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ABSTRACT: 

 

3D model of indoor environments provide rich information that can facilitate the disambiguation of different places and increases the 

familiarization process to any indoor environment for the remote users. In this research work, we describe a system for visual 

odometry and 3D modeling using information from RGB-D sensor (Camera). The visual odometry method estimates the relative 

pose of the consecutive RGB-D frames through feature extraction and matching techniques. The pose estimated by visual odometry 

algorithm is then refined with iterative closest point (ICP) method. The switching technique between ICP and visual odometry in 

case of no visible features suppresses inconsistency in the final developed map. Finally, we add the loop closure to remove the 

deviation between first and last frames. In order to have a semantic meaning out of 3D models, the planar patches are segmented 

from RGB-D point clouds data using region growing technique followed by convex hull method to assign boundaries to the 

extracted patches. In order to build a final semantic 3D model, the segmented patches are merged using relative pose information 

obtained from the first step.  
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1. INTRODUCTION 

3D indoor mobile mapping is a vital task in robotics, with wide 

range of potential applications, such as search and rescue, 

hazardous material handling, collision-free navigation, 

surveying remote sites or dangerous areas (such as underground 

mines, tunnels, caves, or channels), as well as exploration and 

inspection of infrastructure to compare it with original design 

drawings and Building Information Modelling (BIM), (Cheol et 

al, 2007).  

Collecting 3D point clouds data from range sensors is the 

prerequisite requirement to begin the process of mapping and 

building dense 3D reconstruction. However, relying only on the 

range data will lead to losing rich information contained in 

images.  In the other hand, it is hard to extract dense depth 

information from camera alone, for indoor environments with 

very dark or sparsely textured areas.  

With the advent of RGB-D cameras, capturing RGB images 

along with per-pixel depth data provides rich information for 

3D mapping. The working principal of RGB-D cameras is based 

on stereo techniques. Since RGB-D cameras estimate the depth 

by illuminating a scene with a structure of light pattern, it is 

highly suitable to use it in area where poor visual texture exists. 

The Kinect RGB-D camera used in this research captures 640 × 

480 registered image and depth points at 30 frames per second 

(See Figure 1 for an example of the data captured by the 

camera). RGB-D camera provides depth and colour information 

for a small field of view (60 degree in horizontal view) and with 

precision in depth of ~3cm at 3m depth. Kinect can produce up 

to ~300,000 colour point clouds in every frame by integrating 

depth and colour data. Point clouds can be generated from 3D 

projection of each pixel using camera calibration parameter and 

depth image.  

Several researchers have used RGB-D camera for generating 

consistent maps of large scale indoor environment. Complete 

map solution requires registration of multiple images.  

The first step in the modelling is to obtain the relative pose 

between RGB-D frames using visual odometry technique. 

Visual odometry is defined as the problem of tracking the 

position and orientation (pose) of a robot purely and directly 

from vision sensors. In Achtelik et al. (2009) and Davison et al. 

(2007) stereovision and monocular cameras are used for visual 

odometry. Recently, many approaches have been used for visual 

odometry, one common method is feature-based tracking and 

matching across consecutive image frames. Fast odometry from 

vision (FOVIS) is used in Huang et al. (2011) for visual 

odometry method based on fast feature extraction across RGB 

image frames. Another approach used in Tykkala (2011) is 

based on aligning the point clouds data instead of aligning 

image frames using ICP method. Recently, Kerl (2013) 

proposed photo-consistency method for visual pose estimation. 

According to the photo-consistency method, the intensity and 

depth of the first RGB-D frame should be equal to the transform 

location of intensity and depth in the second RGB-D frame. 

Photo-consistency can be formulated as a least square process 

to minimize the back-projection error. However, it should be 

mentioned that, the solution of relative pose from this method 

directly affected by the speed of camera motion.  

Others work on real-time approaches for visual odometry such 

as, Dense Tracking And Matching (DTAM) proposed by 

Newcombe et al. (2011). The pose accuracy in this method is 

increased by matching a current image frame against a scene 

model instead of matching against previous image frames. None 

of the previous methods address the problem of inconsistency in 

a map solution when not enough features exist in the 

surrounding environment.  
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Figure 1. (Left) RGB image and (right) depth information captured by an RGB-D camera. RGB-D cameras can capture images at a 

resolution of up to 640 × 480 pixels at 30 frames per second. 
 

This research work address this problem by proposing a 

switching/integrated method between ICP and visual odometry 

and using the ICP alone.The method used in this paper for 

indoor mapping follows three main steps: alignment of 

consecutive frames using information from visual odometry 

followed by Iterative Closest Point (ICP), loop closure 

detection and segmentation process to extract the planar 

structure.  

In this research work, to perform visual odometry process for 

RGB-D sensor, features are extracted from RGB images and 

matched via random sample consensus (RANSAC). Lucas–

Kanade (Lucas and Kanade, 1981) method is used as the 

features extraction technique. The resulting information 

(translation and orientation) from first alignment stage is 

directly used for the initialization of ICP algorithm (Henry et 

al., 2010) to refine the alignments between frames.  

The registrations of the point clouds consist of two parts where 

the result of the first part (visual odometery) is used for the 

initialization of the next part, which is the ICP algorithm to 

register the point clouds. The key advantage of this method is 

the switching technique between using both visual odometry 

and ICP, and using ICP alone in case where no enough visual 

features can be extracted from the surrounding environment. It 

should be noted that, the result of transformation in the first 

stage (visual odometery process) has unbounded pose drift. In 

order to limit this drift, we employ loop closure technique, 

which is a common technique in simultaneous localization and 

mapping (SLAM) algorithms for detecting revisited locations 

(Engelhard et al, 2011). Various techniques exist for loop 

closure. One very common technique is based on graph 

optimization algorithm namely Tree-based netwORk Optimizer 

(TORO) (Grisetti et al, 2007), General Framework for Graph 

Optimization (g2o) (Kuemmerle, 2011), and Parallel Tracking 

and Mapping (PTAM) (Klein 2007), which globally minimize 

the error in the alignment procedure by solving a nonlinear least 

squares problem. 

In this work, loop closure is detected by calculating the relative 

pose between first and last frames and re-updates the relative 

pose of previous frames using information from loop closure. 

Using loop closure, we can align the point cloud globally and 

bound the drift of visual odometry. The final step is to do a 

segmentation to extract the planar patches from accumulated 

point clouds data. The segmentation is followed by convex hull 

detection to extract boundary and non-boundary points. This 

representation offers a more semantic representation to the point 

cloud data (Henry et al, 2013).  The flowchart of the algorithm 

is illustrated in Figure 2. 

 
Figure 2. 3D modelling using RGB-D sensor 

 

2. RGB-D SCENE RECONSTRUCTION 

This section describes the alignment steps, which contain visual 

odometry step followed by the ICP algorithm. To estimate the 

relative transformation between two RGB-D frames, the 

relations between the camera captuered images are computed by 

matching the visual features. OpenCV (Bradski 2008) has been 

used for detection, description and matching part of the 

features. After matching the feature points of two frames, the 

transformation between these frames is computed using the 

minimum required set of matched features. It should be noted 

that the transformation is obtained between corresponding 

feature points in 3D space using depth information. Figure 3 

illustrates the projection of 2D features in 3D space using depth 

information.  
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Figure 3. Left: the locations of features in the image. Right: the corresponding location of the 2D features in 3D space using depth 

information 

 

A key advantage of pose estimation using visual features is that 

it can provide alignment without requiring initialization. The 

matching procedure is done after the feature extraction step with 

the aid of RANSAC for removing the outliers (Figure 4). 

 

 
Figure 4.Visual odometry process 

 

The transformation obtained from visual odometry is then fed 

into the ICP as an initial guess to enhance the registration of 

point clouds. The idea behind ICP is to find the transformation 

that minimizes the sum of squared spatial error ( , )E R t  

between associated points where ,R t  are rotation and 

translation.  It is necessary for ICP algorithm to not only have 

good initialization parameter, but also have enough overlap 

between frames. Otherwise, it may converge at an incorrect 

local minimum. Hence, the role of visual odometry for ICP 

initialization is critical. Moreover, maximum distance and 

rotation threshold
max max,d r  are considered as an additional 

constrains to bound and weight ( iw ) the noise from visual 

odometry algorithm by replacing the current pose with the last 

pose obtained from previous frame ,pre preR t . Algorithm 1 and 

2, listed below, describes the pseudo code of visual odometry 

and ICP method. 

 

Algorithm 1: RGB-D  visual odometry algorithm 

1: For num=1 to size of frames do step 1:9 

2: 
ip Extract RGB feature -frame i  

3: 
1ip   Extract RGB feature -frame 1i   

4 Project the 
1, iip p 
feature points in 3D space using 

depth information 

5: 
0 0( , )T R  find transformation between 3D 

corresponding points 
1,i ip p 
  

6: Initialize ICP with
0 0( , )R t  

7: ( , )R t   compute transformation from (ICP) 

8: Accumulate point cloud using relative pose 

9: Check for the loop closure 

10: Compute loop misclosure transformation 

11: Update the global pose using misclosure transformation  

from loop closure  

12: End 

 

Algorithm 2: Iterative Closest Point (ICP) 

Input : Two set of point clouds:    ,i iA a B b  and 

Initial transformation 
0 0( , )R t from visual 

odometry 

Output: The refine transformation ( , )R t ,  that align  two 

point clouds ,A B  

1: while not converged do 

2: For 1i  to N  do 

3: If 
0, max 0, max( ) &&( )i iR r t d   then 

4: 1iw   

5: else 

6: 0iw    

( , ) ( , )pre preR t R t  

7: end 
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8: 
21

( , ) ( )i i i

i

E R t w a Rb t
N

    

9:    end 

10: end 

 
2.1 Visual odometry using RANSAC  

In this work, RANSAC is used to estimate the transformation 

between consecutive camera frames. In general, the use of 

RANSAC to optimize points cloud alignment involves the 

following steps: Select a sample set from cloud (minimum three 

pairs of feature points), next; use each sample set to compute 

the transformation, which maps one sample set onto the other. 

Score the estimated transformation by minimizing summing the 

square of the error between the closest points in the sets. 

Finally, repeat first three steps iteratively until the convergence 

criteria is met. 

The input data to the algorithm is the corresponding 3D 

coordinate of the matched image points at times t  and 1t  . 

The transformation using visual odometry is obtained by 

minimizing the sum of square error between the feature points 

in 3D space ( )iproject p , and its transformed correspondence 

according to Equation (1).   

 
2

1( , ) ( ) ( ( ( )) )i i

i

E R t project p R project p t         (1) 

In Equation (1) ,R t  are rotation and translation The cost 

function ( , )E R t  in Equation (1) can be minimized in an 

iterative non linear least square process where Tylor’s  

approximation is required to linearize the nonlinear function. 
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Where  
1

( , .., )i n
i

n

f f
f x

x x

 

 
    is the gradient of 

if  calculated at point x , neglecting high order 

terms 2( )O x . The error function  E x x is minimized 

with regard to x  given a value of x , in an iterative process 

according to equation (3). 
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Equation (2) can be solved using least square, yielding  

1( )

( , , , , , )

T T

T

x y z x zy

J x C

x J J J C

x t t t  



 

 

       

                              (4) 

In Equation (4) J is a Jacobian matrix, , ,x y z     are roll, 

pitch and yaw, , ,x y zt t t    are translation along , ,x y z  axes. 

3. SEGMENTATION 

Segmentation is the process used to extract adjacent elements 

that have certain similarities. In this research work, the primary 

interests for segmentation are planar features including walls, 

ceiling, and doors. There are various existing methods that can 

be used to detect planar surface from points cloud data (A. 

Nurunnabi et al, 2012). This section briefly describes the used 

region growing technique, which aims to extract the planar 

regions in the point cloud data. The idea behind this algorithm 

is to start from a point and grow around neighbouring points 

based on certain similarity criteria: Generally, two steps are 

required to add new points to an existing segment: First, 

distance to the closest point in the segment is less than certain 

threshold; second, the local normal calculated at these points 

are at an angle less than certain threshold. The results of 

segmentation process are homogeneous regions with respect to 

some similarity measures.  

For boundary detection of different planar patches, convex hull 

(Jarvis, 1977) is used. Convex hull extraction can capture the 

rough shape of the point set and classify the points into two 

groups namely boundary points and non-boundary points. 

(Figure 10) shows the planar segmentation of RGB-D point 

cloud with convex hull boundary computed. 

 

3.1 Calculation of surface normal 

A common method to determine the normal to a point 
ip  on a 

surface is to use an approximation by fitting a plane to a set of 

neighbourhood points. Having
ip , the normal to a surface can 

be computed by analyzing the Eigen vector of covariance matrix 

cov( )p  

 

( ) [ ] ( [ ])( [ ])

1

1

T T

T T

i i i i

i

i

i

Cov p E pp E p E p

p p
N

p
N

 


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 







                       (5) 

In Equation (5),   is the mean value of the set of 

neighbourhood points. An estimate of normal vector can be 

obtained from the Eigen vector corresponding to the smallest 

Eigen value of the sample covariance. Figure 5 illustrates the 

normal vectors extracted from RGB-D frames. 

 

 
Figure 5. Extracting normal vector 
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4. RESULT AND DISCUSSION 

The performance of the RGB-D modelling algorithm has been 

evaluated by performing experiment inside a room with 360 

degree rotation of RGB-D camera around the room and by 

capturing 590 frames (Figure 6). The experiments are done by 

placing the RGB-D camera on Seekur Jr (MobileRobot, 2014) 

(Figure 11) robot and autonomously capture the images. The 

Seekur Jr is equipped with an onboard microcontroller server, a 

PC with SSD hard drive, DGPS, a laser range finder for 

obstacle avoidance, stereo camera and Velodyne HDL-32.  

The main software developed for the modelling consists of two 

main threads one handling the acquisition of the RGB-D data 

and the second handling the process of visual odometry, ICP 

and loop closure. Figure 7 shows the result of the modelling 

before the loop closure. It can be seen from the Figure 7 that the 

walls were deviated from the true pose because of the error in 

visual odometry caused by the error in features extraction and 

matching process.  

In order to remove the error in the estimated pose, we added the 

loop closure where the relative pose between first and last frame 

was used as feedback to the algorithm and to update the global 

pose. Figure 8 shows the result after loop closure. The 

compensation error after loop closure is ~12 degree in yaw 

angle. 

To analyze the performance of RGB-D visual odometry and ICP 

we compared the result of RMS error between two consecutive 

frames from visual odometry and visual odometry and ICP 

together. According to Figure 9 the RMS error and number of 

iteration for convergence of visual odometry and ICP is less 

than visual odometry alone.  This fact is clearer in the final 

solution model Figure 7 and Figure 8 as the deviation of walls 

are removed and the point cloud are more aligned.  

 

5. CONCLUSION  

This paper presents a 3D indoor modelling approach using 

RGB-D sensor. The main idea of this work is to enhance the 

process of RGB-D point clouds registration by combining 

visual odometry and ICP methods. One of the faced problems 

during the test was the sensitivity of the visual odometry 

algorithm to the lack of features in the surrounding 

environment, which caused extract pose from visual odometry 

algorithm to deviate from true pose. This problem was solved 

using switching/integrated method between ICP and visual 

odometry and using the ICP alone. This approach allows the 

system to have consistent solution in short term when no 

enough features exist in the surrounding environment. To limit 

the error of visual odometry in the long run, we employ loop 

closure technique, which globally update the pose of the system 

and provide consistent solution. For future work we want 

enhance the final solution by adding a probabilistic filtering 

approach to the modelling algorithm. 
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Figure 6. Images of the experiment room 
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Figure 7. 3D modelling before loop closure 

 

 

  

Figure 8. 3D modelling after loop closure 

 

 
Figure 9. The RMS error of visual odometry and ICP and visual odometery alone 
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Figure 10. Planar segmentation of Kinect point cloud using region growing technique 

 

 

 

 

Seekur Jr Property Value 

Developer  

Dimensions  

Weight  

Run time  

Speed 

Steering  

Tires  

Speciality  

Mobile Robots inc 

1050 x 840 x500    mm 

77 kg 

3-5 h 

1.2 m/s 

4 wheel skid  

400 mm 

50kg payload, IP54 
 

Figure 11. Seekur Jr 
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