than stable terrain for slopes (15° ≥), except for the 

400 cm spatial resolution where the surface roughness is similar 

in Table 2. For slopes (15° <) the surface roughness is similar 

for stable and landslide cells. The landslide terrain mean ranges 

from 6 to 91 cm for slopes (15° ≥) and 9 to 94 cm for slopes 

(15° <), while the stable terrain increases from 3 to 87 cm for 

slopes (15° ≥) and 9 to 92 cm for slopes (15° <), as the spatial 

resolution decreases. Landslides were shown to be rougher for 

cells having slopes (15° ≥), however for slopes (15° <) the mean 

surface roughness were similar.  

 

The eigenvalue ratios ln(λ1/λ2) and ln(λ1/λ3) can be 

characterized as the higher the ratio the smoother the surface. In 

the case of the eigenvalue ratios ln(λ1/λ2) (see Table 3) it is 
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Figure 3. Surface roughness maps with 50 (A), 100 (B), 200 (C), and 400 (D) cm spatial resolution. 

 

interesting to observe that the surface is rougher for stable cells 

for both slope categories, which is interesting as the surface is 

expected to be smoother, except for slopes (15° ≥) where it 

might be similar. However, an apparent pattern is observed that 

corresponds to the spatial resolution. The surface roughness of 

slopes (15° ≥) decreases with decreasing spatial resolution, 

compared to the surface roughness increasing for slopes (15° <) 

as the spatial resolution decreases, as expected. Additionally, 

the variations for landslide cells tend to decrease with 

decreasing spatial resolution. 

 

The influence of spatial resolution on aspect is shown in Table 

4. The pattern observed between slope cells (15° <) for both 

terrains is similar as the coarser the DEM, the higher the surface 

roughness. Slope cells (15° <) for both terrain types become 

smoother with decreasing spatial resolution. The surface 

roughness of slope cells (15° ≥) is higher than slope cells (15° 

<), as expected, which is caused by the high variations of flatter 

surfaces. The trend observed by slope categories is similar to 

that of the eigenvalue ratios ln(λ1/λ2), where slopes (15° <) 

become rougher with decreasing spatial resolution as opposed 

to slopes (15° ≥), where they become smoother. 

 

In the case of the eigenvalue ratios ln(λ1/λ3) surface feature 

shown in Table 5, the surface roughness tends to increase as the 

spatial resolution decreases, except for landslide cells with 

slopes (15° ≥) where from the 200 to 400 cm spatial resolution 

the surface roughness decreases. Additionally, for stable cells 

with slopes (15° ≥) from 50 cm to 100 cm spatial resolution the 

surface roughness decreases, but then increases as expected. 

The stable cells have higher surface roughness than the 

landslide cells for slopes (15° <), however for slopes (15° ≥) the 

surface roughness is higher for landslide cells. 

 

Hillshade (Table 6) displays the pattern expected as the DEM 

becomes courser the surface features become rougher as shown 

by the statistical mean and median. However, the landslide 

terrain is similar in surface roughness for both slope categories 

at each spatial resolution and the surface roughness increases 

minimally as the spatial resolution decreases.  On the contrary, 

stable cells with slopes (15° <) are noticeably rougher than cells 

with slopes (15° ≥).  The variations are smaller for landslide 

cells than stable cells for both slope types.  

 

The surface feature of Sobel operator (Table 7) shows that the 

mean of stable cells are rougher for slopes (15° <). However, 

the variations are smaller. For slopes (15° ≥) the landslide cells 

mean are rougher than stable cells. Nonetheless, the variations 

of stable cells are smaller for spatial resolutions of 50 and 100 

cm, while the variations are smaller for landslide cells at 200 

and 400 cm spatial resolution. Landslide cells with slopes (15° 

<) and spatial resolution of 50 cm and 100 cm are rougher than 

landslide cells with slopes (15° ≥), this is vice versa for spatial 

resolutions of 200 and 400 cm. On the other hand, stable cells 

with slopes (15° <) are rougher than stable cells with slopes 

(15° ≥) for all spatial resolutions. Additionally, the variations 

tend to increase with decreasing spatial resolution for all cases. 

 

Slope shown in Table 8 displays that for all cases the surface 

roughness increases with decreasing spatial resolution. The 

stable cells with slopes (15° <) are rougher than landslide cells 

with slopes (15° <). However, the mean of landslide cells with 

slopes (15° ≥) are rougher than stable slopes (15° ≥). The 

surface roughness of landslide cells with slopes (15° <) is 

rougher than landslide cells of slopes (15° ≥) at spatial 

resolutions of 50, 100 and 400  cm, this is not the case for the 

spatial resolution at 200 cm. For stable cells the mean is higher 

for slopes (15° <) than stable cells with slopes (15° ≥).  

 

The strength of the mean vector R (Table 9) displays a unique 

pattern for all cases, where the surface roughness increases with 

respect to spatial resolution, but at the coarsest resolution the 

surface roughness decreases, except for landslide slopes (15° ≥) 

where the surface roughness decreases at the 200 cm spatial 

resolution. The distributions of the variations reveal the same 

pattern as that observed from the means. Additionally, all cases 

except the landslide cells with slopes (15° ≥) at a spatial 

resolution of 200 cm have a minimum of 0.  Stable cells are 

rougher than their counterpart landslide cells for all cases, 

except for when landslide cells with slopes (15° ≥) are rougher 

than stable cells with slopes (15° ≥) at 100 cm spatial 

resolution.  
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Landslide Cells (15° < Slope) 
 

Stable Cells (15° < Slope) 

Units: Meters .50 m 1m 2 m 4 m .50 m 1m 2 m 4 m 

Mean 0.09 0.20 0.44 0.94  0.09 0.21 0.48 0.92 

Med 0.08 0.19 0.43 0.91  0.08 0.19 0.44 0.85 

STD 0.04 0.08 0.12 0.21  0.06 0.12 0.21 0.27 

Min 0.02 0.04 0.11 0.52  0.01 0.03 0.09 0.51 

Max 0.33 0.70 0.92 1.42  0.66 1.03 1.32 1.71 

     
     

 
Landslide Cells (15° ≥ Slope)  Stable Cells (15° ≥ Slope) 

Mean 0.06 0.16 0.45 0.91  0.03 0.08 0.31 0.87 

Med 0.05 0.15 0.46 0.92  0.02 0.05 0.22 0.96 

STD 0.03 0.08 0.16 0.15  0.03 0.09 0.26 0.38 

Min 0.01 0.04 0.11 0.61  0.00 0.02 0.03 0.21 

Max 0.22 0.45 0.89 1.24  0.62 1.07 1.42 1.64 

Table 2. Statistics of roughness surface feature. 

 

 
Landslide Cells (15° < Slope) 

 
Stable Cells (15° < Slope) 

Units: None .50 m 1m 2 m 4 m .50 m 1m 2 m 4 m 

Mean 1.60 1.53 1.36 1.32  1.47 1.29 0.91 0.57 

Med 1.64 1.54 1.39 1.32  1.56 1.33 0.88 0.56 

STD 0.38 0.39 0.31 0.24  0.49 0.55 0.43 0.27 

Min 0.10 0.17 0.42 0.53  0.01 0.02 0.02 0.05 

Max 2.75 2.77 2.11 1.88  2.71 2.97 2.51 1.58 

     
     

 
Landslide Cells (15° ≥ Slope)  Stable Cells (15° ≥ Slope) 

Mean 0.71 0.80 0.96 1.40  0.37 0.43 0.64 0.91 

Med 0.68 0.72 0.97 1.40  0.24 0.29 0.57 0.86 

STD 0.41 0.39 0.28 0.10  0.36 0.40 0.42 0.50 

Min 0.00 0.01 0.17 1.25  0.00 0.00 0.01 0.08 

Max 1.98 1.93 1.82 1.77  2.09 2.10 2.10 1.87 

Table 3. Statistics of ln(λ1/λ2) eigenvalue ratios surface feature. 

 

 
Landslide Cells (15° < Slope) 

 
Stable Cells (15° < Slope) 

Units: ° .50 m 1m 2 m 4 m .50 m 1m 2 m 4 m 

Mean 12.37 13.95 20.23 17.61  24.57 31.13 45.78 49.57 

Med 9.65 10.05 12.40 13.68  10.68 14.04 35.62 42.55 

STD 10.32 13.89 20.06 14.66  33.96 36.16 34.11 25.22 

Min 3.27 3.38 3.73 6.41  2.80 2.10 2.13 10.39 

Max 121.75 126.60 113.25 86.64  177.68 177.36 153.98 127.50 

     
     

 
Landslide Cells (15° ≥ Slope)  Stable Cells (15° ≥ Slope) 

Mean 54.27 54.84 53.10 12.20  80.99 77.57 64.66 36.83 

Med 43.42 41.74 55.97 12.38  89.21 88.12 70.41 22.68 

STD 36.89 39.57 33.48 1.79  32.88 33.91 35.14 34.01 

Min 5.92 5.43 7.11 7.18  5.42 4.91 3.72 6.73 

Max 146.61 132.84 119.19 15.13  175.97 171.28 146.21 116.77 

Table 4. Statistics of aspect surface feature. 

 

 
Landslide Cells (15° < Slope) 

 
Stable Cells (15° < Slope) 

Units: None .50 m 1m 2 m 4 m .50 m 1m 2 m 4 m 

Mean 2.15 2.06 1.86 1.71  2.14 2.01 1.69 1.49 

Med 2.17 2.08 1.87 1.71  2.16 2.02 1.68 1.51 

STD 0.31 0.34 0.29 0.14  0.43 0.48 0.39 0.24 

Min 1.04 1.00 1.02 1.42  0.65 0.60 0.68 0.67 

Max 3.25 3.00 2.68 2.07  3.46 3.59 2.99 1.95 

     
     

 
Landslide Cells (15° ≥ Slope)  Stable Cells (15° ≥ Slope) 

Mean 2.11 1.89 1.64 1.71  2.33 2.37 2.08 1.88 

Med 2.16 1.89 1.60 1.70  2.34 2.50 2.04 1.84 

STD 0.41 0.44 0.34 0.10  0.36 0.50 0.71 0.69 

Min 1.03 0.95 1.03 1.54  0.59 0.60 0.67 0.54 

Max 3.25 3.00 2.72 1.96  3.58 3.57 3.77 3.01 

Table 5. Statistics of ln(λ1/λ3) eigenvalue ratios surface feature. 
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Landslide Cells (15° < Slope) 

 
Stable Cells (15° < Slope) 

Units: None .50 m 1m 2 m 4 m .50 m 1m 2 m 4 m 

Mean 0.08 0.08 0.09 0.10  0.09 0.10 0.13 0.19 

Med 0.08 0.08 0.08 0.09  0.08 0.09 0.10 0.21 

STD 0.03 0.03 0.02 0.02  0.05 0.07 0.07 0.06 

Min 0.01 0.02 0.04 0.06  0.01 0.01 0.02 0.06 

Max 0.24 0.19 0.17 0.19  0.42 0.38 0.33 0.30 

     
     

 
Landslide Cells (15° ≥ Slope)  Stable Cells (15° ≥ Slope) 

Mean 0.07 0.08 0.08 0.09  0.06 0.06 0.07 0.12 

Med 0.07 0.07 0.08 0.08  0.05 0.04 0.06 0.08 

STD 0.03 0.02 0.02 0.01  0.03 0.04 0.05 0.10 

Min 0.02 0.02 0.04 0.07  0.01 0.02 0.01 0.02 

Max 0.18 0.15 0.14 0.13  0.43 0.38 0.35 0.32 

Table 6. Statistics of hillshade surface feature. 

 

 
Landslide Cells (15° < Slope) 

 
Stable Cells (15° < Slope) 

Units: Meters .50 m 1m 2 m 4 m .50 m 1m 2 m 4 m 

Mean 2.62 6.16 13.40 14.42  2.68 6.44 14.59 19.40 

Med 2.33 5.73 13.90 20.08  2.27 5.78 13.53 24.16 

STD 1.39 3.04 5.95 12.74  2.01 4.07 7.49 14.09 

Min 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 

Max 11.34 19.53 30.65 38.94  20.23 27.18 36.87 41.01 

     
     

 
Landslide Cells (15° ≥ Slope)  Stable Cells (15° ≥ Slope) 

Mean 1.77 5.39 14.69 26.14  0.80 2.15 9.23 18.78 

Med 1.39 4.86 14.10 25.69  0.48 0.93 6.81 23.13 

STD 1.22 3.16 5.85 6.15  0.96 3.04 8.23 17.43 

Min 0.00 0.00 4.01 0.00  0.00 0.00 0.00 0.00 

Max 7.50 15.94 31.46 37.71  18.55 27.92 38.82 42.43 

Table 7. Statistics of Sobel operator surface feature. 

 

 
Landslide Cells (15° < Slope) 

 
Stable Cells (15° < Slope) 

Units: ° .50 m 1m 2 m 4 m .50 m 1m 2 m 4 m 

Mean 6.22 7.36 8.92 9.99  6.43 7.90 9.71 10.01 

Med 5.74 6.92 8.55 9.85  5.80 7.20 8.95 9.63 

STD 2.18 2.73 2.58 1.51  3.11 3.71 3.66 2.84 

Min 1.86 2.23 3.05 6.49  1.47 1.54 2.61 5.22 

Max 16.75 18.47 17.87 13.24  24.94 23.76 20.16 15.62 

     
     

 
Landslide Cells (15° ≥ Slope)  Stable Cells (15° ≥ Slope) 

Mean 5.02 6.76 9.47 9.86  3.02 3.55 6.14 9.67 

Med 4.44 6.44 9.53 9.71  2.46 2.34 4.51 10.16 

STD 2.25 3.10 3.14 1.10  1.87 2.99 4.59 4.44 

Min 1.36 2.01 2.68 7.59  0.43 0.86 0.91 1.82 

Max 15.36 16.19 17.96 11.92  23.04 23.71 21.18 15.45 

Table 8. Statistics of slope surface feature. 

 

 
Landslide Cells (15° < Slope) 

 
Stable Cells (15° < Slope) 

Units: None .50 m 1m 2 m 4 m .50 m 1m 2 m 4 m 

Mean 1.52 2.70 4.42 1.33  3.13 5.49 8.79 3.02 

Med 0.41 0.71 1.65 0.00  0.66 3.25 9.22 0.00 

STD 3.64 5.12 4.96 2.48  5.01 5.99 5.64 4.39 

Min 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 

Max 26.52 25.40 22.73 8.21  26.38 26.84 21.58 14.86 

     
     

 
Landslide Cells (15° ≥ Slope)  Stable Cells (15° ≥ Slope) 

Mean 7.44 9.34 7.41 1.08  8.14 8.28 9.25 1.68 

Med 6.21 7.64 7.74 0.00  7.81 7.31 8.55 0.00 

STD 6.06 7.38 4.85 2.49  4.42 5.25 6.18 3.80 

Min 0.00 0.00 0.21 0.00  0.00 0.00 0.00 0.00 

Max 26.50 26.57 24.74 7.72  27.43 26.45 27.52 12.62 

Table 9. Statistics of strength of mean vector R surface feature. 
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Figure 4. Classification using the SVM algorithm with 50 (A), 100 (B), 200 (C), and 400 (D) cm spatial resolution. 

 

Analyzing the surface features extracted can help determine 

potential trends caused by spatial resolution. Some surface 

features may portray patterns that were anticipated and others 

might not. For this reason, it is essential to evaluate them 

statistically as unique similarities and trends can be found. From 

the evaluation, it was observed that the surface features 

displayed similar patterns amongst themselves at varying spatial 

resolutions, however some of the surface features displayed 

unique trends that were not expected. Most surface features 

behaved similarly as the spatial resolution decreased, some 

tended to generate rougher and other smoother surface features. 

 

The classified landslide susceptibility maps generated at varying 

spatial resolutions are shown in Figure 4 and the performance 

evaluation was tabulated in Table 10. The accuracy statistics in 

Table 10 reveal that the algorithms performance decreases with 

respect to the spatial resolution, as expected. The performance 

of the true positive statistic signifying the landslide features that 

were classified correctly decreases from 35.71 to 0.00 %. This 

pattern signifies that the algorithm becomes incapable of 

distinguishing landslide and stable features due to the loss of 

detail in the terrain. The lower resolution of 400 cm has the 

worst performance as no landslide features are classified 

correctly and the highest resolution of 50 cm has the utmost 

performance. Although the 200 cm spatial resolution did not 

have the best performance, it did have the best precision. This 

may be due to the preservation of landslide features when 

resampling the DEM. Table 10 demonstrates a sharp drop in 

true positive classified cells from 200 to 400 cm spatial 

resolution. At the 400 cm spatial resolution all landslide 

morphological features are lost; therefore the classifier/model is 

unable to delineate the two types of terrain, thus explaining why 

no landslide terrain is classified correctly. Figure 4 shows that 

not only the size of classified landslide terrain varies with the 

spatial resolution, B and C show nearly completely different 

areas classified as landslides, but also the location differs 

significantly. This is due to the changes in spatial resolution. As 

the spatial resolution changes, so does the surface morphology. 

Therefore, not the same surface features will be preserved with 

decreasing spatial resolution. 

 

 

 

Units: % 50 cm 100 cm 200 cm 400 cm 
Accuracy 78.66 77.86 81.41 80.17 

True Positive 35.71 17.42 13.86 0.00 

False Positive 10.54 6.96 1.66 0.00 

True Negative 89.46 93.04 98.34 100.00 

False Negative 64.29 82.58 86.14 100.00 

Precision 45.98 38.61 67.72 0.00 

Table 10. Accuracy statistics of the classification algorithm. 

 

The performance of the classifier demonstrates a strong 

dependency between the scale of the landslide surface features 

and the spatial resolution used to generate each DEM. For this 

reason, to maximize the performance of any landslide 

susceptibility model a spatial resolution performance evaluation 

is needed to determine a spatial resolution relevant to the 

surface features found in the landslide morphology. The 

proposed evaluation will minimize any issues pertaining to 

spatial resolution. 

 

 

5. CONCLUSIONS 

In this study, we applied a supervised classifier, which was 

previously shown to be an efficient model for small landslide 

susceptibility mapping. Four different spatial resolution DEMs 

ranging from 50 to 400 cm were generated using an airborne 

LiDAR data set. The objective was to assess how spatial 

resolution affects both surface feature extraction and small 

landslide susceptibility mapping with varying spatial resolution. 

It was determined that the base spatial resolution DEM for both 

data sets has the highest correctly identified landslide locations 

(true positive), while the lowest spatial resolution has the 

lowest. This demonstrates that small landslide susceptibility 

mapping can be performed more accurately with higher spatial 

resolution and we may conclude that the spatial resolution has 

an effect on the accuracy of small landslide susceptibility 

mapping, as the performance is dependent on the scale of the 

landslide morphology. 

 

Spatial resolution is an important characteristic in small 

landslide susceptibility mapping as shown throughout this 

study. When generating DEMs for landslide susceptibility 

mapping it is important to know and understand the scale of the 
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landslide morphology in order to maximize the performance of 

the classifier. If the inappropriate spatial resolution is chosen, it 

may reduce the accuracy of the classifier. For this reason, it is 

suggested that an analysis is performed to understand the scale 

relevant to the landslide morphology before modeling the 

landslide surface. The optimal spatial resolution for landslide 

susceptibility mapping is determined by considering the 

accuracy, amount of data, and the scale of the landslide surface 

features. 
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