

PARALLEL VISUALIZATION WITH GLOBAL DATA

BASED DISTRIBUTED CACHE FRAMEWORK

ZHAO Di*

 College of Resources and Environment and Tourism, Hunan University of Arts and Science, Changde 415000, Hunan

China, E-mail: longhuitian@qq.com

KEY WORDS: parallel visualization; global data; render; distributed cache; network

ABSTRACT:

Visualizing the global data smoothly is a challenge to the present software and network technology, such as simulating global
weather phenomena or global geological environment. In this paper, we devised an effective solution system to view global data at a
real-time rendering pleasing frame rate based parallel mode. In software, we applied the open-source Visualization ToolKit (VTK)
and the additional functionality of ParallelVTK. In network, we propose a centrally controlled cache system with distributed cache
storage framework. The cache control server can manages a list of all contents cached by multiple cache servers and it can provide
real-time requested content to the user. Additionally, it can reduce network traffic between the core network and the access network.
We tested issues of our system and describe a prototype system. As a result of evaluation of the system, we have made it clear that
our system architecture is effective to the global data.

* Corresponding author. Foundation item: Project supported by Doctoral Research Start-funded of HUAS, 13101036.

1. INTRODUCTION

Computer visualization is an important tool for data
analysis and presentation in computational and geographic
sciences, where it is used to effectively extract and convey
information contained in large datasets[1,2]. Our goal is mainly
to effectively visualize the global data at a satisfying frame rate,
it is need delighted to the eye. In order to process such the large
data sets, we introduce an open source and parallel
visualization framework. This solution is not restricted by the
hardware, since the transfer time of the data set on a single
SATA drive is less than desired results[3,4].

Simultaneity, we also apply the distributed cache
technology in the network. The number users increased predict
that the number of requests for visualization from users to web
servers will increase at the same time. Therefore, the problems
such as cessation of service may occur and network traffic will
increase. To overcome such problems, we introduce a cache
server in the network to serve contents. It can help to restrain
the increase in requests to web servers by delivering contents
from the cache server. Consequently, traffic in the core network
is reduced.

In this paper, we propose the open source and parallel
visualization framework and distributed cache system to apply
in the global data network accommodating millions users. We
also explain the prototype of our system and evaluate whether
it is suitable for global data or not.

2. PARALLEL VTK

The task of visualizing the global datasets presents the
challenge of overcoming the high disk I/O required to yield
pleasing frame rates. In order to facilitate this and make
efficient use of the Storage Area Network (SAN), a scalable
and parallel framework was used. The Visualization ToolKit
(VTK) and extension, Parallel VTK, offer an open source and
multi-platform solution[5-7]. Parallel VTK builds on top of the

multi-scale platform interface (MPI) of choice for parallel
computation. Parallel VTK offers three distinct parallel models.
For extremely large, single time-step data, data parallelism
divides the data among the processes to be rendered[8]. Each
time-step in the global dataset is actually small enough that one
process is quite capable of rendering the entire scene easily.

The second parallel option, pipeline parallelism, makes
data parallelism less useful. It is intended for large,
time-varying datasets and is relevant for use cases. It allows
one process to perform the disk I/O while another process can
do the rendering. These processes can be performed
concurrently, so process 1 can start reading in time step 2 while
process 2 is still rendering time step 1. Communication is
performed by input/output port classes that abstract the MPI
sends/receives.

The final parallel model is task parallelism. This allows for
a step in a VTK data flow to be performed in parallel. We can
use this functionality to read in time steps of the data series in
parallel. Rendering the global data files does not require more
than one process, since it is overpowered by the disk I/O
bottleneck incurred from reading in the data.

3. DISTRIBUTED CACHE SYSTEM

The introduction of cache servers in network is a popular
way to reduce the processing load of web servers as the number
of content requests increase, and to reduce network traffic in
core networks[9,10]. The cache servers help to control the
number of requests for contents to the web server by delivering
contents from the cache servers in the access network. This also
works to restrain the increase in the processing load of the web
servers. Furthermore, by reducing the number of requests to the
web servers, network traffic between the access and core
networks is reduced. However, the processing performance of
the cache server will be a problem when it receives requests
from hundreds of thousands of users.

To overcome the above issue, multiple cache servers have

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-2/W1, 2013
8th International Symposium on Spatial Data Quality , 30 May - 1 June 2013, Hong Kong

139

been introduced [11,12]. In this case, each cache server only
processes requests from users who are connected to it. When
each cache server caches contents independent of other cache
servers, the cached contents are limited due to limited cache
space. In addition, since the requests for contents from all users
are processed by multiple cache serves, the number of requests
processed by each cache server is small. Therefore, the hit ratio,
which is the percentage of the existence of cached contents to
all requests, is lower when the some parts of requests are
processed by each cache server. As a result, each cache sever
frequently has to get contents from an original server, and the
traffic between the core and access networks is slightly
reduced.

The cache system where multiple cache servers cooperate
to reply the contents requested from users is called a distributed
cache system.

4. IMPLEMENTATION ISSUE

4.1 VTK Visualization Implementation
A VTK visualization consists of a visualization pipeline.

Traditionally a pipeline starts with a data source. In this case
the data source is a vtkRectilinearGrid. A rectilinear grid is a
3-dimensional grid of data points with a fixed number of values
in the x, y, and z directions. It also allows for the divisions in
each coordinate direction to be arbitrary.

The input and output ports are VTK classes which allow
processes to send and receive data sources. These processes
could lie anywhere in a MPI environment, so they are most
likely on separate machines. This communication method will
allow the visualization to take advantage of pipeline and task
parallelism. vtkInputPorts are designed to be “single source”,
so only parameters to a data set can be altered after the source
is pushed across the network at the first time.

Next, the data source is passed to a contour filter. Contour
filters perform isosurfacing of the data. A rectilinear grid is just
a 3-dimensional array of values and not a traditional
3-dimensional object that is part of a visualization scene. Given
a certain threshold, the contour filter will convert the data
source to the desired polygonal representation viewing.

Finally, VTK pipelines are often closed with a data mapper
and an actor. The data mapper converts the object
representation to a representation that the graphics card will
better understand. Actors are traditional in scene graphs to
represent objects and their appearance. All actors are added to
the window to create the entire scene. A view of the mapping
of the visualization pipeline onto the cluster is shown in Figure
1.

Figure 1: Flow of global data to VTK format.
Since reading in each time step from disk presents the largest

time consumption, we identified this task for parallelization.
Isosurfacing and rendering each time step is relatively fast and
these tasks will be performed as the rendering nodes. The

remaining processes will be referred to as reader nodes. All
communication between the renderer and the readers is
performed through the vtk input/output ports.

All processes have access to a shared VTK MPIC ontroller
object that allow the process to identify its index. These indices
are used to set tags in the input and output port objects. The
techniques allow the renderer to actively prepare an input port
to request the next sequential time step from the corresponding
process that lies on the machine with the time step on its SAN
partition.

4.2 Distributed Cache System Implementation

To apply the distributed cache system to a large scale
network, we propose a Distributed Cache Control System
(DCCS). The DCCS is composed of one cache control server
arranged near the border of the core network and the access
network, with the access network and multiple cache servers
arranged near the user terminal. The cache control server
manages a list of all contents cached by multiple cache servers.
The list of contents is comprised of URLs that are cached by
cache servers in the cache system and a cache server ID that
caches the content.

The basic operation of DCCS is as follows. A cache server
receives a request for content from a user who has searched for
the requested content from all of the content that the cache
server caches. If it has the requested content, the cache server
delivers it to the user who requested the content from the cache
server. On the other hand, if the requested content is not in the
cache server, the cache server forwards the request to the cache
control server. Then the cache control server that received the
content request from the cache server retrieves the list of
contents to determine whether the requested content is cached
in the cache system or not. If there is a cache server that caches
that particular content, the cache control server sends an
instruction message to that cache server to forward the content
to the cache server that first requested the content. The cache
server that received the instruction message from the cache
control server forwards the requested content directly to the
requesting cache server. The cache server receives the
requested content, delivers it to the user that requested it, and
then caches it. The cache server then sends the URL
information of the cached content to the cache control server.
The cache control server receives the URL and adds it to the
list of contents.

DCCS can cache contents redundantly by multiple cache
servers. If the requested content is cached by multiple cache
servers, the cache control server sends the instruction message
to the cache server with the lowest load to forward the content.
Therefore, the load balancing of the cache server is possible in
our system. In addition, to maintain correspondence of the lists
of contents in the cache control server with the list of contents
cached by the cache servers in the DCCS, the cache server
must send the URL that the cache server deleted. Therefore, the
processing load of the cache control server may increase due to
processing the URL messages from all cache servers
asynchronously.

5. EVALUATION WITH A PROTOTYPE SYSTEM

 In this section, we describe how we measured the
performance of the DCCS using a prototype system. In the
proposed system, cache servers can be added according to the
number of requests from users, so the cache servers can be
added gradually.

5.1 Conditions of evaluation

The prototype system is composed of one cache cooperation

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-2/W1, 2013
8th International Symposium on Spatial Data Quality , 30 May - 1 June 2013, Hong Kong

140

router, three cache control servers, six web servers and six
cache servers. The cache control servers, the web servers, and
the cache servers are connected through the cache cooperation
router. The cache control servers and the cache cooperation
router affect the performance of the DCCS. Therefore, with the
prototype system, we measured CPU load in each cache control
server when changing the number of cache control servers. We
also measured the load of the cache cooperation router when
registering the list of contents cached in the system. The
measurement parameters are in Table 1. The hit ratio of a cache
server is stated by the results of measurement in a real
environment.

Table 1. Measurement parameters
Parameters value

Cache server near
users 35

Hit
ratio(%) Other cache servers

in
cache system

15

Measuring time(seconds) 120
Content size(KB) 1

5.2 Performance of cache control server

Figure 2 shows the relation between the number of requests
from users and the CPU load of the cache control servers when
there were one, two, and three cache control servers. As seen in
Figure 2, with one cache control server, the CPU load of the
cache control server reaches nearly 100% when the total
requests from users becomes 2,000 requests per second and the
performance of the cache control server reaches the limit.
However, the CPU load of the cache control server decreased
in proportion to the increase in the number of cache servers
when the number of cache servers was two or three.

 Figure 2. CPU load of cache control server

 Figure 3. CPU load of cache cooperation router

5.3 Performance of cache cooperation router

Next, we measured the load of the CPU. This CPU registers
the hash value sent from the cache control servers. The
measurement results are in Figure 3. As seen in this figure, the

CPU load falls when the user request ratio reaches 2,000
requests per second in the case of one cache control server.
This is because the performance of the cache control server
reaches a limit, and the cache control server cannot transmit the
URLs of contents to the cache cooperation router.

Similarly, CPU load increased in proportion to the increase
in the number of requests from users when there were two or
three cache control servers. Furthermore, when the number of
user requests from users exceeded 4,000 requests per second,
the CPU load of the cache control server is decreased. This
means the load of the cache cooperation router reached a
critical limit.

5.4 Experimental result

According to the investigation results, the number of average
pages that one broadband user refers to per month is 2,000. If
we assume each page is composed of 10 sub-components on
average, each user sends 20,000 requests a month. In this case,
the average ratio of the request from one user is about 0.0077
requests per second. In an access network accommodating one
million users, 7,700 requests are sent each second.

As one cache control server can process about 2,000 requests,
as seen in the measurement results, 7,700 requests are
processed by the four cache control servers. Concerning the
processing power of the cache cooperation router, the clock
speed of the CPU used in the prototype system of the
cooperation router was a 650-MHz. From the results of
measurement, the upper limit of processing requests in cache
cooperation router is about 4,000. Therefore, the prototype
system can be applied to a network where half-million users are
accommodated.

6. CONCLUSION

We present a solution for visualizing global data sets in a
real-time high performance environment, which can also be
easily modified for use on commodity hardware. Likewise, the
result can be viewed in real-time while being rendered or can
be saved for reuse at a later time. Also, we apply distributed
cache technology in parallel visualizing network and evaluated
the prototype system. We demonstrated that the system can be
applied to large-scale systems accommodating one million
users from the point of view of average request processing.

REFERENCES
[1] Grundy E., Jones M. W., Laramee R. S., Wilson R. P.,

Shepard E. L. C.: Visualisation of sensor data from animal
movement. Comput. Graph. Forum 28, 3 (2009), p.
815-822.

[2] Graphics of Large Datasets: Visualizing a Million
(Statistics and Computing), 1 ed. Springer, (2006).

[3] Blaas J., Botha C. P., Grundy E., Jones M. W., Laramee R.
S.: Smooth graphs for visual exploration of higher-order
state transitions. IEEE Transactions on Visualization and
Computer Graphics 15, 6 (2009), 969–976.

[4] Blaas J., Botha C., Post F.: Extensions of parallel
coordinates for interactive exploration of large
multi-timepoint data sets. IEEE Transactions on
Visualization and Computer Graphics 14 (2008),
1436–1451.

[5] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from sequential
building blocks. In EuroSys’07, (2007), p. 59-72.

[6] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The
hadoop distributed file system. Mass Storage Systems and
Technologies, IEEE / NASA Goddard Conference on,
0:1–10, (2010).

[7] “Cache Array Routing Protocol and Microsoft Proxy Server

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-2/W1, 2013
8th International Symposium on Spatial Data Quality , 30 May - 1 June 2013, Hong Kong

141

version 2.0”,
http://www.microsoft.com/technet/archive/proxy/prxcarp.
ms px

[8] Web Advertising Bureau, Japan Advertisers Association,
“Recent viewing performance in Web gazette meeting for
the study," http://www.wab.ne.jp/pdf/data_040113.pdf,
(2005).

[9] M. Tang, B.-S. Lee, X. Tang, and C. K. Yeo. The impact
of data replication on job scheduling performance in the
data grid. Future Generation Comp. Syst., (2006), p.
254–268.

[10] Q. Wei, B. Veeravalli, B. Gong, L. Zeng, and D. Feng.
Cdrm: A cost-effective dynamic replication management
scheme for cloud storage cluster. In CLUSTER’10, (2010),
p. 188–196.

[11] C. L. Abad, Y. Lu, and R. H. Campbell. Dare: Adaptive
data replication for efficient cluster scheduling. In
CLUSTER, (2011), p. 159-168.

[12] Qu H., Chan W.-Y., Xu A., Chung K.-L., Lau K.-H., GUO
P.: Visual analysis of the air pollution problem in hong
kong. IEEE Transactions on Visualization and Computer
Graphics 13, 6 (2007), 1408 –1415.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-2/W1, 2013
8th International Symposium on Spatial Data Quality , 30 May - 1 June 2013, Hong Kong

142

