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ABSTRACT:

The Landsat archive of thermal data (Landsats 4, 5 and 7) has gone through a rigorous calibration assessment and update. However, in
order to be useful to most users the calibrated sensor reaching radiance must be corrected to surface temperatures by first compensating
for atmospheric effects and then emissivity variations. The USGS is exploring the possibility of producing a LST product through a
joint program with RIT (the atmospheric compensation component) and JPL (the emissivity compensation component). This paper
addresses the atmospheric compensation component for an initial North American pilot study. In particular, the results of a comparison
of retrieved water surface temperature (where emissivity is well known) and truth temperatures for over 800 sites are presented. The
errors are broken down by cloud conditions with extremely good results for cloud-free conditions (errors less than 1K). The results of
the error assessment for North America by cloud class are presented along with a discussion of potential quality data for a LST product.
An initial assessment of the LST errors observed for Landsat 8 bands 10 and 11 are also presented. The next steps on this effort include
testing of a global atmospheric compensation approach and full integration of the atmospheric and emissivity compensation tools into
an operational LST product.

1. INTRODUCTION

Landsat is the longest set of continuously acquired, moderate res-
olution satellite imagery. The fourth satellite in the family, Land-
sat 4, was the first to capture single thermal band imagery begin-
ning in 1982, followed by Landsat 5 and Landsat 7. Landsat 8,
launched in February 2013, is the first to capture multiple thermal
bands. With these four instruments, there are currently more than
four million Landsat thermal images in the archive and between
990 and 1090 scenes acquired each day. The entire archive (with
the exception of Landsat 8 for which work is currently ongoing)
has been radiometrically calibrated and characterized so that the
sensor reaching radiance values are well known. However, ra-
diance values are difficult to interpret, so this large archive of
thermal data is under utilized.

For most users, thermal data is more useful as a temperature
value. The temperature of the land surface, the first interface be-
tween the atmosphere and solid earth, is a useful metric across
a large number of applications, including climatology, numeri-
cal weather prediction, and agriculture. LST is difficult to mea-
sure without altering the temperature of the surface and, for many
investigations, these values are useful over large areas and long
time scales, making LST products derived from satellite imagery
an obvious answer. Most LST products are generated from mul-
tiple thermal bands using a split window approach, which uti-
lizes the differential absorption between adjacent thermal bands
(Wan and Dozier, 1996). Conversion from thermal radiance to
land surface temperature with only a single thermal band requires
complete characterization of the atmosphere and known surface
emissivity.

Our colleagues at the Jet Propulsion Laboratory (JPL) are work-
ing to develop a high spatial resolution (100 m) surface emis-
sivity product form the Advanced Spaceborne Thermal Emis-
sion and Reflection (ASTER) radiometer. Currently available is
∗Corresponding author.

the North American ASTER Land Surface Emissivity Database
(NAALSED), but plans are underway to extend this to include
a dataset with global coverage (Hulley and Hook, 2009). Work
discussed in this paper assumes the availability of an emissiv-
ity product and focuses on the generation and error analysis of
the atmospheric compensation component. Access to high qual-
ity reanalysis data makes the atmospheric characterization for a
single band product feasible.

Generating radiative transfer parameters from atmospheric com-
pensation is well understood, but the methodology presented here
incorporates and interpolates the reanalysis data and the auto-
mates the process to generate unique values at every pixel in the
scene. Previous studies indicate that the atmospheric compen-
sation will be the largest source of error (i.e. larger error con-
tributions than emissivity). We begin with an initial study and
validation over North America, to be combined with NAALSED,
and an analysis of the expected error and current suggestion for a
confidence metric. This will later be extended to a global product.

2. BACKGROUND

The goal of this work is to generate, for every pixel in any Land-
sat scene in the archive, the radiative transfer parameters from
the atmospheric compensation and the expected uncertainty. This
section aims to summarize the necessary tools and datasets used
in the methodology to determine the transmission, upwelled radi-
ance, and downwelled radiance for each pixel in any scene.

2.1 MODerate Resolution Atmospheric TRANsmission Ra-
diative Transfer Code

The MODerate resolution atmospheric TRANsmission (MOD-
TRAN) radiative transfer code, developed from LOWTRAN, uti-
lizes a propagation model that assumes the atmosphere is di-
vided into a number of homogenous layers (Schott, 2007). Cre-
ated by Spectral Sciences Inc. and the United States Airforce,
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MODTRAN solves the radiative transfer equation to character-
ize reflections, emissions, and transmissions, among other out-
puts (SSI, 2012). While the applications and uses of MODTRAN
are far-reaching, for the purpose of this work, complete charac-
terizations of the atmosphere (pressure, temperature, and rela-
tive humidity) are input into MODTRAN, and the spectral out-
puts (wavelength and radiance) are used to calculate the radiative
transfer parameters.

2.2 The North American Regional Reanalysis Dataset

The atmospheric profiles input into MODTRAN are subset from
the North American Regional Reanalysis Dataset. Reanalysis,
or retrospective-analysis, is the process of using observing sys-
tems with numerical models to generate variables not easily ob-
served or measured in a regular and consistent spatial and tempo-
ral set (Rienecker and Gass, 2013). The National Center for Envi-
ronmental Prediction (NCEP) produces the NARR dataset using
radiosondes, dropsondes, pibals, aircraft and surface data, and
cloud drift winds among other inputs. This work utilizes profiles
provided 8 times daily at 29 specific pressure levels, with approx-
imately 0.3◦ (approximately 32 km at the lowest latitude) spacing
covering North America in a 349 by 277 array (Shafran, 2007).
The geopotential height [gpm] and specific humidity [kg/kg] pro-
files are converted to geometric height [km] and relative humidity
[%] and input, along with the temperature profile [K], into MOD-
TRAN.

2.3 The Governing Equation

A governing equation contains all of the components that are rel-
evant to the sensor reaching radiance. Equation 1 shows the gov-
erning equation for a single Landsat thermal band, whereLobsλeff
is the effective sensor reaching spectral radiance, LTλeff is the
effective spectral radiance due to temperature, ε is the surface
emissivity of the pixel of interest, τ is the transmission, Luλeff is
the upwelled effective spectral radiance, and Ldλeff is the down-
welled effective spectral radiance.

Lobsλeff = (LTλeff ε+ (1− ε)Ldλeff )τ + Luλeff (1)

The radiance due to temperature is the term that we wish to iso-
late; this can be inverted to temperature through Plancks Equa-
tion, as shown in Equation 2. Because this equation is not di-
rectly invertible, we use a look up table. Given a radiance due
to temperature, we invert to temperature with a two point linear
interpolation using a look up table in 1 K increments.

LTλeff =
Mλeff

π
=

∫
[2hc2λ−5(e

hc
λkT − 1)−1]R(λ)dλ∫
R(λ)dλ

(2)

Therefore, we need to solve for all other components of the gov-
erning equation in order to isolate and determine the radiance
due to temperature. The observed radiance, Lobsλeff , is gen-
erated from the digital number provided in the Landsat thermal
band and the corresponding calibration coefficients in the scene
metadata. For the case of this work, we assume that Landsats
4, 5, and 7 are characterized and calibrated and that this radi-
ance value can be trusted without independent validation (Barsi
et al., 2003) and (Padula et al., 2010). We also assume the in-
corporation of the ASTER derived emissivity, which leaves only
the transmission, upwelled radiance, and downwelled radiance.

These effective spectral values are those that will be generated
for every pixel in the Landsat scene through the methodology de-
scribed in Section 3. We also believe that this atmospheric com-
pensation process contributes to the limiting factor in uncertainty
in the final LST product, so the confidence metric associated with
the atmospheric compensation is discussed in Section 4.

Effective spectral radiance values indicate that the spectral re-
sponse function of the sensor being used, which differs slightly
for each Landsat instrument, has been accounted for over the
spectral range of sensitivity. This is shown in Equation 3, where
Lλ could be any radiance value we consider, such as observed,
upwelled, or downwelled. Effective spectral radiance values have
units of Wm−2sr−1µm−1. All effective spectral radiance values
are considered in this process and the explicit notation will be
dropped from here forward.

L = Lλeff =

∫
LλR(λ)dλ∫
R(λ)dλ

(3)

3. METHODOLOGY

This methodology aims to process a single Landsat scene and
generate the radiative transfer parameters, transmission, upwelled
radiance, and downwelled radiance, for every pixel in the scene.
This assumes the availability and incorporation of a digital ele-
vation model providing the elevation of each pixel in the scene.
For a particular Landsat scene, the acquisition time of the scene
is identified, and the appropriate NARR variables (geopotential
height, specific humidity, and temperature) at the time samples
before and after this acquisition time are subset to include only
locations pertinent to the current scene. This generally results in
between 110 and 150 points for each scene. Each variable is tem-
porally interpolated to the Landsat acquisition time using a sim-
ple two point linear interpolation. For example, NARR samples
from 12 Z and 15 Z would be linearly interpolated to a Landsat
acquisition time of 14.3 Z.

At each NARR point in the scene, the radiative transfer parame-
ters are generated for nine separate ground altitudes using MOD-
TRAN. For each MODTRAN run, we input a boundary temper-
ature (with corresponding radiance due to temperature, LT ) and
albedo (with corresponding emissivty, ε), and MODTRAN out-
puts an array of spectral observed radiance at the sensor for the
atmosphere being characterized (Lobs). As shown in Equation
4, when ε = 1, the governing equation reduces to a simple lin-
ear equation where the slope is equal to the transmission and
the intercept is equal to the upwelled radiance. After two MOD-
TRAN runs, two data points (LT1 , Lobs1 ) and (LT2 , Lobs2 ) can
be used in a linear regression to generate transmission and up-
welled radiance for the current atmosphere. With these values,
a third MODTRAN run generates a final data point with some
emissivity less than one, such that the governing equation can be
solved for downwelled radiance as shown in Equation 5. The
boundary temperature for this third MODTRAN run is equal to
the air temperature of the lowest layer of the atmosphere, and the
emissivity is set to 0.9. These operations are performed at nine
separate ground altitudes at every NARR point pertinent to the
current scene.

Lobs = LT τ + Lu (4)

Ld =
Lobs−Lu

τ
− LT ε

1− ε
(5)
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After radiative transfer parameters have been generated such that
the data cube encompasses an entire Landsat scene, operations
must be performed at every pixel in the scene in order to gener-
ate unique radiative transfer parameters for each pixel. For each
pixel, the four most relevant NARR points (closest point in each
direction) are selected and the radiative transfer parameters are
piecewise linearly interpolated to the height of the current pixel
at those four NARR points. This results in the radiative transfer
parameters at the four closest NARR points associated with the
appropriate elevation; the final step is to interpolate these values
to the location of the current pixel. Shepards method was chosen
as an inverse distance weighting function to interpolate the three
radiative transfer parameters to the appropriate location for each
pixel; for each of the four NARR points, a distance is calculated
(di) based on the NARR point location (xi,yi) and the pixel loca-
tion (x,y) [Equation 6] and weighting values (wi) are calculated
based on these distances [Equation 7]. These weights are used
to interpolate the original values at each location (fi) to the new
interpolated value at the pixel location (F) [Equation 8] (Shepard,
1968).

di =
√

(x− xi)2 + (y − y1)2 (6)

wi =
d−pi∑n

j=1
d−pj

(7)

F (x, y) =

n∑
i=1

wifi (8)

This methodology results in the transmission, upwelled radiance,
and downwelled radiance at every pixel in the Landsat scene.

4. RESULTS

4.1 Ground Truth Data

In order to validate our methodology, we compare the predicted
temperatures from our process to ground truth water tempera-
tures. We choose to validate against water temperatures because
the emissivity of water is well known and because an instrument
can be submerged and acclimated, so the temperature of water
can be measured without the act of measuring altering the results.
The measured bulk temperature still needs to be corrected to the
skin or surface temperature of the water. Ground truth data for
this study was provided for two sites by the Jet Propulsion Lab-
oratory (Hook et al., 2007) and also derived from NOAA buoys
from around the country through an accepted skin temperature
correction method (Padula et al., 2010). Figure 1 shows the dis-
tribution of sites used throughout the United States; sites were
chosen to capture a variety of elevation, climate, and atmosphere
and images were chosen to capture a variety of season and atmo-
spheric condition.

4.2 Validation of Methodology

In order to validate the methodology, initially only cloud free
scenes were processed. A validation dataset of 259 cloud free
Landsat 5 scenes, each containing one of the validation sites shown
above, were processed and the predicted temperature at the site
of the validation measurement was compared to the ground truth
temperature provided by JPL or determined from the NOAA buoy
measurements. Error was calculated using Equation 9; note that a

Figure 1: Distribution of validation sites throughout the United
States.

negative value indicates an underestimation by our process. Fig-
ure 2 shows a histogram of error values for this cloud free Landsat
5 validation dataset.

Error = Predicted LST − Ground Truth (9)

Figure 2: Error histogram for cloud free Landsat 5 validation
dataset.

Note that for the applications at which this product is aimed, 1
K to 2 K errors are generally considered acceptable. Therefore,
results from this histogram are extremely encouraging. The mean
error for the 259 scenes shown is -0.267 K and the standard de-
viation for this dataset is 0.900 K; 90% of the dataset falls within
the center three bins of the histogram with error values [-1.5 K,
1.5 K]. These results are extremely encouraging and give us con-
fidence in the datasources, tools, and chosen and implemented
interpolations within the process. We do acknowledge that the
dataset appears to have a slight negative bias, shown both by the
negative mean error and also the slight left handedness of the his-
togram.

5. CONFIDENCE METRIC DEVELOPMENT

With confidence in the development and implementation of our
proposed methodology, we realize that our goal is not only to pro-
cess and produce results for cloud free scenes, but for all scenes,
and all pixels, in the archive. All possible scenes with avail-
able ground truth data at the validation sites shown above over
a given time span were downloaded and processed. This resulted
in a dataset containing 827 images with comparable ground truth
data. Initial investigations into a traditional error analysis, prop-
agating expected error from input variables through the process,
proved to be inaccurate for the proposed methodology. This tradi-
tional error analysis was impossible to implement in the presence
or vicinity of clouds, pixels that we desire to process and char-
acterize, and still difficult to accurately apply in cloud free pixels

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1, 2014
ISPRS Technical Commission I Symposium, 17 – 20 November 2014, Denver, Colorado, USA

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-1-73-2014 75



due to the inaccuracy of water vapor profiles (Cook and Schott,
2014). Because the presence of clouds is critical to understand-
ing performance of the process, we turn to a more in depth cloud
analysis to investigate performance of all scenes considered.

5.1 Cloud Analysis

Clouds are generally classified by height and texture. For height
classifications, clouds are generally given the prefix cirro-, mean-
ing high, or alto-, meaning mid. For texture classification, clouds
are designated as strato-, meaning layered, uniform, widespread
clouds, or cumulo-, meaning heaps of clouds or cellular, individ-
ual elements. From the view of the satellite, we are currently
only concerned with the texture of the clouds and therefore cre-
ate two categories: cumulus clouds, in which we group cirrocu-
mulus, altocumulus, and other similar types, and stratus clouds,
with which we group cirrostratus, altostratus, nimbostratus, and
other similar types. Cirrus clouds are wispy, feathery clouds that
are generally thinner but appear to exist more in layers, and are
therefore included in the stratus cloud classification. For each im-
age in the validation dataset, the image, and more specifically the
area surrounding the ground truth data point, was visually ana-
lyzed and classified into one of the six categories shown in Table
1. It is important to realize that the categorization of type of cloud
and in the vicinity are both subjective classifications based on the
discretion of the analyst. However, all scenes in this dataset were
categorized by the same analyst.

Category Description Number of Scenes
0 Cloud Free 259 [31.3%]
1 Cumulus Vicinity 98 [11.9%]
2 Stratus Vicinity 158 [19.1%]
3 Cumulus at Pixel 60 [7.3%]
4 Stratus at Pixel 202 [24.4%]
5 Cloud Covered 50 [6.0%]

Table 1: Categories used in cloud analysis and breakdown of the
number of scenes in each category for the Landsat 5 validation
dataset.

5.2 Cloud Analysis Results

Figure 3 is a histogram of error values for all 827 images in the
validation dataset. Figure 4 shows only scenes that were cloud
free at the buoy or had clouds in the vicinity of the buoy, and
Figure 5 shows only scenes that were cloud free at the buoy. Note
that Figure 5 is the same as Figure 2 and repeated here for ease
of comparison. The numbers in the plot title indicate the cloud
categorizations of the scenes included in the plot.

Figure 3: Error histogram for all images in Landsat 5 validation
dataset.

Table 2 shows the mean and standard deviation of results as pixels
with definite or likely cloud contamination are removed.

In Figure 3, the largest left hand bin is likely cloudy results, which
we see is mostly eliminated in Figure 4. The left hand tail per-

Figure 4: Error histogram for images in cloud categories 0, 1, and
2 in the Landsat 5 validation dataset.

Figure 5: Error histogram including only scenes categorized as
cloud free (0) from the Landsat 5 validation dataset.

sists in Figure 4, but note that nearly 30% of the scenes are elim-
inated, and the number of scenes in the center three bins [1.5
K, 1.5 K] decreases from 395 scenes to 233 scenes, when pixels
with clouds in the vicinity are removed for Figure 5. This shows
that although eliminating clouds in the vicinity eliminates the left
hand tail shown in the histogram, it also eliminated a large por-
tion (nearly 20% of the total dataset) of good scenes. We believe
that some pixels with clouds in the vicinity could still be useful
to many users, with an appropriate recognition of higher potential
error.

5.3 Cloud Product Incorporation

For an operational product, obviously a visual analysis of each
pixel is unreasonable. Incorporation of a cloud product, and au-
tomation of cloud categorization, is critical to the incorporation
of the cloud analysis shown above. Landsat surface reflectance
products are currently provided with a cloud mask; such a cloud
mask should be provided with TM and ETM+, as well as Landsat
8 products, in the near future. Revisiting the subjective analy-
sis shown above, we estimate a distance threshold of 0.5 km for
cloudy pixels. That is, any ground truth site with clouds within
0.5 km (17 pixels) was classified as cloudy. Any ground truth site
with clouds more than 0.5 km away but less than 5 km (167 pix-
els) away was classified as having clouds in the vicinity. Finally,
any ground truth site with no clouds within 5 km was classified
as cloud free. One example of a cloud product is shown in Figure
6 and classification of pixels as cloudy, clouds in the vicinity, or
cloud free based on the distance thresholds described above and
this cloud product is shown in Figure 7.

5.4 Current Confidence Metric Suggestion

Our current best suggestion for a confidence metric based on the
atmospheric compensation to be included with the LST product is
based on the cloud analysis and cloud influence shown above. For
each image, an additional band will be included with the cloud
categorizations, such as that shown in Figure 7. The expected
mean and standard deviation for each category would also be in-
cluded as shown in Table 3. Note that in Table 3, the means and
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Cloud Category Mean [K] SD [K] Number of Scenes
0, 1, 2, 3, 4, 5 -8.471 19.313 826 [100%]

0, 1, 2, 3 -1.538 4.174 575 [70%]
0, 1, 2 -0.933 2.460 515 [62%]

0, 1 -0.499 2.228 357 [43%]
0 -0.267 0.900 259 [31%]

Table 2: Mean and standard deviation for groups of results as
scenes with definite and then likely cloud contamination are re-
moved.

Figure 6: One example of a cloud product provided with the
Landsat surface reflectance product. White pixels are classified
as cloudy.

Figure 7: Example of a cloud product with each pixel categorized
as cloudy (red), clouds in the vicinity (blue), or cloud free (black).
Note that green pixels are pixels in the surround of the image.

standard deviations would be consistent for all images based on
the validation dataset, but the scene percentage is unique to this
example.

Pixel Mean [K] SD [K] % of Scene
Cloud Free (Black) -0.267 0.900 13.2%

Vicinity (Blue) -1.607 3.239 65.8%
Black and Blue -0.933 2.460 86.8%
Cloudy (Red) Do Not Trust NA 21.0%

Table 3: Example of expected means and standard deviations
for each category included with the additional confidence met-
ric band.

6. PRODUCT EXTENSIONS

Two glaring holes in the ability of this product to be applied to ev-
ery Landsat scene in the archive is the validation for other sensors
as well as the extension to a global dataset. We briefly explore
both in this section.

6.1 Landsat 7

A small subset of cloud free Landsat 7 scenes was processed over
the same ground truth sites in order to validate the methodology
for Landsat 7. The error was again calculated using Equation 9.
A histogram of error values is shown in Figure 8. Only 44 cloud
free Landsat 7 scenes were processed; these scenes had a mean
error of -0.20 K and a standard deviation of 0.68 K. Although a
larger dataset, with more variety in conditions and atmospheres,
would be needed in order to more confidently validate Landsat 7,
this is a good first look, and results in similar mean errors when
applying the methodology to more than one sensor. This is a very
encouraging initial validation.

Figure 8: Histogram of error values for small subset of cloud free
Landsat 7 scenes.

6.2 Landsat 8

Similarly, a small cloud free dataset of Landsat 8 scenes was pro-
cessed and analyzed. Although Landsat 8 has two thermal bands,
and could potentially utilize a split window or other multiple ther-
mal band technique, we first analyze each band separately using
our single channel method. Figure 9 shows a histogram of error
values for band 10 of Landsat 8 and Figure 10 shows a histogram
of error values for band 11 of Landsat 8. The mean and standard
deviation for each Landsat 8 band is summarized in Table 4.

Landsat 8 Mean [K] SD [K]
Band 10 -0.56 0.76
Band 11 -2.16 1.64

Table 4: Mean error and standard deviation for each band of
Landsat 8.

Band 10 has errors with magnitudes greater than those shown by
Landsat 5 and Landsat 7, but the mean error and standard devi-
ation are still less than 1 K and very reasonable for the targeted
applications. However, the magnitude of errors for band 11 are
more alarming and we would not be confident in producing a land
surface temperature product using this radiance data. However,
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Figure 9: Histogram of error values for small subset of cloud free
Landsat 8 scenes processed using band 10.

Figure 10: Histogram of error values for small subset of cloud
free Landsat 8 scenes processed using band 11.

current studies show that there are actual changes in the Landsat
8 calibration, more prevalent in band 11; it is believed that there
is still currently a variable source of calibration error, correlated
to scene radiance, that can be attributed to stray light from outside
the detectors nominal point spread function impinging on the de-
tector (Schott et al., 2014), (Montanaro et al., 2013). Therefore,
these results, rather than acting as a reflection of the performance
of our current methodology, will be utilized in the continuing cal-
ibration work and attempts to solve the stray light problem, and
a more in depth analysis of the ability to process Landsat 8 us-
ing the current methodology will be revisited after there is more
confidence in the calibration and characterization of the Landsat
8 thermal bands.

6.3 Global Product

As noted in Section 2.2, the current atmospheric characterization
is pulled from a dataset that covers only North America. Exten-
sion to a global product requires utilization of global atmospheric
characterization data. The Modern-Era Retrospective Reanalysis
for research and Applications (MERRA) dataset provides 1.25◦

resolution around the globe (288 by 144 array), has eight sam-
ples each day, and provides variables at 42 pressure levels. The
MERRA data also includes geopotential height [gpm], which we
convert to geometric height [km], and temperature [K], but pro-
vides the relative humidity [%], eliminating the need for conver-
sion of the water vapor profile (Rienecker and Gass, 2013). These
profiles are integrated into the same methodology discussed in
Section 3. A small subset of the Landsat 5 validation dataset, over
the same ground truth sites, was processed using the MERRA re-
analysis dataset. Histograms of error values for all scenes, scenes
with clouds in the vicinity or cloud free, and only cloud free
scenes are shown in Figures 11, 12, and 13 respectively. The
numbers in the plot title indicate the cloud categorizations in-
cluded in the plot. Note that the cloud analysis of these scenes
was still subjective based on analyst interpretation and not objec-
tively or automatically classified as described in the cloud product
incorporation.

Table 5 shows the mean and standard deviation of the subset of

Figure 11: Histogram of error values for subset of Landsat 5 val-
idation dataset processed using MERRA data.

Figure 12: Histogram of error values for subset of Landsat 5
validation dataset processed using MERRA data, including only
scenes with clouds in the vicinity and cloud free over the ground
truth site.

Figure 13: Histogram of error values for subset of Landsat 5
validation dataset processed using MERRA data, including only
scenes that are cloud free over the ground truth site.

scenes, processed using MERRA. The values shown in Table 5
are similar in magnitude to those shown in Table 2.

Therefore, these results, although an incomplete analysis, are jus-
tification to move forward with a complete validation of the MERRA
dataset for a global product and show very encouraging results
for the ability to produce LST values for all Landsat scenes in the
archive.

7. FUTURE WORK

7.1 Bias Correction

Comparison of current results for the cloud free Landsat 5 val-
idation dataset shows the negative bias to be significant when
compared to the Landsat 5 calibration data. Based on current
calibration expectations for Landsat 5 (0.0 K ± 0.73 K), results
are significantly different at alpha levels 0.05 and 0.01, suggest-
ing that our negative bias is inherent to our process rather than
the satellite data. Because we see a systematic bias, we suggest
increasing each LST value by 0.267 K in order to create a zero
mean in our cloud free data. The updated expected means and
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Cloud Category Mean [K] SD [K] Number of Scenes
0, 1, 2, 3, 4, 5 -8.697 18.520 397 [100%]

0, 1, 2, 3 -1.474 3.610 262 [66%]
0, 1, 2 -0.954 1.846 239 [60%]

0, 1 -0.513 1.086 153 [39%]
0 -0.354 0.911 101 [25 %]

Table 5: Categories used in cloud analysis and breakdown of the
number of scenes in each category for subset of scenes processed
using MERRA dataset.

standard deviations for each category included in the confidence
metric band are shown in Table 6.

Pixel Mean [K] SD [K]
Cloud Free (Black) 0.0 0.900

Vicinity (Blue) -1.340 3.239
Black and Blue -0.667 2.460
Cloudy (Red) Do Not Trust NA

Table 6: Expected means and standard deviations for each cat-
egory included with the additional confidence metric band after
bias correction for cloud free data.

However, analysis of our small Landsat 7 dataset shows the neg-
ative bias to be insignificant. That is, based on current Landsat 7
calibration expectations (-0.05 K± 0.56 K), results are not statis-
tically different at alpha level 0.05, suggesting any bias shown in
these results cannot be solely attributed to our developed process.
This would suggest that a bias correction to the final LST value
would be inappropriate, although we recognize that this Landsat
7 dataset is also extremely small. Therefore, we intend to revisit
the need for a bias correction after a more complete validation of
all Landsat sensors.

7.2 Cloud Product Automation

The current confidence metric suggestion requires additional work
before it can be implemented into the product. We must automate
the incorporation of the cloud product and categorization of each
pixel based on the distance thresholds given. With this automa-
tion, we can more accurately compare our objective and subjec-
tive cloud categorizations and adjust distance thresholds and ex-
pected means and standard deviations accordingly. Based on a
larger dataset of automated results, we can explore further im-
provements. Would it be beneficial to bias pixels with clouds in
the vicinity based on cloud type or distance to cloudy pixel? Is
there a way to determine the type of cloud based on this cloud
product and is that information useful for confidence expecta-
tions? We also need to address issues with single pixels classified
as clouds and how to deal with the edges of each image.

8. CONCLUSIONS

We have shown a methodology to automatically generate the ra-
diative transfer parameters necessary to calculate an LST value,
given the corresponding surface emissivity, for every pixel in any
Landsat scene in North America. This methodology shows ex-
tremely encouraging results for cloud free scenes, with a mean
error when compared to ground truth data of -0.267 K, and a
standard deviation of 0.900 K. With this trusted methodology, we
focus on the development of a confidence metric that will prove
useful to the user. Based on limitations of an initial traditional
error propagation when applied to this process, and the obvious
and large influence of clouds in the scene, we found that a con-
fidence metric based on the proximity of cloudy pixels would be
best suited for this product. We currently suggest including an ad-
ditional confidence metric band, derived from the Landsat cloud

product, that categorizes each pixel as cloudy, clouds in the vicin-
ity, or cloud free, with each category having some expected mean
and standard deviation. Future work includes validation for all
Landsat sensors and a global dataset, as well as incorporating the
cloud product and improvements to the confidence metric band
that could potentially provide the user with more information.
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