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ABSTRACT: 

 

This article presents techniques for noise filtering of remotely sensed images based on Multi-resolution Analysis (MRA). Multi-

resolution techniques provide a coarse-to-fine and scale-invariant decomposition of images for image interpretation. The multi-

resolution image analysis methods have the ability to analyze the image in an adaptive manner, capturing local information as well as 

global information. Further, noise being one of the biggest problems in image analysis and interpretation for further processing, is 

effectively handled by multi-resolution methods. The paper aims at the analysis of noise filtering of image using wavelets and 

curvelets on high resolution multispectral images acquired by the Quickbird and medium resolution Landsat Thematic Mapper 

satellite systems. To improve the performance of noise filtering an iterative thresholding scheme for wavelets and curvelets is 

proposed for restoring the image from its noisy version.  Two comparative measures are used for evaluation of the performance of 

the methods for denoising. One of them is the signal to noise ratio and the second is the ability of the noise filtering scheme to 

preserve the sharpness of the edges. By both of these comparative measures, the curvelet with iterative threshold has proved to be 

better than the others. Results are illustrated using Quickbird and Landsat images for fixed and iterative thresholding.  

 

 

1. INTRODUCTION 

In recent past, advancements in observing the Earth from space 

have led to a new class of images with very high spatial 

resolution. These high resolution images contain detailed 

information about the properties of various objects. For 

different purposes, remote sensing images are used to extract 

some features, detect the presence of various phenomena, and 

for interpretation. These applications require high signal-to-

noise ratio (SNR) to get correct results and better performance. 

The data that are contaminated with noise can degrade the 

interpretation and hamper extraction of useful information.  

 

A large number of noise filtering algorithms are present in the 

literature. There are a number of benchmark non-linear filters 

like median filters, Wiener filters, Min/Max filters; adaptive 

filters like Lee filters (Lee, 1981), Frost filters (Frost et al., 

1980) and sigma filters, along with linear filters like low-pass 

and high-pass filters. While many techniques are present for 

denoising, wavelet denoising is the technique used due to its 

added advantage of localization in frequency as well as spatial 

domain and multi-scale, multi-resolution analysis (Chen and 

Bui, 2003; Chen and Kegl, 2007; Dabov et al. 2007). Amongst 

the numerous wavelets available to use, the most commonly 

used are the family of Daubechies wavelets (Daubechies, 1992), 

the bi-orthogonal wavelets. 

 

Wavelet transform showed great effect when dealing with one 

and two-dimensional signals with point singularity features. 

However, for the two-dimensional image, the main 

characteristics were characterized by the edges. Wavelets can 

only capture limited directional information due to its poor 

orientation selectivity (Cand`es and Donoho, 2000). By 

decomposing the image into a series of high-pass and low-pass 

filter bands, the wavelet transform extracts directional details 

that capture horizontal, vertical, and diagonal details. However, 

these three linear directions are limiting and might not capture 

enough directional information in remotely sensed images. 

Wavelet transform coefficients are not the best and the most 

sparse to describe the image edge singular features. In order to 

avoid this shortcoming of wavelet transform and process images 

of high dimension more effectively, Cand`es  and Donoho  

(2000) introduced curvelet transform, combining the directional 

filtering and multi-scale ridgelet transform (Cand`es  and 

Donoho, 1999), which makes curvelets useful for noise filtering 

of images. Its anisotropic characteristic is advantageous to the 

edge expression, especially to the curve singularities of two 

dimensional signals. 

 

In this paper, first some basic ideas of wavelet, ridgelet and 

curvelet transforms are discussed. Next, a model noise filtering 

problem is considered for remotely sensed imagery with 

Gaussian noise, and existing methods of thresholding followed 

by proposed method of iterative thresholds for denoising are 

described. Finally the results with various performance 

measures are discussed with interpretations and direction of 

future work is presented. 

 

2. MULTIRESOLUTION ANALYSIS TECHNIQUES 

2.1 Wavelet Transforms 

The application of multi-resolution analysis (MRA) for image 

analysis and interpretation has become very popular in recent 

past. A multi-resolution technique can provide a coarse-to-fine 

and scale-invariant decomposition for image interpretation. 

Therefore it is effective to analyze an image starting from the 

global view of the coarse resolution and then gradually 

increasing the resolution to a more local view. 
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According to algorithm in (Mallat, 1989), the input image is 

convolved with low-pass and high-pass filters associated with a 

mother wavelet and down-sampled. Four images (each one with 

half the size of the original image) are obtained, corresponding 

to high frequencies in the horizontal direction and low 

frequencies in the vertical direction (HL), low frequencies in the 

horizontal direction and high frequencies in the vertical 

direction (LH), high frequencies in both directions (HH) and 

low frequencies in both directions (LL). The last image (LL) is 

a low-pass version of the original image, and is called as the 

approximation image. This procedure is repeated for the 

approximation image at each resolution 2j (for dyadic analysis 

and synthesis). If the wavelet transform is applied up to the 

scale 2j, the original image can be reconstructed using the 

above direction images as shown in Fig. 1. Also, since a low-

pass filter is involved, noise suppression is implicit to this 

approach. 

 

2.2 Ridgelet Transforms 

Wavelets are suitable for dealing with objects with point 

singularities. Wavelets can only capture limited directional 

information due to its poor orientation selectivity. By 

decomposing the image into a series of high-pass and low-pass 

filter bands, the wavelet transform extracts directional details 

that capture horizontal, vertical, and diagonal details. However, 

these three linear directions are limiting and might not capture 

enough directional information in remotely sensed images. 

 

Wavelets do not isolate the smoothness along the edges, and 

thus more suitable for reconstruction of sharp point singularities 

than lines or edges. These shortcomings are addressed by 

ridgelet transform introduced in (Cand`es  and Donoho, 1999), 

where a line singularity is mapped into a point singularity using 

Radon transform. Then, the wavelet transform is used to handle 

the point singularity. The result is an efficient representation for 

2-D functions with piecewise smooth regions separated by a 

line singularity. Ridgelet analysis may be considered as wavelet 

analysis in the Radon domain because Radon transform 

translates singularities along lines into point singularities, for 

which the wavelet transform is known to provide a sparse 

representation (Fadili and Starck, 2007) 

 

The algorithm of the Discrete Ridgelet Transform (DRT) is 

depicted in Fig. 2. The DRT of an image of size n × n is an 

image of size 2n × 2n, introducing a redundancy factor equal to 

4 (Welland, 2003). 

 

2.3 Curvelet Transforms 

The ridgelet transform is optimal at representing straight-line 

singularities. This transform with arbitrary directional 

selectivity provides a key to the analysis of higher dimensional 

singularities. But, the ridgelet transform is only applicable to 

objects with global straight-line singularities, which are rarely 

observed in remotely sensed images (Woodcock and Strahler 

1987). In order to analyze local line or curve singularities, a 

natural idea is to consider a partition for the image, and then to 

apply the ridgelet transform to the obtained sub-images. This 

block ridgelet based transform, which is named curvelet 

transform, was first proposed in (Cand`es and Donoho, 2000). 

Curvelet basis functions can be viewed as a local grouping of 

wavelet basis functions into linear structures so that they can 

capture the smooth discontinuity curve more efficiently as 

illustrated in Fig. 3. 

 

         
 

 
 

 

  

 

 
Fig. 3: Non-linear approximation of a 2-D piecewise smooth 

signals (Do and Vetterli 2002) 

 

Curvelets partition the frequency plane into dyadic coronae and 

(unlike wavelets) sub-partition those into angular wedges which 

again display the parabolic aspect ratio. Hence, the curvelet 

transform refines the scale-space viewpoint by adding an extra 

factor, orientation, and operates by measuring information 

about an object at specified scales and locations but only along 

specified orientations. 

 

 

Fig. 2: Discrete ridgelet transform (Cand`es and Donoho,  

1999) 
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The curvelet transform has gone through two major revisions 

(Donoho and Duncan, 2000). The first version (Cand´es and 

Donoho, 2000) used a complex series of steps involving the 

ridgelet analysis of the radon transform of an image. Their 

performance was very slow; therefore, an improved version was 

developed known as Fast Discrete Curvelet Transform (FDCT) 
(Cand`es et al., 2006).  In this new method, the use of the 

ridgelet transform as a preprocessing step of curvelet was 

discarded, thus reducing the amount of redundancy in the 

transform and increasing the speed considerably. 

 

According to Cand`es et al. (2006), two implementations of 

FDCT are proposed: 

(i) Unequally Spaced Fast Fourier transforms   

       (USFFT) 

 (ii)  Wrapping Function 

 

Both implementations of FDCT differ mainly by the choice of 

spatial grid that is used to translate curvelets at each scale and 

angle. Both digital transformations give a table of digital 

curvelet coefficients indexed by a scale parameter, an 

orientation parameter, and a spatial location parameter. For 

numerical computations we need to discretize the continuous 

curvelet transform, since we usually work with discrete data sets 

in applications. As shown by Cand`es and Donoho (2003), a 

discrete version of the continuous curvelet transform can be 

derived by a suitable sampling at the range of scales, 

orientations and locations. In this paper, an implementation of 

this algorithm with wrapping function is used. 

 

2.3.1 Fast Discrete Curvelet Transform via Wrapping 

 

The new implementation of curvelet transform based on 

Wrapping of Fourier samples takes a 2D image as an input in 

the form of a Cartesian array f [m, n], where 0 ≤ m<M, 0 ≤ n<N 

where M and N are the dimensions of the array. The following 

are the steps of applying wrapping based FDCT algorithm 

(Cand`es et al. 2006) as shown in Fig. 4. 

 

1) Apply the 2D FFT to an image f to obtain Fourier 

samples F[m, n] 

2) For each scale j and angle l, form the product           

Uj,l [m, n] F[m, n]. The support of Uj is contained the 

rectangle Rj  

3) Wrap this product around the origin and calculate  

~ ~ ~

[ , ] ( )[ , ],,f m n W U f m nj lj l      ; where the range 

for m, n and θ is 0 ≤ m< 2j, 0 ≤ n< 2j/2, and    −π/4 ≤ 

θ<π/4. 

4)  Apply IFFT to the processed curvelet coefficients 

 

 

 

Fig. 4: Construction of Fast Discrete Curvelet Transform 

(Cand`es et al., 2006) 

 

Discrete curvelet transform in the spectral domain utilizes the 

advantages of FFT. During FFT, both image and curvelet at a 

given scale and orientation are transformed into the Fourier 

domain. The convolution of the curvelet with the image in the 

spatial domain then becomes their product in the Fourier 

domain. After this step, a set of curvelet coefficients are 

obtained by applying IFFT to the spectral product. This set 

contains curvelet coefficients in ascending order of the scales 

and orientations. 

 

3. NOISE FILTERING  

Noise represents the unwanted information which deteriorates 

the quality of the image. A remotely sensed optical image is 

mainly corrupted by noise which is modelled as additive 

Gaussian noise. Multiscale transform based noise filtering is 

achieved by hard-thresholding of the transform coefficients. 

 

3.1 Hard thresholding 

The denoising method with hard thresholding is as follows 

(Starck, Candès, and Donoho 2002); 

 

 Estimate the noise standard deviation σ in the input 

image. 

 Calculate the wavelet and curvelet transforms of the input 

image. Get a set of bands wj, each band contains Nj 

coefficients and corresponds to a given resolution level. 

 Calculate the noise standard deviation σj for each band j 

of the transformed coefficients. 

 For each band j: Calculate the maximum of the band and 

multiply each coefficient. 

 Reconstruct the image from the modified coefficients. 

 

As described in (Starck, Cand`es and Donoho 2002), threshold 

at 3σjl for all levels and 4σjl at finest scale is selected. σjl is the 

noise level of a coefficient at scale j and angle l (equal to the 

noise level times the L2 norm of the corresponding transform). 

 

3.2 Proposed method of iterative threshold 

The fixed thresholding (3σ or 4σ) method does not give the 

maximum Signal to Noise Ratio (SNR) while donoising, to 

obtain the optimum results in terms of SNR and Mean Squared 

Error (MSE), an iterative thresholding method is proposed.  

 

The problem is to decide the threshold value to be chosen for 

noise removal at each scale. Each coefficient of the transformed 

image is considered as a threshold value and the final SNR of 

the reconstructed image is calculated by performing hard 

thresholding on noisy image in the transform domain followed 

by respective reconstruction.  

 

On comparing of the SNR values obtained, the threshold value 

giving the highest SNR is chosen. Therefore at a given 

resolution (scale) of the transformed image, a unique set of 

threshold values is created from which the optimum threshold is 

selected.  

 

The selection of coefficient value as threshold is done at each 

resolution in different high frequency sub-bands so that for 

SNR calculations, coefficients in the particular detailed sub-

band only are considered instead of all the coefficients in all the 

sub-bands at a given resolution.  
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Therefore for a given sub-band of the wavelet or curvelet 

transformed image, a unique set of threshold values is created 

from which the optimum threshold is selected. Since lesser are 

the number of elements in the unique set, the lesser number of 

computations are required to successfully denoise the image. 

Thus, the unique set is formed of only the existing coefficient 

values present in the specific band of the wavelet or curvelet 

transformed image. Then hard thresholding is done as  

 

( , ) ( , )   ;       if    ( , )

          = 0           ;       otherwise

h i j h i j h i j Threshold 

         (1)
 

 

Inverse wavelets, curvelets transforms are then taken. This 

algorithm is repeated for different wavelet families of 

Daubechies and Bi-orthogonal filters. For selected remotely 

sensed data, bi-orthogonal filters of wavelets are used in this 

paper. This algorithm is repeated for high and medium 

resolution images with different levels of noise. 

In this approach computational load increases as the algorithm 

runs more number of times (in contrast to fixed thresholding) to 

obtain the thresholds, however it gives the optimum SNR.  

 

4. RESULTS AND ANALYSIS 

To evaluate the performance of these algorithms for noise 

filtering, sample high resolution Quickbird image (1024x1024) 

of Powai area of Mumbai city and Landsat Thematic Mapper 

(TM) image (512x512) of Mumbai city are used. To create the 

effect of noise of varying amounts, zero mean white Gaussian 

noise with various standard deviations (σ = 10, 15, 20, 25 and 

30) was added to the input images, and input to the denoising 

filters are developed and then denoised by fixed threshold and 

optimal threshold by iterative method using wavelet and 

curvelet transforms. In addition to visual observations, objective 

measures like Signal to Noise Ratio (SNR), Peak SNR (PSNR) 

and Mean Squared Error (MSE) are used to evaluate the 

performance of the filters.  

 

 

Further, a few edges are interactively selected in the images, 

and the edge contrast is measured to evaluate the performance 

of these filters for edge preserving capacity while noise 

removal. It is expected that as denoising is performed, edges 

may get blurred, but due to removing the high frequency 

content related to noise, it is expected that mean difference 

across the edge should remain the same before and after 

denoising. This analysis is done for both the images with two 

different levels of noise. It is found that curvelets outperform 

the wavelet transform in terms of SNR, PSNR, MSE and edge 

preservation capability (Figures 5 and 6). 

 

It is observed that for Quickbird image, with σ = 10, curvelet 

with iterative threshold (CvI) gives SNR of 17dB (3.86 dB 

higher than wavelet with iterative threshold (WvI), and 1.71 dB 

higher than curvelet with fixed threshold (CvF)) and MSE of 88 

(14 less than wavelet) (Table 1). For Landsat TM image also, 

curvelet performs better than wavelet with improvement in 

SNR, PSNR and MSE (Table 2). 

 

It is expected that as denoising is performed, edges get blurred, 

so the denoising mechanism should be such that while 

removing the high frequency content related to noise, the actual 

edge information should be retained, so it is expected that mean 

difference across the edge should remain the same before and 

after denoising. Also, to have intra-class variance minimum and 

interclass variance maximum, mean to standard deviation ratio 

should be improved after denoising, or in worst case it should 

remain same as before denoising. This analysis is done for both 

the images with two different levels of noise. 

 

From the original image, three edges are chosen to measure the 

edge preservation while noise filtering. For this purpose one 

very strong edge (edge 1 in Quickbird image (Fig. 5g)), one line 

edge (edge 2 in Fig. 5g) and a weak edge (edge 3 in Fig. 5g) are 

considered as testing points for edge preservation. Mean and 

standard deviation across edges are considered as objective 

measures of performance for edge preserving capacity while 

denoising.  

 

 

 

 

Table 1: Performance of Noise Filtering for Quickbird image 

 SNR (dB) PSNR (dB) MSE 

σ WvF WvI CvF CvI WvF WvI CvF CvI WvF WvI CvF CvI 

10 12.21 13.14 15.29 17.00 26.37 26.37 29.79 29.79 113 102 94 88 

15 11.14 12.00 13.49 14.60 24.58 24.58 26.90 26.92 194 164 150 132 

20 10.01 10.60 12.29 13.10 23.49 23.49 25.72 25.83 235 219 197 178 

25 8.94 9.30 11.23 12.14 21.00 21.05 24.12 24.66 326 294 242 225 

30 8.07 8.35 10.24 11.19 20.06 20.37 22.54 23.77 369 324 290 273 

σ: Noise standard deviation, WvF: Wavelet with fixed threshold, WvI: Wavelet with iterative threshold 

CvF: Curvelet with fixed threshold, CvI: Curvelet with iterative threshold 

 

 

Table 2: Performance of Noise Filtering for Landsat TM image 

 SNR (dB) PSNR (dB) MSE 

σ WvF WvI CvF CvI WvF WvI CvF CvI WvF WvI CvF CvI 

10 11.1 12.4 13.4 14.9 26.41 28.13 30.17 31.56 101 80 62.5 45.11 

15 9.45 10.6 11.6 12.7 23.9 26.04 28.39 29.45 154.5 120 94 73 

20 8.6 9.4 10.11 11.4 22.05 24.19 26.8 28.15 198.7 160 135 99.52 

25 7.8 8.2 8.67 10.6 21.7 23.01 25.3 27.27 269 201.3 188.1 121 

30 6.1 6.7 7.39 9.88 21.09 22.4 24.09 26.59 310.5 279.8 253 142.43 

σ: Noise standard deviation, WvF: Wavelet with fixed threshold, WvI: Wavelet with iterative threshold 

CvF: Curvelet with fixed threshold, CvI: Curvelet with iterative threshold 
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a: Original Quickbird image b: Noisy Image (σ = 20; SNR 9.25dB) c: Denoised using WvF 

   

   
d: Denoised using WvI e: Denoised using CvF f: Denoised using CvI 

   

   
g: Edge locations considered for edge 

preservation analysis 

h: Noisy Image (σ = 30; SNR 5.7dB) i: Denoised using WvF 

   

   
j: Denoised using WvI k: Denoised using CvF l: Denoised using CvI 

Fig. 5: Denoising of Quickbird image of Powai area in Mumbai  
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a: Original Quickbird image b:Noisy Image (σ = 15; SNR 7.9dB) c: Denoised using WvF 

   

   
d: Denoised using WvI e: Denoised using CvF f: Denoised using CvI 

   

   
g: Edge locations considered for edge 

preservation analysis 

h: Noisy Image (σ = 25; SNR 3.5dB) i: Denoised using WvF 

   

   
j: Denoised using WvI k: Denoised using CvF l: Denoised using CvI 

Fig. 6: Denoising of Landsat TM image of Mumbai  
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Table 3: Edge preservation capability for Quickbird image (σ = 10) 

Denoising with   

σ = 10 

Original WvF WvI CvF CvI 

Side1 Side2 Side1 Side2 Side1 Side2 Side1 Side2 Side1 Side2 

Edge 

1 

Mean 24.8 207.6 21.87 202.1 22.16 202.1 23 212 23.5 210 

SD 4.75 8.42 6.1 5.73 6.12 5.73 3.55 5.19 3.6 5.17 

Mean/SD 5.22 24.65 3.58 35.27 3.62 35.27 6.47 40.84 6.52 40.16 

Edge 

2 

Mean 74.33 138.8 70.19 142.27 70.12 142 74.04 140 74.83 141.5 

SD 7.01 4.56 7.57 4.95 7.2 4.9 6.54 4.58 6.57 4.6 

Mean/SD 10.6 30.43 9.27 28.74 9.73 28.97 11.32 30.56 11.35 30.76 

Edge 

3 

Mean 153.3 187 147 183.58 149 183.6 152.3 184 151.66 187.5 

SD 6.67 5.25 6.87 6.41 6.9 6.01 4.44 5.19 4.2 4.5 

Mean/SD 22.9 35.61 21.39 28.63 21.59 30.54 34.3 35.45 35.26 41.6 

 

Table 4: Edge preservation capability for Quickbird image (σ = 30) 

Denoising with   

σ = 30 

Original WvF WvI CvF CvI 

Side1 Side2 Side1 Side2 Side1 Side2 Side1 Side2 Side1 Side2 

Edge 

1 

Mean 24.8 207.6 20.45 199 21.23 201.3 24.87 207.6 24.87 207.62 

SD 4.75 8.42 7.4 9.68 6.71 8.2 4.75 8.41 4.75 8.39 

Mean/SD 5.22 24.65 2.76 20.55 3.16 24.54 5.23 24.68 5.23 24.74 

Edge 

2 

Mean 74.33 138.8 65 130 66.45 127 75.12 140.2 74.5 139.66 

SD 7.01 4.56 8.95 4.6 8.9 4.52 8.40 4.97 6.42 4.24 

Mean/SD 10.6 30.43 7.26 28.26 7.46 28.09 8.94 28.2 11.6 32.93 

Edge 

3 

Mean 153.3 187 155 180 156.2 185 150.13 188.5 150.83 188.5 

SD 6.67 5.25 7.53 6.48 7.1 6.27 5.76 6.29 5.72 6.29 

Mean/SD 22.9 35.61 20.58 27.77 22 29.5 26.06 29.96 26.36 29.96 

 

 

Table 5: Edge preservation capability for Landsat TM image (σ = 15) 

Denoising with   

σ = 15 

Original WvF WvI CvF CvI 

Side1 Side2 Side1 Side2 Side1 Side2 Side1 Side2 Side1 Side2 

Edge 

1 

Mean 72 143.8 68 137 68 137 70.37 146.75 70.37 146.75 

SD 3.8 3.09 3.6 3.2 3.6 3.2 3.69 3.1 3.69 3.1 

Mean/SD 18.94 46.53 18.8 42.8 18.8 42.8 19.07 47.33 19.07 47.33 

Edge 

2 

Mean 196 76.75 200 64 198 74 192.5 76.25 192.5 76.25 

SD 28.9 1.47 29.6 3.92 26 3.2 26.92 2.86 26.92 2.86 

Mean/SD 6.78 52.21 6.75 16.32 7.61 23.12 7.15 26.6 7.15 26.6 

Edge 

3 

Mean 114 140 119.5 134.8 119.5 134.8 114 142.67 115.8 144.4 

SD 3.09 7.98 3.6 5.23 3.6 5.23 2.9 4.1 2.78 3.77 

Mean/SD 36.89 17.54 33.19 25.77 33.19 25.77 39.31 34.79 41.65 38.3 

 

Table 6: Edge preservation capability for Landsat TM image (σ = 25) 

Denoising with   

σ = 25 

Original WvF WvI CvF CvI 

Side1 Side2 Side1 Side2 Side1 Side2 Side1 Side2 Side1 Side2 

Edge 

1 

Mean 72 143.8 68.9 129.9 65 134 73.24 140.1 74.62 143.25 

SD 3.8 3.09 7.15 4.15 6.1 3.15 5.5 2.9 5.67 2.63 

Mean/SD 18.94 46.53 9.36 31.3 10.65 42.53 13.31 48.31 13.16 54.46 

Edge 

2 

Mean 196 76.75 178.27 64.17 195.7 55.54 181 71 184.75 69.37 

SD 28.9 1.47 29.7 5.7 32 4.34 29.47 4.7 24.85 3.77 

Mean/SD 6.78 52.21 6 11.25 6.11 12.79 6.14 15.1 7.434 18.4 

Edge 

3 

Mean 114 140 98.9 121.27 119.5 138.7 110 131.8 126.6 138.6 

SD 3.09 7.98 5.8 9.47 8.4 10.49 4.3 10.1 7.39 7.39 

Mean/SD 36.89 17.54 17.05 12.8 14.22 13.22 25.58 13.04 17.13 18.75 

 

 

 

It is observed from Table 3, for edge 1 in Quickbird image, in 

curvelet based denoising, standard deviation across the edge is 

reduced and mean difference remained almost same as 

expected, which in turn has improved the mean to standard 

deviation ratio in both the sides of the edge. Similar 

improvement on both the sides of edges 2 and 3 is observed. 

For edge 1, wavelet also gives better result (as compared to 

original) but curvelet outperforms the wavelets by giving more 

mean to standard deviation ratio.  

 

When noise level is increased to σ = 30, from Table 4, for edges 

1 and 2, it is observed that curvelet gives higher mean to 

standard deviation ratio than original whereas wavelet degrades 

the edges. For side 1 of edge 3, again curvelet performs better 
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than wavelet. For side 2, though as compare to original (with 

35.61) mean to standard deviation ratio reduces slightly, 

curvelet with 29.96 is better than wavelet which gives the ratio 

of 29.5. 

 

For Landsat TM image with σ = 15, it is observed from Table 5, 

curvelet gives better results as compare to wavelets for edges 1 

& 3, and for side 1 of edge 2. But when the noise is increased to 

σ = 25, it is observed that curvelet gives better results on only 

side of all the edges. Though on the other side of edges, mean to 

standard deviation ratio is less as compared to original but more 

than that of obtained by wavelets, therefore curvelet with 

proposed thresholding performs better in this case as well.  

 

 

5. CONCLUSIONS 

From experimental results, it is found that the curvelet 

transform outperforms the wavelet transform in terms of SNR, 

PSNR, MSE and the curvelet denoised images appear visually 

sharper than the wavelet denoised images. The curvelet 

transform with proposed iterative thersholding provides high 

SNR and PSNR values and can filter out Gaussian white noise 

from remotely sensed images more efficiently than the fixed 

thresholding method.  

 

For high resolution image of Quickbird, curvelet gives 

promising results in terms of edge preservation even when noise 

level is increased. For medium resolution Landsat TM image, 

curvelets preserve more edge information at low noise levels 

but when noise level is increased edge quality degrades. The 

proposed iterative thresholding (in both wavelets and curvelets) 

significantly improves the SNR and PSNR in comparison with 

fixed thresholding method but marginally improves edge 

preservation capability. Therefore, curvelets with iterative 

thresholding brings two fold advantages both in terms of higher 

SNR and better edge preservation 

 

From the experimental results it is observed that the denoising 

by the curvelet with proposed scheme is more effective than 

wavelets, and it is more applicable to high resolution images as 

low and medium resolution images are less prone to sensor 

noise. As future work, these methods can be combined with 

adaptive scales of MRA and variance stabilization of thresholds 

to further improve the performance of noise filtering. 
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