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ABSTRACT:

Multispectral remote sensing images are widely dsethnduse/landcover (LULC) classification. Penfiance of such classification
practices is normally evaluated through the coofushatrix which summarizes the producer’s and ssaeturacies and the overall
accuracy. However, the confusion matrix is basedhenclassification results of a set of multi-clagsning data. As a result, the

classification accuracies are heavily dependertherrepresentativeness of the training data seftasdmperative for practitioners
to assess the uncertainties of LULC classificatioroider for a full understanding of the classificatresults. In addition, the
Gaussian-based maximum likelihood classifier (GMLEWwidely applied in many practices of LULC clagsifiion. The GMLC
assumes the classification features jointly formudtivariate normal distribution, whereas as, ialitg, many features of individual
landcover classes have been found to be non-Gaussiigct application of GMLC will certainly affethe classification results. In
a pilot study conducted in Taipei and its vicinitye tackled these two problems by firstly transfimgrthe original training data set
to a corresponding data set which forms a multatarnormal distribution before conducting LULC cifisation using GMLC. We
then applied the bootstrap resampling techniqugetwrate a large set of multi-class resampleditigidata from the multivariate
normal training data set. LULC classification wasrtimplemented for each resampled training datasieg the GMLC. Finally,
the uncertainties of LULC classification accuraciese assessed by evaluating the means and stashelaadions of the producer’s
and user’s accuracies of individual LULC classescihivere derived from a set of confusion matricessuRe of this study

demonstrate that Gaussian-transformation of thgirai training

data achieved better classificatamturacies and the bootstrap

resampling technique is a very helpful tool foremséng uncertainties of LULC classification. The entainties in classification
accuracies were also found to be affected by tres sif class-specific training samples.

1. INTRODUCTION

Multispectral remote sensing images are widely u$ed
landuse/landcover (LULC) classification. Many LULC
applications have been conducted using the Gaubsised
maximum likelihood classifier which assumes multiate
Gaussian distribution for classification featurdswever, very
often radiances or digital numbers of classifiaatfeatures are
found to be non-Gaussian. Thus, the Box-Cox transftom
has been used to multi-class classification featygor to
application of Gaussian-based LULC ClassificatiorshiNiand
Morisaki (2001) found that such transformation gaeid better
classification accuracies. In addition, classtfima results are
generally evaluated based on the classificationuractes
(including the producer’s and user’s accuraciesivdd from a
set of preselected training data. Such evaluat®rheavily
dependent on the representativeness of the traidatg and
thus inevitably involves certain degree of uncetias. To
address the uncertainties in LULC classificatiorg bootstrap
resampling technique has been applied for assestirg
uncertainties in LULC classification (Weber and Lilag2007).
In this study, we firstly demonstrate that
transformation of classification features can digantly
improve the classification accuracies of Gaussiased
maximum likelihood classifier (GMLC). Secondly, the
bootstrap resampling technique was implementecet®eigite a
large set of training data which were then usedsaussian-
based LULC classification. Uncertainties in LULC
classification were then assessed by analyzingctirdusion
matrices derived fromesampledraining data set.
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2. METHODS
2.1 Classification method

Gaussian-based maximum likelihood classifier (GMLIS)
applied in this study. The GMLC assumes the clasgifin
features jointly form a multivariate Gaussian disttion. The
likelihood that a pixel belonging to clasbas values of feature
vector x can be represented by the following matiate
Gaussian density:
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wherex represents the feature vector which is a vectaligifal
numbers (DNSs) for a pixety; represents the clagx is the total
number of classes represents the dimension of feature space,
d=3 in the study (G, R, NIR bandsj} andZ; are mean vector

Gaussian and covariance matrix of classTaking into account the a priori

probabilities of individual classes, the probapilihat a pixel
having feature vectotr belongs to clasiscan be expressed by
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By the decision rule in maximum likelihood classifion with
the assumption of multivariate Gaussian distribuytiche
discriminate functionG;(x), can be stated as:

G,(x) = Inp(w;) — %i‘n|£i_1| —% (x —m) L (x—m,)

©)

A pixel with DN valuex is then assigned to classwhereG;(x)
is the maximum within all classes.

2.2 Transformation method

Whereas as, in reality, many features of individtlakses have
been found non-Gaussian distribution. Directly gsoriginal
data for classification would certainly affect thesults. To
correspond to the assumption of multivariate Gaussi
distribution and also retain the characteristiceath class, we
transformed the original data to normal distribntiwith the
same mean and standard deviation. In the sturdiy, @ass has
three the marginal distributions. For each margdistribution,
the sample mean and standard deviation were ctdcués the
parameters to establish a normal distribution gittem mean
and standard deviation. Empirical cumulative degnginction
(ECDF) of original dataRy(x), blue line inFigure 1) and the
CDF of the established normal distributid®({), red dash line
in Figure 1) were used in transformation of training data. &or
specific sample from training data, we knew thesglat
belonged to, original DN value in specific band, daamplex;,
and the corresponding ECDR(x;). We then find a transformed
vales, y; whose corresponding CDIF(y;) equals the ECDF,
F«(x). By this method, original training data set of ealass X;,
Xo, ..., %) €Can be transformed to new data set\p, ..., W)-
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Figure 1. The way of transformation.

Figure 2indicates the distributions of training data of Fxaahd.
Five histograms in the left hand side are derivwedtiginal data
and the histograms in the right hand side showibligions of
the five classes after respective normalizing fiemsations.

After transforming marginal distributions of indikial class to
normal distribution, jointly multivariate distribion of

individual classes were reformed. Therefore, we aa@me
transformed data which formed multivariate normatribution

to conduct LULC classification by GMLC.
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Figure 2. Histograms of Red band of original dafg(land
transformed data(right) in the five classes: Foréskter,
Building, Grass and Road.

2.3 Bootstrap resampling to access uncertainty

The bootstrap method is an extensive computatiapploach
to uncertainty estimation based on sampling andisstal
estimation. In theory, resampling is done to geera
distributions similar to popula tion sampling. & & powerful
tool, especially when only a small data set is usegredict the
behavior of systems or processes.

The classification accuracies are heavily dependentthe
representativeness of the training data set. diffieult to have

many training data s sets in practice to assesartbertainty in
classification. Therefore, to simulate the uncettaresult from
sampling of training data, bootstrap technique wapglied to
the training data in order to generate a largeoSehulti-class
resampled training data. We firstly selected orteo$eraining

data with 22010 samples including five classes (imabers of
individual class are forest=7005, water=2771, bng¢5956,

grass=2445, and road=3924). To generate a new seta for
each class, we randomly selected one sample paint the
original training data set at one time and put acl after
selecting. Repeat the experiment in time of the saunebers as
training samples. For each iteration, a new resadhfiiaining
data set can be generated, and the numbers ofctassh and
total number were the same as original traininga.datiter

generating 1000 sets of training data, classificativas
implemented for each data set using the GMLC. Coresgty

1000 confusion matrices with user’'s accuracies,dpcer’s

accuracies and overall accuracies were gained aed to
evaluate the uncertainty of performance in clasaiifon.
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3. STUDY AREA AND DATA
3.1 ALOSsensor system

The study conducted in Taipei City and its vicinifgipei is a
highly developed metropolis. There are most redidearea
and office buildings, but there are mountains ailid m the

northeast and the southeast of cRigure 3 shows true-color
satellite image of the study area. The size ofysrda is about

3.2 Training datain Landuse/L andcover classification

For the purpose of landcover analysis, top-leveljoma
landcover classes are considered. In this stugg dlasses,
including water, forest, grass, building and roadre set up for
LULC classification. Among these classes, water esgnts
rivers and ponds. Forest represents land coveréarbest, trees,
and shrubs. Grass includes areas cover by gragstalde crops
and wetland. Building mainly includes official andnemercial

362knt (19kmx19km). The satellite image was preprocesse@uildings and residences. Road represents pavednoading

for radiometric and geometric corrections by thepada
Aerospace Exploration Agency (JAXA).

The image of the study was acquired by the AVNIReRAsor
onboard the ALOS satellite on 15-Feb-2009 and wittpatial
resolution of 10mx10m. AVNIR-2 sensor is a visibled near
infrared radiometer for observing land and coaabales, and it
provides multispectral images, respectively, in rfapectral
bands: blue (Band 1, 0.42- 0/60), green (Band 2, 0.52-
0.6Qum), red (Band3, 0.61- 0.@¢n), and near infrared (Band 4,
0.76- 0.84um). In the study, the raw radiance or digital value
(DN values) of imagery in three bands, green (&9, (R) and
near infrared (NIR), are used as classificationufess.

Figure 3. LOS satellit iagery and the area usetis study.
© ALOS Imagery Copyright (15-Feb-2009)
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highways and main roads in Taipei city and highways

Training data of each class was chosen and comtdubiusing
field observations or aerial imagery from GooglertBEaand
Google Map. Total number of training data is 22pdéls, and
the numbers of each class were decided based orardze
percentage of individual class in the study areeedt= 7005
(32%), water= 2771 (13%), building= 5956 (27%),33r22445
(11%), and road= 3924 (17%). Also, DN values oihirey data
from three ALOS spectral bands (G, R and NIR band=ew
chosen as classification features. By the mean reciod
covariance matrices of training data, the multitari
distribution of each class can be established hed be used in
further classification.

4, RESULTSAND DISCUSSION
4.1 Classification of Transformation

Using the original data and transformed data, wadyaed the
effect of normalizing transformation to classificat accuracy.
Table 1 and Table 2 summarize classification resoftusing

original training data and transformed data. Thaefusion

matrix demonstrates that the confusion mainly o@uclasses
between Building and Road and classes between Fanest
Grass. The result illustrates a scenario where @nenore

classification features exhibit overlapping spdctignatures.
Also, the producer’'s accuracy of Building and thee'sis
accuracy of Grass and Road are worse than otleseda

Table 1. Confusion matrix of original training data

- reference classes

classes Forcst Water Building Grass Road  Sum oS
accuracy(%)

Forest 6676 [ 1 168 0 6845 97.53

Water 0 2763 1 [ 0 2764 99.96

Building 2 3 4596 19 225 4845 94.86

Grass 327 0 28 2258 49 2662 84.82

Road 0 5 1330 0 3650 4985 73.22

Sum 7005 2771 5956 2445 3924 22101

m‘;;) 9530 9971 7707 9235  93.02 *90.24

*overall accuracy

Table 2. Confusion matrix of transformed training data

reference classes
dlass Forcst  Water DU Groeo  Road  Sum DS
B accuracy(%)

Forest 6876 0 1 59 0 6936 99.13
Water 0 2756 55 0 7 2818 97.80
Building 8 7 5388 23 127 5553 97.03
Grass 121 0 12 2362 47 2542 9292
Road 0 8 500 1 3743 4252 88.03
Sum 7005 2771 5956 2445 3924 22101

f::;‘:;;ﬂ 98.16 9946 9046 9661 9539 *95.58

*overall accuracy
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Figure 4. Comparison of classification results, udghg overall accuracy(OA), producer’s accuraci#d(Pand user's

accuracies(UA) of individual class between origidata and transformed data.

By comparing the two matrices, the accuracies ofsfamed
data became better in all classes. The overallracglincrease
from 90.24% to 95.58%, and the user's accuracieSmaifss
increase most obviously from 77.1% to 90.46%. lséen that
the transformation of training data improve thefgenance of
classification, especially the classes with worsecueacy
originally.
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4.2 Uncertainty assessment using Bootstrap resampling

1000 sets of bootstapping resampled training dedpectively !
from original data and transformed data are useidhfdement |
the GMLC. A set of producer’s and user's accurags ;
individual LULC classes which were derived from & sé AR i
confusion matrices. Figure 4 shows the differenesvben the L .
distributions of accuracies before transformatiod those after
transformation. Besides of Water, the means of acoes of all
classes increased after transformation, and tha&datd
deviations of all accuracies had no significanffedénce. It
interprets that the performance of uncertainty lagsification
was not affected by transformation.
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Figure 5 and Figure 6 present the producer’'s aner'sis
accuracies of five individual classes after transftion. The
accuracies of Water and Forest are greater theaer athsses’
and the uncertainties of these two classes are llesntrast,
the less means and greater standard deviationscafaxies of
Building, Road and Grass since the characteristicsaniing
data in these classes are more heterogeneous siuitie area.
Figure 7 shows the relation between producer's aser's
accuracy of individual classes. We can easily zealthe
uncertainties in classification by the distribusorAs same as
the previous results, Building, Grass and Road haweeem
significant uncertainties. In addition, by separgtihe classes
by a line in slope of 1, it demonstrates that faat®V, Grass and

Road, producer’s accuracies are greater than usmgigacies.
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Figure 5.Distribution of producer’s accuracy with five class

Figure 6.Distribution of user’s accuracy with five classes.

22



International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-2/W1, 2013
8th International Symposium on Spatial Data Quality , 30 May - 1 June 2013, Hong Kong

On the other hand, user’s accuracies are greaargiroducer’s
accuracies of Building and Forest.
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Figure 7. Relation between user’'s accuracy and merthi
accuracy with five classes.

5. CONCLUSIONS

Through the numerical results, a simple methodGaussian-
transformation of the original training data gavesttér
performance in GLMC. This pre-processing approach fo
classification would be useful for any classificatimethods
under the assumption of multivariate Gaussianidigion.

By the bootstrap resampling technique, the unceigginin
classification accuracies were found to be affettedhe sizes
of class-specific training samples. Furthermoresessing the
uncertainties of classification requires a suffiti@mumber of
observations per class to be created that retafistital power
of analysis; thus, the bootstrap resampling tealmizpn also be
applied in this process and to improve the chariaetiion of
classification’s uncertainty by analyzing the oVWlenaroducer’'s
and user’s accuracies of each class generating &oset of
confusion matrices.
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