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ABSTRACT: 
 
Multispectral remote sensing images are widely used for landuse/landcover (LULC) classification. Performance of such classification 
practices is normally evaluated through the confusion matrix which summarizes the producer’s and user’s accuracies and the overall 
accuracy. However, the confusion matrix is based on the classification results of a set of multi-class training data. As a result, the 
classification accuracies are heavily dependent on the representativeness of the training data set and it is imperative for practitioners 
to assess the uncertainties of LULC classification in order for a full understanding of the classification results. In addition, the 
Gaussian-based maximum likelihood classifier (GMLC) is widely applied in many practices of LULC classification. The GMLC 
assumes the classification features jointly form a multivariate normal distribution, whereas as, in reality, many features of individual 
landcover classes have been found to be non-Gaussian. Direct application of GMLC will certainly affect the classification results. In 
a pilot study conducted in Taipei and its vicinity, we tackled these two problems by firstly transforming the original training data set 
to a corresponding data set which forms a multivariate normal distribution before conducting LULC classification using GMLC. We 
then applied the bootstrap resampling technique to generate a large set of multi-class resampled training data from the multivariate 
normal training data set. LULC classification was then implemented for each resampled training data set using the GMLC. Finally, 
the uncertainties of LULC classification accuracies were assessed by evaluating the means and standard deviations of the producer’s 
and user’s accuracies of individual LULC classes which were derived from a set of confusion matrices. Results of this study 
demonstrate that Gaussian-transformation of the original training data achieved better classification accuracies and the bootstrap 
resampling technique is a very helpful tool for assessing uncertainties of LULC classification. The uncertainties in classification 
accuracies were also found to be affected by the sizes of class-specific training samples.  
 
 

1. INTRODUCTION 

Multispectral remote sensing images are widely used for 
landuse/landcover (LULC) classification. Many LULC 
applications have been conducted using the Gaussian-based 
maximum likelihood classifier which assumes multivariate 
Gaussian distribution for classification features. However, very 
often radiances or digital numbers of classification features are 
found to be non-Gaussian. Thus, the Box-Cox transformation 
has been used to multi-class classification features prior to 
application of Gaussian-based LULC Classification. Nishii and 
Morisaki (2001) found that such transformation can yield better 
classification accuracies.  In addition, classification results are 
generally evaluated based on the classification accuracies 
(including the producer’s and user’s accuracies) derived from a 
set of preselected training data. Such evaluation is heavily 
dependent on the representativeness of the training data and 
thus inevitably involves certain degree of uncertainties. To 
address the uncertainties in LULC classification, the bootstrap 
resampling technique has been applied for assessing the 
uncertainties in LULC classification (Weber and Langille, 2007). 
In this study, we firstly demonstrate that Gaussian-
transformation of classification features can significantly 
improve the classification accuracies of Gaussian-based 
maximum likelihood classifier (GMLC). Secondly, the 
bootstrap resampling technique was implemented to generate a 
large set of training data which were then used in Gaussian-
based LULC classification. Uncertainties in LULC 
classification were then assessed by analyzing the confusion 
matrices derived from resampled training data set.  

2. METHODS 

2.1 Classification method 

Gaussian-based maximum likelihood classifier (GMLC) is 
applied in this study. The GMLC assumes the classification 
features jointly form a multivariate Gaussian distribution. The 
likelihood that a pixel belonging to class i has values of feature 
vector x can be represented by the following multivariate 
Gaussian density: 
 
 

        (1) 
 
 
where x represents the feature vector which is a vector of digital 
numbers (DNs) for a pixel, ωi represents the class i, k is the total 
number of classes, d represents the dimension of feature space, 
d=3 in the study (G, R, NIR bands), mi and Σi are mean vector 
and covariance matrix of class i. Taking into account the a priori 
probabilities of individual classes, the probability that a pixel 
having feature vector x belongs to class i can be expressed by  
 
 

        (2) 
 
 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-2/W1, 2013
8th International Symposium on Spatial Data Quality , 30 May - 1 June 2013, Hong Kong

19



 

 

By the decision rule in maximum likelihood classification with 
the assumption of multivariate Gaussian distribution, the 
discriminate function, Gi(x), can be stated as:  
 
 

   (3) 
 

A pixel with DN value x is then assigned to class ωi where Gi(x) 
is the maximum within all classes. 
 
2.2 Transformation method 

Whereas as, in reality, many features of individual classes have 
been found non-Gaussian distribution. Directly using original 
data for classification would certainly affect the results. To 
correspond to the assumption of multivariate Gaussian 
distribution and also retain the characteristics of each class, we 
transformed the original data to normal distribution with the 
same mean and standard deviation. In the sturdy, each class has 
three the marginal distributions. For each marginal distribution, 
the sample mean and standard deviation were calculated as the 
parameters to establish a normal distribution given the mean 
and standard deviation. Empirical cumulative density function 
(ECDF) of original data (Fx(x), blue line in Figure 1) and the 
CDF of the established normal distribution (Fy(Y), red dash line 
in Figure 1) were used in transformation of training data. For a 
specific sample from training data, we knew the class it 
belonged to, original DN value in specific band, for example, xi, 
and the corresponding ECDF, Fx(xi). We then find a transformed 
vales, yi whose corresponding CDF, Fy(yi) equals the ECDF, 
Fx(xi). By this method, original training data set of each class (x1, 
x2, …, xn) can be transformed to new data set (y1, y2, …, yn). 

 
Figure 1. The way of transformation. 

 
Figure 2 indicates the distributions of training data of Red band.  
Five histograms in the left hand side are derived by original data 
and the histograms in the right hand side show distributions of 
the five classes after respective normalizing transformations. 
 
After transforming marginal distributions of individual class to 
normal distribution, jointly multivariate distribution of 
individual classes were reformed. Therefore, we can use 
transformed data which formed multivariate normal distribution 
to conduct LULC classification by GMLC. 
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Figure 2. Histograms of Red band of original data(left) and 
transformed data(right) in the five classes: Forest, Water, 
Building, Grass and Road. 

 
2.3 Bootstrap resampling to access uncertainty 

The bootstrap method is an extensive computational approach 
to uncertainty estimation based on sampling and statistical 
estimation. In theory, resampling is done to generate 
distributions similar to popula tion sampling. It is a powerful 
tool, especially when only a small data set is used to predict the 
behavior of systems or processes. 
 
The classification accuracies are heavily dependent on the 
representativeness of the training data set. It is difficult to have 
many training data s sets in practice to assess the uncertainty in 
classification. Therefore, to simulate the uncertainty result from 
sampling of training data, bootstrap technique was applied to 
the training data in order to generate a large set of multi-class 
resampled training data. We firstly selected one set of training 
data with 22010 samples including five classes (the numbers of 
individual class are forest=7005, water=2771, building=5956, 
grass=2445, and road=3924). To generate a new set of data, for 
each class, we randomly selected one sample point from the 
original training data set at one time and put it back after 
selecting. Repeat the experiment in time of the same numbers as 
training samples. For each iteration, a new resampled training 
data set can be generated, and the numbers of each class and 
total number were the same as original training data. After 
generating 1000 sets of training data, classification was 
implemented for each data set using the GMLC. Consequently, 
1000 confusion matrices with user’s accuracies, producer’s 
accuracies and overall accuracies were gained and used to 
evaluate the uncertainty of performance in classification. 
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3. STUDY AREA AND DATA 

3.1  ALOS sensor system 

The study conducted in Taipei City and its vicinity. Taipei is a 
highly developed metropolis. There are most residential area 
and office buildings, but there are mountains and hills in the 
northeast and the southeast of city. Figure 3 shows true-color 
satellite image of the study area. The size of study area is about 
362km2 (19km×19km). The satellite image was preprocessed 
for radiometric and geometric corrections by the Japan 
Aerospace Exploration Agency (JAXA). 
 
The image of the study was acquired by the AVNIR-2 sensor 
onboard the ALOS satellite on 15-Feb-2009 and with a spatial 
resolution of 10m×10m. AVNIR-2 sensor is a visible and near 
infrared radiometer for observing land and coastal zones, and it 
provides multispectral images, respectively, in four spectral 
bands: blue (Band 1, 0.42- 0.50µm), green (Band 2, 0.52- 
0.60µm), red (Band3, 0.61- 0.69µm), and near infrared (Band 4, 
0.76- 0.89µm). In the study, the raw radiance or digital values 
(DN values) of imagery in three bands, green (G), red (R) and 
near infrared (NIR), are used as classification features.  
 

 
 

 
Figure 3. ALOS satellite imagery and the area used in this study. 
© ALOS Imagery Copyright (15-Feb-2009) 

3.2 Training data in Landuse/Landcover classification 

For the purpose of landcover analysis, top-level major 
landcover classes are considered. In this study, five classes, 
including water, forest, grass, building and road, were set up for 
LULC classification. Among these classes, water represents 
rivers and ponds. Forest represents land covered by forest, trees, 
and shrubs. Grass includes areas cover by grass, vegetable crops 
and wetland. Building mainly includes official and commercial 
buildings and residences. Road represents paved road including 
highways and main roads in Taipei city and highways. 
  
Training data of each class was chosen and corroborated using 
field observations or aerial imagery from Google Earth and 
Google Map. Total number of training data is 22101 pixels, and 
the numbers of each class were decided based on the area 
percentage of individual class in the study area: forest= 7005 
(32%), water= 2771 (13%), building= 5956 (27%), grass= 2445 
(11%), and road= 3924 (17%). Also, DN values of training data 
from three ALOS spectral bands (G, R and NIR bands) were 
chosen as classification features. By the mean vectors and 
covariance matrices of training data, the multivariate 
distribution of each class can be established and then be used in 
further classification. 
 
 

4. RESULTS AND DISCUSSION 

4.1 Classification of Transformation 

Using the original data and transformed data, we analyzed the 
effect of normalizing transformation to classification accuracy. 
Table 1 and Table 2 summarize classification results of using 
original training data and transformed data. The confusion 
matrix demonstrates that the confusion mainly occur on classes 
between Building and Road and classes between Forest and 
Grass. The result illustrates a scenario where one or more 
classification features exhibit overlapping spectral signatures. 
Also, the producer’s accuracy of Building and the use’s 
accuracy of Grass and Road are worse than other classes. 
 

Table 1. Confusion matrix of original training data 

 
*overall accuracy 

 
Table 2. Confusion matrix of transformed training data 

 
*overall accuracy 
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By comparing the two matrices, the accuracies of transformed 
data became better in all classes. The overall accuracy increase 
from 90.24% to 95.58%, and the user’s accuracies of Grass 
increase most obviously from 77.1% to 90.46%. It is seen that 
the transformation of training data improve the performance of 
classification, especially the classes with worse accuracy 
originally.  
 
4.2 Uncertainty assessment using Bootstrap resampling 

1000 sets of bootstapping resampled training data respectively 
from original data and transformed data are used to implement 
the GMLC. A set of producer’s and user’s accuracies of 
individual LULC classes which were derived from a set of 
confusion matrices. Figure 4 shows the difference between the 
distributions of accuracies before transformation and those after 
transformation. Besides of Water, the means of accuracies of all 
classes increased after transformation, and the standard 
deviations of all accuracies had no significant difference. It 
interprets that the performance of uncertainty of classification 
was not affected by transformation. 
 
Figure 5 and Figure 6 present the producer’s and user’s 
accuracies of five individual classes after transformation. The 
accuracies of Water and Forest are greater than other classes’ 
and the uncertainties of these two classes are less. In contrast, 
the less means and greater standard deviations of accuracies of 
Building, Road and Grass since the characteristics of training 
data in these classes are more heterogeneous in the study area. 
Figure 7 shows the relation between producer’s and user’s 
accuracy of individual classes. We can easily realize the 
uncertainties in classification by the distributions. As same as 
the previous results, Building, Grass and Road have more 
significant uncertainties. In addition, by separating the classes 
by a line in slope of 1, it demonstrates that for Water, Grass and 
Road, producer’s accuracies are greater than user’s accuracies. 
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Figure 5. Distribution of producer’s accuracy with five classes 
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Figure 6. Distribution of user’s accuracy with five classes. 

Figure 4. Comparison of classification results, including overall accuracy(OA), producer’s accuracies(PA), and user’s 
accuracies(UA) of individual class between original data and transformed data. 
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On the other hand, user’s accuracies are greater than producer’s 
accuracies of Building and Forest. 
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Figure 7. Relation between user’s accuracy and producer’s 
accuracy with five classes. 
 
 

5. CONCLUSIONS 

Through the numerical results, a simple method for Gaussian-
transformation of the original training data gave better 
performance in GLMC. This pre-processing approach for 
classification would be useful for any classification methods 
under the assumption of multivariate Gaussian distribution. 
 
By the bootstrap resampling technique, the uncertainties in 
classification accuracies were found to be affected by the sizes 
of class-specific training samples. Furthermore, assessing the 
uncertainties of classification requires a sufficient number of 
observations per class to be created that retain statistical power 
of analysis; thus, the bootstrap resampling technique can also be 
applied in this process and to improve the characterization of 
classification’s uncertainty by analyzing the overall, producer’s 
and user’s accuracies of each class generating from a set of 
confusion matrices. 
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