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ABSTRACT: 

 

Building urban growth models typically involves a process of historic calibration based on historic time series of land-use maps, 

usually obtained from satellite imagery. Both the remote sensing data analysis to infer land use and the subsequent mode lling of 

land-use change are subject to uncertainties, which may have an impact on the accuracy of future land-use predictions. Our 

research aims to quantify and reduce these uncertainties by means of a particle filter data assimilation approach that incorporates 

uncertainty in land-use mapping and land-use model parameter assessment into the calibration process. This paper focuses on part 

of this work, more in particular the modelling of uncertainties associated with the impervious surface cover estimation and urban 

land-use classification adopted in the land-use mapping approach. Both stages are submitted to a Monte Carlo simulation to assess 

their relative contribution to and their combined impact on the uncertainty in the derived land-use maps. The approach was applied 

on the central part of the Flanders region (Belgium), using a time-series of Landsat/SPOT-HRV data covering the years 1987, 1996, 

2005 and 2012. Although the most likely land-use map obtained from the simulation is very similar to the original classification, it 

is shown that the errors related to the impervious surface sub-pixel fraction estimation have a strong impact on the land-use map’s 

uncertainty. Hence, incorporating uncertainty in the land-use change model calibration through particle filter data assimilation is 

proposed to address the uncertainty observed in the derived land-use maps and to reduce uncertainty in future land-use predictions. 

 

                                                             

*  Corresponding author.  This is useful to know for communication with the appropriate person in cases with more than one 

author. 

1. INTRODUCTION 

To understand how changes in urban form are related to urban 

processes driving these changes, increasing use is made of 

urban growth models. Most of these models require data on 

topography, road infrastructure, as well as detailed information 

on land-use/land-cover change. The latter is usually obtained 

from visual interpretation of historic time series of aerial 

photographs or satellite imagery, complemented with ancillary 

information. Recently, Van de Voorde et al. (2011) presented a 

method for extracting residential and employment related 

urban land-use patterns from time series of medium-resolution 

satellite data through the analysis of the density and the spatial 

distribution of impervious surface cover within each street 

block, estimated at sub-pixel level. Based on this method, a 

framework for calibration of the well-known MOLAND urban 

growth model was proposed. The approach relies on the 

comparison of spatial metric values, describing specific 

characteristics of land-use patterns derived from remote 

sensing, with corresponding metric values obtained from 

simulated land-use maps (Van de Voorde et al., 2012). 

Parameters used in the simulation model are tuned in such a 

way that the simulated patterns of urban growth, as described 

by the metrics, match the patterns observed in the remote 

sensing imagery.  

One of the difficulties in the proposed approach is the 

uncertainty that is present in the land-use maps obtained 

through remote sensing, as well as in the estimation of land-

use model parameters, and the impact this uncertainty has on 

the calibration process. Previous research has demonstrated the 

importance of investigating and quantifying error propagation 

when dealing with land-use/land-cover maps. Burnicki et al. 

(2007) studied the effect of spatial and temporal dependencies 

in land-cover error patterns on land-cover change maps. In 

Canters et al. (2002), the input uncertainty in a land-cover map 

and in a DEM, as well as their combined impact on the 

outcome of a structural classification of landscape types were 

assessed. In both studies, the magnitude and the spatial pattern 

of uncertainty are analysed by producing error-sensitized 

versions of data input and model outcomes through Monte 

Carlo simulation.  

  

In this paper, both stages of the remote sensing data processing 

chain, i.e. the sub-pixel estimation of impervious surface cover 

for each urban pixel and the multi-layer perceptron (MLP) 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-2/W1, 2013
8th International Symposium on Spatial Data Quality , 30 May - 1 June 2013, Hong Kong

7



classification approach to infer urban land use from urban form, 

are submitted to a Monte Carlo simulation to evaluate their 

impact on uncertainty in the derived land-use maps. The 

robustness to uncertainty of the proposed land-use mapping 

strategy is assessed through a comparison of the most likely 

land-use map obtained from the simulation with the original 

classification. The ultimate goal of the research is to reduce 

uncertainty in land-use model calibration by defining a particle 

filter data assimilation framework, incorporating uncertainty in 

land-use mapping and land-use model parameter assessment 

into the calibration process. 

 

 

2. STUDY AREA, DATA AND SCALE OF ANALYSIS 

The study area of this research corresponds to the central part 

of the Flanders region (Belgium), covering the cities of 

Antwerp and Brussels, and forms a part of the so-called 

“Flemish Diamond”. A time series of four medium-resolution 

satellite images was used to characterise urban morphology 

and to infer land use from urban form: a Landsat 5 TM image 

of 9 May 1987 and SPOT-5 data acquired on 5 August 1996, 

17 August 2005 and 28 May 2012. High-resolution data from 

the 2002 and 2003 IKONOS survey of Flanders served as 

reference data for the spectral unmixing. Multispectral 

IKONOS images that overlap the study area were resampled 

from a 4 m to a 5 m resolution, facilitating a downgrading to 

the 30 m Landsat resolution later on. Next, the NDVI was 

calculated and a threshold was set in order to create a binary 

vegetation map from the IKONOS data. The medium-

resolution images were co-registered to these IKONOS images 

in such a way that the Landsat and SPOT pixels overlap 

exactly 6 x 6 and 4 x 4 high-resolution cells, respectively. To 

improve the discrimination between different urban land-use 

classes, address point data were included in the analysis as 

well. For Flanders, use was made of the CRAB database; 

because of the lack of operational data for the Brussels region, 

Sitex data on the number of floors for each building in the 

UrbIS large-scale reference map of Brussels (1997-1998) 

served as address proxies. Since our interest lies in detecting 

land-cover patterns, it was decided to define street blocks by 

intersecting the road network with four urban classes derived 

by aggregation from the VITO reference land-use map of 

Flanders of 2010: 1) residential, 2) commercial, industrial and 

services, 3) recreation and 4) parks. Blocks smaller than 1 ha 

were merged with a larger neighbour for obtaining units that 

are appropriately sized to represent the spatial pattern and 

composition of impervious surface cover within its boundaries. 

This way, 34 512 regions were delineated. 

 

 

3. METHODOLOGY 

3.1 Spectral mixture analysis of impervious surface cover 

In a preliminary step, the known spectral confusion between 

bare soil and impervious surfaces in the medium-resolution 

images was addressed by defining a mask to identify all pixels 

belonging to the urban area. The ISODATA clustering based 

unsupervised classification method was used to separate four 

major land-cover classes: urban areas, pure vegetation (trees, 

crops and pasture), bare soil and water. Next, a separate 

stepwise linear regression model was developed for each date’s 

urban class pixels with vegetation fraction as the dependent 

variable (subtracting its values from 1 provides the impervious 

surface fraction). For the unmixing of the Landsat image, all 

bands except the thermal infrared band, together with the 

NDVI, were used as independent variables. For the SPOT 

images, all three (1996 and 2005) or four (2012) bands and the 

NDVI served as explanatory variables. Data needed for the 

calibration and validation of these models were randomly 

sampled from the part of the Landsat/SPOT images that 

overlap the IKONOS image. As each sampled pixel covered 

exactly 36 (6 x 6) or 16 (4 x 4) binary IKONOS pixels, 

reference vegetation proportions could be easily determined by 

spatial averaging. A temporal filtering technique based on 

iterative linear regression between NDVI values obtained from 

the medium- and high-resolution imagery was applied to 

remove pixels from the initial training sample that underwent 

changes in vegetation cover between the acquisition dates of 

the Landsat/SPOT images and the IKONOS image. Retaining 

those filtered pixels that coincide with the urban mask, a final 

random sampling of 3000 training and 3000 validation samples 

was selected. Based on the validation samples, the mean error, 

mean absolute error and root mean squared error were 

calculated to assess the accuracy of the impervious surface 

proportion estimates. 

 

3.2 Land-use classification based on urban morphology 

The same set of spatial metrics as defined by Van de Voorde et 

al. (2011) (the reader is referred to this publication for further 

details) was used to relate impervious surface cover within a 

street block to urban morphology: average impervious surface 

cover, spatial variance and four parameters of the fitted logistic 

curve of the impervious surface fraction’s cumulative 

frequency distribution within the block. In this research, 

address density was added to this set as a seventh variable. 

This variable was calculated by summing the number of 

mailboxes of all buildings within the block’s boundaries and 

dividing this value by the block’s area.  

Using these variables, a supervised, MLP neural network 

classification approach was adopted to assign each street block 

to one of the following land-use classes: 1) residential, 

2) employment (commercial areas, industrial zones, public or 

private services) and 3) green (parks and recreation). Training 

and validation data were obtained by labelling the street blocks 

according to the predominant land-use class of the 2010 land-

use map of Flanders within their boundaries. Since this 

reference land-use map is the only ground truth we have at our 

disposal, a sequential temporal filtering approach based on the 

blocks’ mean spectral values was applied to only select street 

blocks whose land did not change from 1987 to 2012. 

Eventually, all blocks that had been temporally filtered in this 

way were used for training of the classifier for each of the four 

dates. For validation, the same set of 300 randomly selected 

samples per class was used for each date. 

 

3.3 Uncertainty analysis within a Monte Carlo simulation 

framework 

3.3.1 Uncertainty in the impervious surface estimation: 

The uncertainty associated with estimating impervious surface 

fractions using linear regression unmixing was simulated by 

adding spatially correlated error fields to the original 

impervious surface fraction map using the following first-order 

autoregressive model (Heuvelink, 1998): 
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 (1) 

  

 

 

where  I[i,j], ε[i,j] = the simulated, spatially correlated 

impervious fractional error value and the value from a 

normally distributed random noise field with mean 

value zero and standard deviation one, respectively, 

for the (i,j)th cell 

q, r = the parameters expressing the spatially 

dependent and spatially independent component’s 

contribution, respectively 

 

In this study, q was estimated to be 0.1125. Eventually, the 

sub-pixel estimation’s uncertainty contribution was evaluated 

by classifying one hundred perturbations of the original 

impervious surface map using a separately trained neural 

network for each perturbation. 

 

3.3.2 Uncertainty in the classification: To account for the 

uncertainty associated with the multi-layer perceptron classifier, 

information on the commission errors from the confusion 

matrix, obtained by comparing the original classification output 

with the reference land-use map for Flanders, was combined 

with local evidence on the identity of a street block in the form 

of class activation levels, produced by the MLP classifier, 

using a Bayesian approach. By weighing the global class-based 

probabilities derived from the confusion matrix using this local 

evidence, a set of posterior probabilities is obtained for each 

street block. Translating this in an explicit formula, we get 

 

 

  

 

(2) 

 

 

 

where  C = the residential, employment or green class 

CMLP = the class as determined by the MLP classifier 

p(C|CMLP) = the a posteriori probability that a street 

block belongs to class C given its MLP-derived class 

p(CMLP|C) = the probability that the classifier assigns 

a block to class CMLP given that the block belongs to 

class C, as derived from the confusion matrix 

p(C) = the class membership value of class C 

produced by the MLP’s output node activation 

transfer function, considered as the a priori 

probability of class C 

 

Proportional to these posterior probabilities, each target class 

was assigned to a sub-interval in a 0 to 1 range, characteristic 

of each block. Next, a stochastic model was applied by 

randomly drawing a number between 0 and 1 from a uniform 

distribution and assigning each block to the land-use class 

corresponding with the sub-interval that includes this random 

number. For blocks receiving the residential class label, an 

additional distinction was made between low-density (up to 

50% impervious surface cover) and medium-to-high-density 

(more than 50% impervious surface cover) residential. The 

classification’s uncertainty contribution was evaluated by 

applying the described Bayesian stochastic procedure one 

hundred times on the same, original impervious surface map. 

 

3.3.3 Combined uncertainty: Finally, the combined impact 

of both stages on the land-use map’s uncertainty was assessed 

by subjecting each of the one hundred impervious surface map 

perturbations to a separately trained MLP classifier and 

applying the Bayesian stochastic approach to generate one 

hundred realisations of the land-use map, taking into account 

the uncertainty in the classification process. 

 

3.3.4 Magnitude and spatial distribution of uncertainty: 

The magnitude and spatial distribution of the uncertainty of the 

land-use maps are obtained by mapping for each block the 

frequency of occurrence of the modal class. A high frequency 

of occurrence is associated with a low degree of uncertainty 

(Canters et al., 2002). To evaluate whether the degree of 

uncertainty differs significantly between both uncertainty types, 

as well as between each uncertainty type and their combined 

impact, the Wilcoxon signed rank test was applied to 

investigate whether the distribution of the group with positive 

modal frequency differences is equal to the distribution of the 

group with negative modal frequency differences. If not, the 

true location shift between both frequency distributions is 

significantly different from zero, which indicates a clear 

difference in the degree of uncertainty. 

 

3.3.5 Robustness to uncertainty: The robustness to 

uncertainty of the land-use mapping approach was evaluated by 

studying the correspondence between the original classification 

and the most likely land-use map obtained from the Monte 

Carlo analysis, i.e. the modal class map, by cross-classifying 

the class labels for all blocks. For each cross-table, the 

assumption of marginal homogeneity can be tested: if the 

marginal distribution of the land-use classes remains the same 

after accounting for uncertainty, the source of uncertainty has 

no significant impact on the land-use determination. Marginal 

homogeneity can be tested both globally and specifically for 

each land-use class. In the first case, marginal homogeneity is 

rejected if the deviance for the symmetry and quasi-symmetry 

models fitted to the cross-table is considered to be too large in 

a Likelihood Ratio chi-squared test (see Agresti, 2002: 429). 

Regarding the class-specific evaluation, marginal homogeneity 

is rejected if zero is not included in the large sample 95% 

confidence interval for the difference between dependent 

proportions, which is calculated as follows (Agresti, 2002: 410-

411): 

 

 
    with 

 (3) 
 

 

 

where p+1, p1+ = the marginal proportions for the blocks 

labelled as the class under consideration in the modal 

class map resulting from the uncertainty analysis and 

in the original classification, respectively  

 p12, p21 = the proportion of blocks labelled as the 

class under consideration in the original 

classification, but not in the modal class map, and 

vice versa, respectively 

 α = the level of significance (i.e. 0.05) 
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4. RESULTS AND DISCUSSION 

4.1 Impervious surface mapping 

The stepwise linear regression analysis produced only one 

significant model for each time step for 1987 and 1996, with 

the NDVI variable as the only significant predictor (p < 0.001). 

For 2005 and 2012, the stepwise procedure resulted in four and 

two different models, respectively. For reasons of parsimony 

and correspondence with the other time steps, the model with 

only the NDVI predictor was used for these dates as well. It 

should be noted that R²adj for these models is relatively low: 

only 39 to 47% of the variation in vegetation fraction is 

explained by NDVI. However, despite this poor lack of fit, the 

mean errors constitute only a negligible to small negative 

(1987: -0.0113; 1996: -0.0079) or positive (2005: 0.0056; 2012: 

0.0011) bias. Also, the mean absolute errors reach values of 16 

to 17%, which are quite similar in magnitude to the average 

absolute errors reported in other impervious fractions sub-pixel 

estimation research (e.g. Esch et al., 2009; Weng et al., 2008). 

 

4.2 Land-use classification 

The multi-layer perceptron neural network classification of the 

original impervious surface cover map resulted in a land-use 

map depicting the residential, employment and green blocks 

for each date’s urban area (Figure 1a shows the original 2012 

classification for the Antwerp area). Mapping all misclassified 

blocks shows two major types of confusion, both related to 

residential areas: many blocks located in the city centres and in 

the urban fringe are incorrectly classified as employment, and 

low-density detached housing embedded in green surroundings 

often receives a green class label. Both misclassification types 

are quite logical: if the classifier comes across an urban block 

with a strong mix of residential and commercial/services 

functions that has been labelled as ‘residential’ in the 

reference map, the question arises whether ‘employment’ 

really is a violation of the truth, as we are in fact dealing with 

mixed land uses (e.g. Antwerp’s eastern half of the city centre, 

see Figure 1a). With respect to the other source of confusion, it 

is clear that low-density, suburban housing in a green setting 

can be morphologically very similar to park and recreation 

areas (e.g. the villa quarters in Brasschaat in the northeastern 

corner of Figure 1a). In the same vein, large blocks containing 

only a school, hospital or few industrial infrastructure in a 

distinctly green environment are sometimes incorrectly 

identified as ‘parks or recreation’. For these reasons, the class 

labels were amended to more appropriately represent the 

blocks belonging to them: 1) low-density residential (LRES), 

2) medium-to-high-density residential (MHRES), 

3) employment and mixed land uses (EMPL), 4) green and 

green embedded land uses (GREEN).  

 

4.3 Uncertainty analysis 

4.3.1    Magnitude and spatial distribution of uncertainty: 

The modal frequency of each block for each uncertainty type’s 

classification for 2012 is presented in Figure 1d, 1e and 1f. 

With respect to the procedure that only accounts for uncertainty 

in the multi-layer perceptron classification, the degree of 

uncertainty is very low, as illustrated by the high modal 

frequencies (Figure 1d). Accounting for impervious surface 

errors, however, provides a markedly different image in Figure 

1e: in the crescent-shaped suburban belt around the city of 

Antwerp, the modal class is most often only selected 40 to 70 

times, which seems to be related to the mixed land-use 

problem discussed in §4.2. Combining the classification 

uncertainty with the impervious surface estimation uncertainty 

entails the most profound impact, as illustrated by Figure 1f: 

the distinction between the lower frequency belt and the high 

frequency city centre, industrial and green blocks found in 

Figure 1e is still present, but less pronounced. The Wilcoxon 

signed rank tests confirm an (extremely) significant difference 

in modal frequencies between all approaches (p < 0.001, 

except for 2012, for which p equals 0.013 when comparing the 

impervious surface estimation with the classification), 

indicating a notably different contribution to and combined 

impact on the uncertainty in the derived land-use maps. 

 

4.3.2    Robustness to uncertainty: Regarding the procedure 

that only accounts for uncertainty in the classification, a perfect 

match for all blocks between its modal class map and the 

original classification was found for each date. As a 

consequence, the assumption of marginal homogeneity holds, 

which means in this case that uncertainty in the classification 

procedure does not affect the determination of the street 

blocks’ land use at all. Considering the impervious surface 

estimation uncertainty, on the other hand, global marginal 

homogeneity is very strongly rejected (p < 0.001) for all dates. 

Changes in land-use class proportions are found to be almost 

exclusively statistically significant (Table 1). For example, the 

probability of being classified as low-density residential 

increases considerably for all dates (between 3 and 4% for 

2012, 4 and 5% for 1987 and 1996, and 6 and 7% for 2005) 

when accounting for impervious surface estimation errors. 

Nevertheless, the most likely land-use map taking the 

impervious surface estimation uncertainty into account for 

2012 (Figure 1b) shows hardly any visual difference with the 

original classification (Figure 1a). With respect to the 

combined impact, global marginal homogeneity is again very 

strongly rejected (p < 0.001) for all dates. Also, there are no 

major changes in the difference in proportions as compared to 

the approach when only impervious surface errors are taken 

into account, apart from three significance switches for the 

employment and mixed land uses class (Table 1). The ‘most 

representative’ classification for 2012 in Figure 1c, combining 

both sources of uncertainty, barely differs from the most likely 

classification obtained after simulation of impervious surface 

uncertainty.  

 

4.3.3    Reflection on the uncertainty analysis results: The 

similarity observed between the most likely land-use maps 

obtained from the uncertainty analysis as compared with the 

original classification (Figure 1a-c) seems to be at odds with 

the statistical analysis indicating significant changes in land-

use class proportions when accounting for uncertainty. 

Regarding the latter, the very large sample of blocks used 

(34 512) yields very narrow confidence interval widths and 

therefore relatively small differences in proportion are quite 

easily considered to be significant. Furthermore, the change of 

class label mainly applies to (a proportionally small number of) 

small blocks, which explains the strong spatial correspondence 

between the most likely land-use maps obtained from the 

uncertainty analysis and the original classification. The highly 

stable land-use class assignment when accounting for 

uncertainty indicates a distinct robustness to uncertainty of the 

land-use mapping strategy. However, this stability does not 

necessarily imply a low level of uncertainty in the derived 

land-use maps. Given the inherent complexity of the urban  
 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-2/W1, 2013
8th International Symposium on Spatial Data Quality , 30 May - 1 June 2013, Hong Kong

10



 

 
 

(a) 
 

 

(b) 
 

 

(c) 
 

 
 

 
 

(d) 
 

 

(e) 
 

 

(f) 
  

                       
 

Figure 1. At the top: detail of Antwerp of the original land-use classification map (a) and of the modal class map when only accounting for the 

impervious surface errors (b) and when combining both uncertainty sources (c). At the bottom: the modal frequency maps of the classification 

errors only approach (d), of the impervious surface errors only approach (e) and of their combined impact (f). 
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LU class Only impervious surface uncertainty  Combined impact 

1987 1996 2005 2012 1987 1996 2005 2012 

EMPL 
 

 

-0.023* 
(-0.026, -0.021)  

-0.004* 
(-0.006, -0.002) 

-0.001 
(-0.004, 0.001) 

-0.001 
(-0.003, 0.001) 

-0.021* 
(-0.023, -0.018) 

0.001 
(-0.001, 0.003) 

0.003* 
(0.001, 0.006) 

0.007* 
(0.005, 0.009) 

LRES 
 

 

0.045* 
(0.042, 0.048) 

0.045* 
(0.041, 0.048) 

0.068* 
(0.065, 0.071) 

0.034* 
(0.032, 0.037) 

0.049* 
(0.046, 0.053) 

0.045* 
(0.042, 0.049) 

0.063* 
(0.059, 0.066) 

0.029* 
(0.027, 0.032) 

MHRES 
 

 

-0.011* 
(-0.013, -0.009) 

-0.003* 
(-0.004, -0.001) 

0.017* 
(0.014, 0.019) 

-0.004* 
(-0.005, -0.002) 

-0.012* 
(-0.013, -0.010) 

-0.005* 
(-0.007, -0.004) 

0.015* 
(0.012, 0.017) 

-0.008* 
(-0.009, -0.006) 

GREEN 

  

-0.011* 
(-0.014, -0.008) 

-0.038* 
(-0.042, -0.034) 

-0.083* 
(-0.087, -0.080) 

-0.030* 
(-0.032, -0.027) 

-0.017* 
(-0.020, -0.014) 

-0.041* 
(-0.045, -0.037) 

-0.081* 
(-0.084, -0.078) 

-0.029* 
(-0.032, -0.026) 

 

Table 1. Difference in proportions relative to the original classification for all land-use classes for the approach only accounting 

for impervious surface errors (left part) and for the approach combing both sources of error (right part). The 95% confidence 

intervals are defined between brackets; differences significant at the 0.05 level of significance are indicated with a *.  

 

landscape, there clearly is ambiguity in the land-use mapping 

process, due to the classification approach used, as well as the  

mixed occurrence of classes. Regarding the impervious fraction 

errors, the question remains whether there is still room for sub-

pixel estimation improvement, since most studies reach a 

similar level of accuracy as obtained in this research. With 

respect to the classification procedure, multi-layer perceptron 

neural networks already belong to the more sophisticated 

classifiers, which makes a reduction of uncertainty in this stage 

appear less evident. Therefore, accepting the presence of 

uncertainty in the land-use maps and incorporating it in the 

land-use change model calibration seems the most logical way 

to proceed. This will be done in this research by developing a 

particle filter based data assimilation framework, aiming to 

improve the reliability of land-use change model predictions. 

 

 

5. CONCLUSIONS 

Current land-use change model calibration methods do not take 

into account uncertainties associated with the parameterization 

of the model and with the land-use data used as a reference. 

This research focused on the latter part by analysing the impact 

of uncertainty on land-use maps, obtained through a remote 

sensing interpretation chain involving sub-pixel estimation of 

impervious surface cover and classification of spatial metrics 

describing urban form to infer urban land use, by means of a 

Monte Carlo simulation approach. It was found that only 

accounting for classification uncertainty leads to low 

uncertainties in the land-use mapping results obtained, while 

by taking into account uncertainty in impervious surface 

estimation, higher levels of uncertainty occur in zones with a 

mix of residential and employment land uses, particularly in 

the city centre and in the urban fringe. The most likely land-

use maps obtained from the simulation correspond very 

strongly with the original land-use classification, which points 

to a stable land-use mapping strategy, but does not exclude 

uncertainty in the mapping approach. Given the restrictions 

with respect to the reduction of uncertainty in the remote 

sensing interpretation chain, a particle filter data assimilation 

approach will be developed, allowing us to properly deal with 

the uncertainty present in the derived land-use maps by 

incorporating this uncertainty in the land-use change model 

calibration, thus aiming to improve the reliability of future 

land-use predictions. 
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