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ABSTRACT: 

 

Map conflation investigates the unique identification of geographical entities across different maps depicting the same geographic 

region. It involves a matching process which aims to find commonalities between geographic features. A specific subdomain of 

conflation called Road Network Matching establishes correspondences between road networks of different maps on multiple layers 

of abstraction, ranging from elementary point locations to high-level structures such as road segments or even subgraphs derived 

from the induced graph of a road network. 

 

The process of identifying points located on different maps by means of geometrical, topological and semantical information is 

called point matching. This paper provides an overview of various techniques for point matching, which is a fundamental 

requirement for subsequent matching steps focusing on complex high-level entities in geospatial networks. Common point matching 

approaches as well as certain combinations of these are described, classified and evaluated. Furthermore, a novel similarity metric 

called the Exact Angular Index is introduced, which considers both topological and geometrical aspects. The results offer a basis for 

further research on a bottom-up matching process for complex map features, which must rely upon findings derived from suitable 

point matching algorithms. In the context of Road Network Matching, reliable point matches provide an immediate starting point for 

finding matches between line segments describing the geometry and topology of road networks, which may in turn be used for 

performing a structural high-level matching on the network level. 

 

 

1. INTRODUCTION 

Conflation can be seen as the process of identifying 

geographical entities across different maps depicting the same 

geographic region which are then combined to create a new map. 

According to a definition proposed by Longley et al. [1], 

conflation is „the process of combining geographic information 

from overlapping sources so as to retain accurate data, minimize 

redundancy, and reconcile data conflicts”. A classification 

approach introduced by Yuan and Tao [2] divides conflation 

into horizontal (combining neighboring areas) and vertical 

conflation (combining different maps of the same area). 

Throughout this paper, we will focus on vertical conflation, 

while most point matching techniques are applicable to both 

types. 

 

In general, three different types of information can be used in 

the conflation process: geometrical, topological, and semantical. 

Geometrical information describes geometric properties of an 

object, such as the shape of a road segment. Topological 

information is exposed by the graph structure induced by 

networks of certain geographical objects, such as roads or rivers. 

Semantical information can be seen as any kind of information 

which does not belong to the other two categories; e.g., street 

names belong to this category. 

 

Both raster image as well as vector data may be used for 

conflation. However, different conflation strategies are required 

depending on the type and direction (raster-to-raster [3], raster-

to-vector [4], vector-to-raster [5], or vector-to-vector [6]). 

Throughout this paper, we will focus on vector-to-vector 

pairings of maps. 

 

A specific subdomain of conflation called Road Network 

Matching [7] investigates correspondences between road 

networks of different maps, which may be established on 

different levels, ranging from elementary point locations to 

complex aggregated structures such as sequences of road 

segments. All mentioned types of information can be considered 

for each of these levels. A common approach in the domain of 

Road Network Matching involves a bottom-up matching 

strategy  [8] which starts with point matching, i.e. finding 

relations between point locations. These matching results are 

then further processed in order to provide a basis for higher-

level matchings between aggregated structures such as road 

segments. 

 

This work is concerned with introducing, classifying and 

evaluating point matching techniques for Road Network 

Matching. The overview (Section 2) describes the point 

matching problem in general. Section 3 gives a classification of 

point matching techniques based on the type of information 

considered and describes the different approaches in detail, 

including a novel approach named Exact Angular Index. In 

Section 4, the described point matching techniques are 

evaluated with respect to properties such as accuracy and 

complexity in a real-world scenario involving maps from 

different sources such as OpenStreetMap. Section 5 summarizes 

the results. We therefore intend to provide the reader with a 

quick understanding of the advantages and disadvantages of the 

presented point matching techniques, which offer a starting 

point for identifying higher-level matchings required within the 

Road Network Matching process. 
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2. OVERVIEW OF THE POINT MATCHING 

PROBLEM 

Figure 1 shows a road map of the village of Moosach, near 

Munich, Germany, provided by the Bavarian State Office for 

Survey and Geoinformation, Munich [9], which is called ATKIS 

Basis-DLM. This area is overlaid with a road map built from 

geographic data provided by the Volunteered Geographic 

Information (VGI) project OpenStreetMap (OSM). 

 

 

 

 
Figure 1: Overlay of two maps of the same region (red: 

ATKIS, blue: OSM) 

Topologically, each map consists of a graph (the road network) 

given by edges and nodes (vertices), where a node represents a 

geographical point referenced via its coordinates in a suitable 

reference system (e.g. WGS-84), and an edge is given by a 

relation which describes a connection between two nodes. For 

the purposes of point matching, the graph may be seen as being 

undirected to simplify the process. It should be noted that many 

map providers insert bivalent nodes (nodes which are only 

incident to two edges) at locations where attributes change 

which are recorded per edge. Occasionally, the terms 0-cells for 

nodes, 1-cells for edges, and, subsequently, 2-cells for polygons 

consisting of a sequence of edges are used [10]. 

Geometrically, the shape of a road segment represented by an 

edge in the graph is described via shape points (not explicitly 

shown in the figures), where a sequence of shape points 

constitutes the geometrical layout of the road segment 

corresponding to an edge. Like nodes, shape points are defined 

by their coordinates.  Continuous shape geometry is created by 

employing linear interpolation between shape points. 

 

While it is possible to employ point matching strategies to any 

data consisting of spatial point coordinates, such as Points of 

Interest (POIs) or shape points, matching topological nodes in a 

road network is of special concern for the domain of Road 

Network Matching. The following boxes give a formal 

definition of solutions to the point matching problem for two 

road networks with respect to topological nodes. 

 

 
Notes: 

- A solution according to Def. 2 represents an M:N type 

mapping between nodes of 𝑉1 and 𝑉2. 

- A left-unique solution according to Def. 3 represents a 

1:N type mapping between nodes of 𝑉1 and 𝑉2. 

- A right-unique solution according to Def. 4 represents 

a N:1 type mapping between nodes of 𝑉1 and 𝑉2. 

- A unique solution according to Def. 5 represents a 1:1 

type mapping between nodes of 𝑉1 and 𝑉2. 

- A complete solution only exists if |𝑉1| = |𝑉2|. 
 

As can be seen in Figure 1, several problems surface when 

dealing with the point matching problem in real-world scenarios: 

 

1. Topological differences:  

The two maps do not share the same topology. Rather, 

roads are present in one map which are missing in the 

other map. Also, due to a varying level of detail, even 

roads present in both maps may be modelled with a 

different number of nodes. In addition, structures such 

as complex intersections may be modelled differently, 

resulting in a different placement of nodes. 

 

2. Geometrical differences: 

Due to varying accuracy in the recorded coordinates, 

the geographical location of nodes representing the 

same topological entity may differ between the maps 

to a great extent. On the other hand, nodes in close 

proximity do not necessarily imply a topological 

relationship. 

 

3. Semantical differences: 

Nodes may carry semantical information, such as the 

names of incident roads. While semantical similarity 

of two nodes in different maps often indicate that the 

same node is referenced, semantical dissimilarity 

rarely implies the opposite, since semantical attributes 

as well as the extent to which they are recorded vary 

greatly across different map providers and sources. 

E.g., street names may be spelled differently, and 

there may also be multiple names for the same street. 

 

In order to deal with these problems, several algorithms have 

evolved which determine and evaluate point matching 

DEFINITION 2: SOLUTION TO THE POINT MATCHING PROBLEM 

FOR TWO ROAD NETWORKS. 

A solution to the point matching problem for two road 

networks is a relation 𝑆 ⊆ (𝑉1 × 𝑉2), i.e., a set of point 

matchings. 

 

DEFINITION 3: LEFT-UNIQUE SOLUTION TO THE POINT 

MATCHING PROBLEM FOR TWO ROAD NETWORKS. 

A left-unique solution to the point matching problem for 

two road networks is an injective relation 𝑆𝑙 ⊆ (𝑉1 × 𝑉2). 

 

DEFINITION 4: RIGHT-UNIQUE SOLUTION TO THE POINT 

MATCHING PROBLEM FOR TWO ROAD NETWORKS. 

A right-unique solution to the point matching problem for 

two road networks is a functional relation 𝑆𝑟 ⊆ (𝑉1 × 𝑉2). 

 

DEFINITION 5: UNIQUE AND COMPLETE SOLUTIONS TO THE 

POINT MATCHING PROBLEM FOR TWO ROAD NETWORKS. 

A unique solution to the point matching problem for two 

road networks is a right-unique and left-unique relation 

𝑆𝑢 ⊆ (𝑉1 × 𝑉2). Note that 𝑆𝑟 ∩ 𝑆𝑙  is a unique solution. If 

𝑆𝑢 is also surjective and left-total, it is a complete solution. 

 

 

DEFINITION 1: POINT MATCHING FOR TWO ROAD NETWORKS. 

Given are two undirected simple graphs 𝐺1, 𝐺2 representing 

a road network: 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖), 𝑖 ∈ {1,2}, where 𝑉𝑖 is the set 

of vertices of graph 𝐺𝑖, and 𝐸𝑖 the edge relation of Graph 

𝐺𝑖 , and  𝐸𝑖 ⊆ (𝑉𝑖 × 𝑉𝑖). Then, a point matching is a pair 

(𝑝1, 𝑝2), where 𝑝1 ∈ 𝑉1 and 𝑝2 ∈ 𝑉2. 
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candidates (i.e., a subset of all point matchings) with respect to 

certain metrics. In general, a metric is defined as follows: 

 
Thus, in the context of the point matching problem, a metric is a 

distance function which assigns a real number to a point 

matching, where the assigned value expresses the degree of 

dissimilarity of the two points involved. The distance may be 

normalized, e.g. by projecting it onto the interval (0;  1], where 

1 corresponds to the lowest possible distance (0, meaning 

equality) and 0 corresponds to an infinitely high distance. We 

call such a projection a score, because it is positively correlated 

with the expected quality of the matching from the perspective 

of the according metric. The overall score which an algorithm 

attributes to a point matching may be a weighted combination of 

multiple scores from different metrics. 

 

In order to limit the computational effort, point matching 

algorithms usually only evaluate a small subset of all possible 

point matchings. Most point matchings are discarded 

beforehand due to spatial constraints, since it is assumed that 

the probability of two points representing the same spatial entity 

quickly becomes extremely low as the distance between the 

points increases beyond several kilometres. The fact that point 

matching algorithms, unlike pure graph matching approaches, 

may not only rely on topological but also on geometrical 

information thus greatly simplifies the point matching problem, 

since it reduces the number of candidates which need to be 

evaluated. 

 

While a complete solution as defined in Def. 5 may seem 

desirable, it only exists for very simple scenarios where the two 

maps being compared are virtually identical (e.g., very minor 

map updates). In real-world applications, usually both maps 

contain several nodes which cannot reasonably be matched to 

the other map. 

 

Point matching algorithms deliver a set of point matchings, 

where each point matching is assumed to identify the same 

geographical entity across both maps. This is done by 

evaluating the degree of similarity between point matchings 

close enough to become candidates according to certain metrics, 

then selecting those point matchings for the solution which are 

considered similar enough that they may reasonably represent 

the same spatial feature (e.g. by applying a global or local 

threshold on the score). In general, this solution is ambiguous, 

implying that any point on any of the two maps may be matched 

to more than one point in the other map. It is possible to 

establish unique solutions by discarding all matchings related to 

a node except the highest-rated point matching. However, in 

special cases, a geographical entity represented by one 

topological node in one map may be (partially) represented by 

multiple nodes in the other map (e.g. bivalent nodes, differing 

level of detail, or complex intersections), so these cases must be 

recognized and dealt with separately. 

 

3. CLASSIFICATION AND DESCRIPTION OF POINT 

MATCHING TECHNIQUES 

Point matching techniques may be based on geometrical, 

topological, or semantical information, or a combination of 

these three. Since most map providers do not include semantic 

attributes for topological nodes and semantical matching 

techniques referring to incident edges are more appropriate for 

edge matching, we will not discuss semantical matching in 

greater detail. 

 

3.1 Geometrical point matching techniques 

Geometrical point matching techniques only consider 

geometrical information (i.e., coordinates) for evaluating a point 

matching. Even though the distance between point coordinates 

may be calculated in any p-norm, the only metric of practical 

relevance is the Euclidean distance metric. 

 

3.1.1 Pure Euclidean 

Obviously, spatial proximity is a strong constraint for the 

selection of matching candidates. In the Euclidean plane, the 

distance dist(𝑝, 𝑞) of two points 𝑝 = (𝑝𝑥, 𝑝𝑦) and 𝑞 = (𝑞𝑥 , 𝑞𝑦) 

is given by 

dist(𝑝, 𝑞) = √(𝑝𝑥 − 𝑞𝑥)2 + (𝑝𝑦 − 𝑞𝑦)². 

While for small geographical regions, Euclidean geometry is a 

good approximation, a more exact measure for the distance 

between two points on the surface of the Earth is the great-circle 

distance, which describes the shortest distance between any two 

points on the surface of a sphere following a path on the surface. 

The great-circle distance can be computed using the spherical 

law of cosines or the numerically better-conditioned Haversine 

formula [11]. The approaches presented in this paper use a 

Euclidean distance metric applied to a Universal Transversal 

Mercator (UTM) projection of WGS-84 coordinates for 

calculating distances, as it provides sufficient accuracy and can 

be computed efficiently. 

 

A naïve approach to conduct Pure Euclidean point matching 

calculates the Euclidean distance dist(𝑝, 𝑞) for each point 

matching pair (𝑝𝑖 , 𝑞𝑗) ∈ (𝑉1 × 𝑉2)  which possesses all 

properties of a metric function as defined in Def. 6. To extract a 

right-unique solution 𝑆𝑟 , each 𝑝𝑖 ∈ 𝑉1  is assigned to a 𝑞𝑗 ∈ 𝑉2 

where 𝑑𝑖𝑠𝑡(𝑝𝑖 , 𝑞𝑗)  becomes minimal so that (𝑝𝑖 , 𝑞𝑗) ∈ 𝑆𝑟  and 

(𝑝𝑖 , 𝑞𝑘≠𝑗) ∉ 𝑆𝑟∀𝑞𝑘 ∈ 𝑉2. In order to gain a left-unique solution 

𝑆𝑙 , each 𝑞𝑗 ∈ 𝑉2  may only be related to a 𝑝𝑖 ∈ 𝑉1  where 

𝑑𝑖𝑠𝑡(𝑝𝑖 , 𝑞𝑗)  becomes minimal so that (𝑝𝑖 , 𝑞𝑗) ∈ 𝑆𝑙  and 

(𝑝𝑘≠𝑖 , 𝑞𝑗) ∉ 𝑆𝑙∀𝑝𝑘 ∈ 𝑉1 . Finally, a unique solution 𝑆𝑢 = 𝑆𝑟 ∩

𝑆𝑙 can be derived. 

 

This approach is obviously inefficient as it evaluates every 

possible point matching pair. However, by employing a spatial 

index (e.g. a kd-tree) and only evaluating neighbors within a 

sufficiently large radius, Pure Euclidean matching may be 

performed efficiently without losing substantial accuracy. 

 

The Euclidean distance may be projected to a score of the 

interval (0; 1] by using the following formula: 

scorePE(𝑝𝑖 , 𝑞𝑗) =
1

1 + (
dist(𝑝𝑖 , 𝑞𝑗)

𝑐 ∗ 𝑟
) ²

 

where 𝑐 ∈ ℝ+  is a correction factor and 𝑟 ∈ ℝ+  is the node 

search radius. Note that lim
dist→∞

score(𝑝𝑖 , 𝑞𝑗) = 0 for any 𝑐, 𝑟. 

3.2 Topological point matching techniques 

Topological point matching techniques employ topological 

information such as the valence (number of incident edges) per 

node.  

 

DEFINITION 6: METRIC DEFINITION FOR POINT MATCHING. 

A metric on a set 𝑋 ≔ 𝑉1 ∪ 𝑉2 is a function 𝑑: 𝑋 × 𝑋 → ℝ 

where ∀𝑥, 𝑦, 𝑧 ∈ 𝑋, these conditions must be satisfied: 

(a) 𝑑(𝑥, 𝑦) = 0 ⟺ 𝑥 = 𝑦 

(b) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) 

(c) 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) 
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3.2.1 Node Valence 

The valence, or degree, of a node in a graph is defined as the 

number of edges incident to the node, where loops are counted 

twice. 

 

The Node Valence point matching approach is concerned with 

the differences in valence found between the two nodes of a 

point matching. The larger this difference grows, the lower the 

probability becomes that both nodes reference the same 

geographical entity. However, minor differences in valence are 

no guarantee that the nodes are a bad matching, since the two 

maps may differ in actuality or level of detail so that e.g. small 

roads may only be present in one map. Also, equal valence does 

not imply node equality, so that node valence on its own does 

not qualify as a metric, since it violates condition (a) in Def. 6. 

 

The valence difference may be combined with the Euclidean 

distance to obtain an order in case of equal valence difference. 

Since point matchings of large geometrical distances are 

unlikely to represent a proper solution, the search for matching 

candidates regarding a node may be limited to its neighborhood 

within a certain radius. Only within this neighborhood, node 

valence needs to be evaluated. The lower the difference of 

valence is, the higher the assumed similarity of two nodes. If 

two matching candidate pairs are assigned to the same 

equivalence class regarding their valence difference, the pair 

with the lower Euclidean distance is assumed to be more similar. 

Depending on properties of the maps to be matched such as 

node density or dispersion, Node Valence may require a fine-

tuning of the search radius to provide acceptable solutions. 

 

A straightforward approach for calculating a score based on 

valence difference is reflected by the following formula: 

scoreNV(𝑝𝑖 , 𝑞𝑗) =
1

1 + |val(𝑝𝑖) − 𝑣𝑎𝑙(𝑞𝑗)|
 

3.3 Combined geometrical / topological point matching 

techniques 

Combined geometrical / topological point matching techniques 

are employed by algorithms which follow both geometrical as 

well as topological approaches and combine them in order to 

achieve better matching results. 

 

3.3.1 Spider Index 

Rosen and Saalfeld [10] describe a point matching technique 

called the Spider Index, which overlays a node with a circular 8-

sector discretization of 45° angle intervals similar to a compass 

rose. Each sector corresponds to one bit within an 8-bit number. 

A bit is set to true if and only if there is an incident edge that 

falls into the corresponding sector. Thus, each node 𝑝 can be 

described by an 8-bit number with bits 𝑝𝑏1
⋯ 𝑝𝑏8

. For two nodes 

𝑝 ∈ 𝑉1  and 𝑞 ∈ 𝑉2  the score of the spider index is then 

calculated as 

scoreSI=
1

8
∑ 𝜗(𝑝𝑏𝑖

, 𝑞𝑏𝑖
),

8

𝑖=1

 

where 𝜗(𝑝𝑏𝑖
, 𝑞𝑏𝑖

) = 𝑝𝑏𝑖
↔ 𝑞𝑏𝑖

 is the binary equivalence 

function, i.e. 𝜗 = 1  if bits are equal and 𝜗 = 0  if they are 

different. Note that we have normalized the score to the interval 

[0; 1].  

 

Due to the information loss resulting from the quantization, two 

nodes may still be considered equal if the angles of their 

incident edges are different within the limits of a sector. 

Moreover, it may happen that two nodes are not considered 

equal if the angles of their incident edges are rotated by a tiny 

degree, but beyond the limits of a sector. Yet, compared to 

Node Valence, the Spider Index offers a more accurate measure 

for node equality, as it not only accounts for topological valence 

difference, but also geometrical angle difference. 

As with Node Valence, the Spider Index alone does not qualify 

as a metric, since two matching candidate pairs whose bit 

difference regarding their Spider Index is zero may still be 

different. However, in the same way as with Node Valence, the 

Spider Index may be turned into a metric by combining it with 

the Euclidean distance, so that Euclidean distance determines an 

order where the Spider Index does not discriminate. 

 

3.3.2 Exact Angular Index 

Here, we introduce a novel similarity metric called the Exact 

Angular Index (EAI). Like the Spider Index, the EAI aims to 

find point matching solutions which consider both topological 

valence and geometrical angle difference of incident edges. 

However, the EAI does not employ quantization. Rather, the 

best mapping between the edges of the two nodes of a matching 

candidate, i.e. the mapping which minimizes the angle 

differences between the vectors derived from the geometrical 

shapes of the edges, is determined by evaluating all possible 

edge mappings. Then, a score is calculated based on the sum of 

minimum angle differences according to the mapping relative to 

the largest possible sum of angle differences, where differences 

in valence are counted as the worst possible angle differences. 

 

Formally, the algorithm follows these steps to iteratively assign 

a score to point matchings {(𝑝𝑖 , 𝑞𝑗)|𝑝𝑖 ∈ 𝑉1, 𝑞𝑗 ∈ 𝑉2} for each 

𝑝𝑖 with incident edges 𝐸𝑝𝑖
⊆ 𝐸2: 

- For each incident edge of 𝑝𝑖 , calculate the geographical 

heading, i.e. the angle between the vector given by the first 

linear segment of the edge and true north in clockwise direction. 

The result is a heading function ℎ𝑝𝑖
: 𝐸𝑝𝑖

→ ℝ. 

- Search for nodes 𝑞1, . . , 𝑞𝑛 ∈ 𝑉2  in 𝐺2  within a fixed radius 

around the position of 𝑝𝑖. If no surrounding nodes can be found, 

no matching partner can be assigned to 𝑝𝑖 , so the algorithm 

continues with the next node 𝑝𝑖+1. 

- For each found node 𝑞𝑗 ∈ 𝑉2 with incident edges 𝐸𝑞𝑗
⊆ 𝐸2: 

1. Calculate the heading function ℎ𝑞𝑗
: 𝐸𝑞𝑗

→ ℝ. 

2. Calculate the best-mapping function 𝑏𝑞𝑗

𝑝𝑖 : 𝐸𝑝𝑖
→ 𝐸𝑞𝑗

 

which determines the optimum mapping from each 

edge incident to 𝑝𝑖 to an edge incident to 𝑞𝑗 regarding 

their angle difference, using ℎ𝑝𝑖
 and ℎ𝑞𝑗

. If |𝐸𝑝𝑖
| >

|𝐸𝑞𝑗
|, there are edges 𝐸𝑝𝑖

̅̅ ̅̅ ⊆ 𝐸𝑝𝑖
which could not be 

mapped to edges of 𝐸𝑞𝑗
 and 𝑏𝑞𝑗

𝑝𝑖(𝑒) = ∅ ∀𝑒 ∈ 𝐸𝑝𝑖
̅̅ ̅̅ . 

3. Calculate the sum of all angle differences 𝑠all  by 

adding up the differences between the headings of all 

best-mappings gained from 𝑏𝑞𝑗

𝑝𝑖: 

𝑠all = ∑ Δ (ℎ𝑝𝑖
(𝑒𝑘), ℎ𝑞𝑗

(𝑏𝑞𝑗

𝑝𝑖(𝑒𝑘)))

𝑛

𝑘=1

 

where 1 ≤ 𝑘 ≤ 𝑛, {𝑒1, . . , 𝑒𝑛} ⊆ 𝐸𝑝𝑖
∖ 𝐸𝑝𝑖

̅̅ ̅̅  and Δ(α, β) 

is the angle difference computed by Δ(𝛼, 𝛽) =
mod(|𝛼 − 𝛽|, 360). 

4. If there is a difference in valence between 𝑝𝑖 and 𝑞𝑗, 

add an angle difference of 180° per missing or 

redundant edge to get the normalized sum of all angle 

differences 𝑠norm: 

𝑠norm = 𝑠all + 180 ∗ |val(𝑝𝑖) − val(𝑞𝑗)| 

where val(𝑝) is the valence of node 𝑝. 

5. Calculate the largest possible sum of angle differences 

𝑠largest: 
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𝑠largest = 180 ∗ max (val(𝑝𝑖),val(𝑞𝑗)) 

Then project the quotient of 𝑠norm and 𝑠largest  onto a 

score in the interval of [0; 1] which expresses the 

degree of similarity by subtracting it from 1: 

scoreEAI(𝑝𝑖 , 𝑞𝑗) = 1 −
𝑠norm

𝑠largest
 

The best-mapping function 𝑏𝑞𝑗

𝑝𝑖  employs a queue for edges 𝑄 =

{𝑒𝑝𝑖

1 , . . , 𝑒𝑝𝑖

𝑛 } ⊆ 𝐸𝑝𝑖
 which are not mapped yet, a mapping 

relation 𝑀 ⊆ (𝐸𝑝𝑖
× 𝐸𝑞𝑗

)  holding established mappings, a 

record function 𝑅: 𝐸𝑞𝑗
→ (𝐸𝑝𝑖

, ℝ)  storing the best angle 

difference found for a destination edge found so far along with 

its source edge, and an angle difference function 

 ad𝑞𝑗

𝑝𝑖 : (𝐸𝑝𝑖
, 𝐸𝑞𝑗

) → ℝ, (𝑒1, 𝑒2) ↦ Δ (ℎ𝑝𝑖
(𝑒1), ℎ𝑞𝑗

(𝑒2)). 

Initially, 𝑄 = 𝐸𝑝𝑖
, 𝑀 = ∅  and 𝑅(𝑒) = (∅, ∞)∀𝑒 ∈ 𝐸𝑞𝑗

 . The 

algorithm then repeats the following steps until 𝑄 = ∅: 

1. Take one edge 𝑒𝑝𝑖

𝑘  from queue 𝑄  so that 𝑄 ≔ 𝑄 ∖

{𝑒𝑝𝑖

𝑘 }. 

2. Get sorted list (𝑑1, . . , 𝑑𝑛)  of angle differences 

between 𝑒𝑝𝑖

𝑘  and each 𝑒𝑞𝑗
 incident to 𝑞𝑗  using ad𝑞𝑗

𝑝𝑖 . 

Also store the assignment between 𝑑𝑖  and 𝑒𝑞𝑗
 as 

function ea: ℕ → 𝐸𝑞𝑗
, 𝑖 ↦ 𝑒𝑞𝑗

. 

3. For each (𝑑𝑖 ,ea(𝑖)) : Iteratively verify record 

𝑅(ea(𝑖)) = (𝑒𝑝𝑖

old, ∂𝑞𝑗

old) . If 𝑑𝑖 < ∂𝑞𝑗

old , enqueue 𝑒𝑝𝑖

old 

(𝑄 ≔ 𝑄 ∪ {𝑒𝑝𝑖

old}) , update 𝑅(ea(𝑖)) ≔ (𝑒𝑝𝑖

𝑘 , 𝑑𝑖) , and 

leave iteration (since everything that follows would be 

a worse assignment, as the list is sorted). Otherwise, 

proceed until a new difference record has been found 

or there are no differences left. 

If 𝑄 = ∅, add all projections of 𝑅 (𝑒𝑞𝑗
) = (𝑒𝑝𝑖

, 𝑥) to 𝑀 (𝑀 ≔

𝑀 ∪ {𝑒𝑝𝑖
, 𝑒𝑞𝑗

} ) where 𝑅(𝑒) ≠ (∅, ∞) . Then, M holds the 

optimum mapping and the algorithm terminates. 

 

3.3.3 Exact Angular Index + Distance 

It is possible to calculate a weighted score scorew(𝑝𝑖 , 𝑞𝑗) which 

incorporates both the Exact Angular Index as well as the 

Euclidean distance with the following formula: 

scorew(𝑝𝑖, 𝑞𝑗) = 𝑤1 ∗ scoreEAI(𝑝𝑖 , 𝑞𝑗) + 

𝑤2 ∗ scorePE(𝑝𝑖 , 𝑞𝑗) 

where 𝑤1 = |1 − 𝑤2| ∈ [0;  1] ⊆ ℝ describes the weight given 

to the topological similarity of the nodes expressed by the EAI 

score, and 𝑤2 = |1 − 𝑤1| ∈ [0;  1]  ⊆ ℝ  stands for the weight 

given to the geometrical similarity of the nodes expressed by the 

Pure Euclidean score. 

 

4. EVALUATION OF POINT MATCHING 

TECHNIQUES 

In the previous section, several point matching techniques were 

introduced. In order to evaluate these approaches, we employ an 

experimental setup involving real-world road maps. At first, we 

create a unique matching solution serving as a ground truth by 

manually assigning matches. Matching results of the different 

point matching techniques are then compared to the ground 

truth assignments. This way, accuracy and performance can be 

measured and discussed. 

4.1 Experimental Setup 

We investigated the point matching approaches described in 

section 3 using samples from two regions: The village of 

Moosach, Germany, as seen in Figure 1 serves as an example 

for relatively simple matching problems (Area: 590000 m², 54 

nodes in reference map, 100 nodes in matching map, boundaries 

[48.036587,11.870445 | 48.029227,11.880119]), and a part of 

the inner city of Munich, Germany is used as an example for 

difficult matching cases (Area: 81800 m², 26 nodes in reference 

map, 39 nodes in matching map, boundaries [48.151872, 

11.5543 | 48.149853, 11.559203]). For the Moosach region, our 

sources were OpenStreetMap and a commercial map vendor, 

and a search radius of 40 meters was set. For the sample of the 

inner city of Munich, we employed the ATKIS Basis-DLM map 

as well as OpenStreetMap data, using a search radius of 20 

meters due to the higher density of nodes. For each region, we 

manually created a ground truth matching reflecting the best 

association of nodes by visual inspection (Moosach: 37 

matching pairs, Munich: 17 matching pairs). Each point 

matching algorithm was applied to each pairing of maps, then 

we compared the results to the ground truth matching in order to 

evaluate the number of true positives (matching pairs found in 

the ground truth), false positives (matching pairs not found in 

the ground truth), and false negatives (matching pairs present in 

the ground truth, but missing in the matching result generated 

by the algorithm). We also investigated the correlation between 

the score of a point matching pair and the probability of it being 

a true positive, in order to derive a threshold for acceptable 

matchings. All discussed results refer to unique solutions 

according to Def. 5. 

 

4.2 Results 

4.2.1 Pure Euclidean 

 
Figure 2: Pure Euclidean Scores for a simple (left, Moosach) 

and a complex (right, Munich City) region 

Figure 2 shows decreasing matching scores of Pure Euclidean 

Matching. False positives are marked as red squares. Of the 37 

matching pairs defined by the ground truth matching for the 

Moosach sample, 26 (70%) were correctly identified. There 

were 15 false positives and 11 false negatives. The complex 

sample yielded slightly worse results: 11 (65%) correct 

matching pairs, 5 false positives, and 6 false negatives. Since 

false positives seem to be evenly distributed among the scores, a 

safe threshold for discarding bad matchings must be set at the 

very end of the scale. 

4.2.2 Node Valence 

 

 
Figure 3: Node Valence Scores for a simple (top) and a 

complex (bottom) region 

The scores of Node Valence Matching can be seen in Figure 3. 

Node Valence was able to correctly identify 34 matching pairs 
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(92%) [7 FP, 3 FN] in the simple region and 14 matching pairs 

(82%) [1 FP, 3 FN] in the complex region. Clearly, node 

valence alone is a very coarse measure, thus a reasonable 

threshold for acceptable matchings cannot be established. 

4.2.3 Spider Index 

 

 
Figure 4: Spider Index Scores for a simple (top) and a 

complex (bottom) region 

The Spider Index (scores shown in Figure 4) identified 33 

matching pairs found in the ground truth (89%) in the simple 

region [8 FP, 4 FN] and 10 matching pairs (59%) [6 FP, 7 FN] 

in the complex region. The resolution of the score is so low that 

for (nearly) all of the 8 possible score values, true as well as 

false positives were found, and thus, no threshold could be 

derived. 

4.2.4 Exact Angular Index 

 

 
Figure 5: Exact Angular Index Scores for a simple (top) and 

a complex (bottom) region 

Within the simple region, the Exact Angular Index (Figure 5) 

identified 33 true positives (89%) [8 FP, 4 FN], and within the 

complex region, 12 true positives (71%) [3 FP, 5 FN]. Contrary 

to the Spider Index, the scores found provide a basis for 

establishing a threshold, as high scores are clearly, though not 

perfectly, correlated with true positives. In the both of the 

samples shown, an acceptance threshold of 0.8 offers a balanced 

compromise which selects the most true positive matchings 

while rejecting most false positives. 

4.2.5 Exact Angular Index + Distance 

 

 
Figure 6: EAI + Distance Scores for a simple (top) and a 

complex (bottom) region 

The combination of the EAI score with Euclidean distance with 

a weight of 50% for each component yielded 32 true positives 

(82%) [9 FP, 5 FN] in the simple region and 15 true positives 

(88%) [1 FP, 2 FN] in the complex region (Figure 6). For the 

first sample, Euclidean distance deteriorates the matching 

accuracy of the Exact Angular Index, to an extent where a safe 

threshold can no longer be derived. Thus, for this sample, it can 

be stated that topological similarity should be preferred over 

geometrical distance in order to achieve good matching results. 

However, for the complex region, the matching result is the best 

of all algorithms discussed here regarding sensitivity as well as 

specificity.  

5. SUMMARY 

In this paper, we have provided an overview of different point 

matching techniques for road network matching. We classified 

and described several point matching algorithms in detail, 

including a novel matching algorithm called Exact Angular 

Index, which offers an exact metric for the topological 

similarity of nodes in a road network. Finally, we presented an 

experimental evaluation of the point matching algorithms using 

real-world maps of two different regions from multiple sources. 

The results show that especially for complex matching cases, 

combinations of topological and geometrical approaches 

provide an advantage in both accuracy and precision, while 

maintaining acceptable execution times. 
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