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ABSTRACT: 

 

In the most applications in remote sensing, there is no need to use all of available data, such as using all of bands in hyperspectral 

images. In this paper, a new band selection method was proposed to deal with the large number of hyperspectral images bands. We 

proposed a Continuous Genetic Algorithm (CGA) to achieve the best subset of hyperspectral images bands, without decreasing 

Overall Accuracy (OA) index in classification. In the proposed CGA, a multi-class SVM was used as a classifier. Comparing results 

achieved by the CGA with those achieved by the Binary GA (BGA) shows better performances in the proposed CGA method. At the 

end, 56 bands were selected as the best bands for classification with OA of 78.5 %. 
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1. INTRODUCTION 

In recent years, there are many remotely sensed data available in 

Photogrammetry and Remote Sensing study fields (Zhang et al., 

2009). Hyperspectral remotely sensed (HRS) imagery, LiDAR 

data, high resolution images, and Radar data are examples of 

these data. In almost applications, there is no need to use all of 

these data. However, extracting suitable and adequate features 

from these data are vital for any remote sensing analysis and 

especially for the classifying techniques. To overcome these 

issues, dimension reduction methods are proposed and have 

shown a direct effect on improving the classifier performance. 

In this regard, “feature extraction” or “feature selection” are two 

important terms used in remote sensing fields. In this case, 

optimal band selection of HRS imagery seems to be crucial to 

decrease expense of data processing for some tasks such as 

object detection, pattern recognition, classification, anomaly 

detection, and etc. Land cover classification is one of the 

several tasks in remote sensing, which is concerned with the 

identification of all the different coverages of the earth surface 

(Chang, 2007; Plaza et al., 2009). HRS imagery has information 

about materials on earth surface which allows materials to be 

identified with more accuracy (Chang, 2007; Plaza et al., 2009). 

Classification of HRS imagery is a challenging task due to its 

small set of referenced data and the large amount of spectral 

information (Benediktsson et al., 2005; Tarabalka, 2010), as 

well as the density estimation (Plaza et al., 2009). 

 

In order to dealing with above difficulties, some researchers 

apply feature selection/extraction/representation methods (Bazi 

and Melgani, 2006; Kuo et al., 2009; Serpico and Bruzzone, 

2001). 

There are some feature extraction methods such as principle 

component analysis (PCA) or K-L transform that are usually 

used in the dimension reduction (Green et al., 1988). Fused 

feature extraction usually makes the interpretation of extracted 

features more sophisticated. This is why sometimes a fused 

feature extraction method is not suitable, and a feature selection 

method should be used for choosing an optimal subset of 

original features (bands) (Conese and Maselli, 1993). In most 

cases, there is some low-frequency information in the bands 

(noisy bands) that consequently reduce the accuracy of 

classification of some small classes (Zhang and Pazner, 2007). 

In addition, when the bands are not correlative with each other, 

algorithms such as PCA or K-L may not be efficient in the 

reduction of data dimension. In conclusion, a robust 

feature/band selection method is important in the classification 

or preprocessing of HRS imagery (Zhang et al., 2009). In this 

paper, it is tried to deal with feature selection as a global 

optimization problem. 

 

Natural evolutionary theory is the fundamental concept of 

Genetic Algorithms (GAs) (Pal et al., 1998; Ribeiro Filho et al., 

1994). GAs are suitable for solving complex optimization 

problems and for applications that require adaptive problem 

solving strategies (Brookes, 2001). The effectiveness of GAs 

search for ideal solutions make GAs probable to be widely 

utilized in pattern recognition analyses and multi-criteria 

decisions since 1990s. Also, GAs have been incorporated in the 

design of feature selection methods (Kudo and Sklansky, 2000). 

 

The Continuous GA (CGA), which is used in this paper, is 

inherently faster than the binary GA, because the chromosomes 

do not have to be decoded prior to the evaluation of the cost 

function. 

 

To reach HRS optimal bands for classification purpose, in this 

paper, overall accuracy was regarded as a fitness function of the 

proposed CGA.  In this regard, to calculate this function, a 

classifier would be needed. A Multiclass Support Vector 

Machine (Multiclass-SVM) was used as the classifier.  

 

This study is organized as follows. The Multiclass-SVM as a 

classifier to calculate the CGA fitness function is explained in 

Section 2. In Section 3, the proposed CGA would be illustrated. 

Study area is introduced in Section 4. The experimental results 
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are presented in Section 5, and in Section 6, the conclusion is 

represented.  

 

2. MULTICLASS-SVM AS A CLASSIFIER FUNCTION 

The Support Vector Machines (SVM) methodology is based on 

class separation through margins in which samples are mapped 

to a feature space where they can be linearly separable (Duda et 

al., 1995). The data is transformed to a new feature space, 

generally larger than the original, by a kernel function. Some 

popular kernels are: Linear, Polynomial and Radial Basis 

Function (RBF). The ability of separating data with nonlinear 

distributions is related to the choice of this function and should 

be chosen according to the problem domain (Duda et al., 1995). 

Using an appropriate nonlinear mapping, samples of two classes 

can then be linearly separated by a hyperplane (Bishop, 2006; 

Duda et al., 1995) in this new transformed and high feature 

space (Camps-Valls and Bruzzone, 2005; Duda et al., 1995). 

Thus, SVM training consists of finding an optimal hyperplane 

where the separating distance between margins of each class can 

be maximized (Bishop, 2006; Duda et al., 1995). Samples 

whose locations are located on the margins are called support 

vectors and are the most informative ones to build the 

classification decision boundary (Duda et al., 1995). 

 

Multiclass-SVM aims to assign labels to instances by using 

support vector machines, where the labels are drawn from a 

finite set of several elements. The dominant approach for doing 

so is to reduce the single multiclass problem into multiple 

binary classification problems (Duan and Keerthi, 2005). 

Common methods for such reduction include (Duan and 

Keerthi, 2005; Hsu and Lin, 2002): 

 

1. Building binary classifiers which distinguish between (i) one 

of the labels and the rest (one-versus-all) or (ii) between every 

pair of classes (one-versus-one). Classification of new instances 

for the one-versus-all case is done by a winner-takes-all 

strategy, in which the classifier with the highest output function 

assigns the class (it is important that the output functions be 

calibrated to produce comparable scores). The one-versus-all 

approach builds n SVM models where n is the number of 

classes. The ith SVM is trained with all of the examples in the ith 

class with positive labels, and all other examples with negative 

labels. Thus, given l training data (x1,y1), … ,(xl,yl), where 

, 1,...,n
ix R i l  and {1,..., }iy  is the class of xi, the ith SVM 

solves the following problem: 
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where the training data xi are mapped to a higher dimensional 

space by the function  , and C is the penalty parameter. 

 

For the one-versus-one approach, classification is done by a 

max-wins voting strategy, in which every classifier assigns the 

instance to one of the two classes, then the vote for the assigned 

class is increased by one vote, and finally the class with the 

most votes determines the instance classification. This method 

constructs n(n-1)/2 classifiers where each one is trained on data 

from two classes. For training data from the ith and the jth 

classes, we solve the following binary classification problem: 
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2. Directed acyclic graph SVM (DAGSVM) (Platt et al., 1999). 

3. Error-correcting output codes (Dietterich and Bakiri, 1995). 

 

Crammer and Singer proposed a multiclass-SVM method which 

casts the multiclass classification problem into a single 

optimization problem, rather than decomposing it into multiple 

binary classification problems (Crammer and Singer, 2002). See 

also Lee, Lin and Wahba (Lee et al., 2001, 2004). 

 

3. THE PRPOPOSED CONTINUOUS GENETIC 

ALGORITHM 

Genetic Algorithms (GAs) are the most widespread techniques 

among evolutionary algorithms. They allow us to find potential 

solutions for optimization problems in an acceptable time, 

especially when the search space is very large (Goldberg and 

Holland, 1988). This technique is heuristic, based on population 

of individuals (e.g., chromosomes), in which each individual 

enacts a candidate solution for a problem (Goldberg and 

Holland, 1988) and can be represented as a bit string. Each 

individual is evaluated by a function called fitness. This 

function establishes the quality of an individual related to a 

solution. 

 

In CGA, the population starts in a random way, or by some 

strategy according to the problem in question. The population 

undergoes a determined number of evolutions. During this 

process individuals of this population are evolved and 

reproduced using some genetic operations such as: crossover, 

mutation and the selection process. Its main goal is to find the 

individual with the best fitness (Goldberg and Holland, 1988). 

 

We modeled the problem of band selection as follows: each 

individual has a size of B bands/genes, as shown in Figure 1, 

and each gene represents a uniformly random double vector 

number between -1 and 1, associated with a band. As previously 

stated, the quality of each candidate solution is evaluated ac-

cording to a fitness function. Our fitness function here is the 

Overall Accuracy (OA) of a classification performed by a mul-

ticlass-SVM. Stochastic Universal Sampling was used as the 

selection operator.  Moreover, Uniform crossover, as well as 

Gaussian mutation were used as CGA operators. Finally, migra-

tion direction was set to forward mode in addition to the elitism 

mechanism. 
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Figure 1: Chromosome representation, adapted from (Tarabalka, 

2010).  

 
4. STUDY AREA 

One of the most widely used hyperspectral images in the 

literature (Fu et al., 2006; Jia et al., 2010; Martínez-Usó et al., 

2007; Qian et al., 2011; Sarhrouni et al., 2012) was used in this 

study (Figure 2). This data set was gathered by the Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS) sensor over 

the Indian Pines test site in North-western Indiana and consists 

of 145×145 pixels and 224 spectral reflectance bands in the 

wavelength range of 0.4–2.5 μm.  

 

 
Figure 2: Study area image in false colours. 

 

5. EXPERIMENTAL RESULTS 

In this section, we describe the experiments carried out on a 

well-known Indian Pines dataset for validating our proposed 

method in finding the most suitable features. In this paper. the 

C++ external library was used to program an executive-file for 

implementing multiclass-SVM on a PC with a 8 GB of RAM, 

and a 2.20-GHz-based processor. Details regarding to CGA and 

classifiers setups would be presented in coming section. 

 

5.1 CGA and Multiclass-SVM setups 

An individual’s chromosome, i.e., the features present in an 

individual, was initialized in a random way and the parameters 

were set according to results of preliminary experiments. Table 

1 presents all parameters set in CGA. The samples were 

randomly chosen, however the total number of samples has an 

important impact on the performance. The higher the number of 

samples are, the higher the time to calculate the fitness for each 

individual would be. In order to ensure high reliability of 

results, 10 runs of CGA for each dataset were performed. Then 

those features that appeared more frequently were selected. The 

kernel used in Multiclass-SVM was the Radial Basis Function 

(RBF). 

 
Parameters Value 

Population size 20 

Number of Generations 470 

Crossover rate 0.8 

Migration Fraction 0.2 

Migration Interval 20 

Scale (Gaussian Mutation) 0.5 

Shrink (Gaussian Mutation) 0.7 

Elite count 1 

Table 1: GA’s Parameters 

 

5.2 Selected features 

Since we have decided to let CGA find the optimal number of 

features, it is also important to note that for each run we 

obtained almost the same number of features. This indicates that 

there are tracks of spectral bands that are more discriminative 

than others. Thereby, features that repeat in at least 50% of all 

10 runs were selected to compose the final subset of features. 

The number of selected features for our proposed CGA was 56 

and for Binary GA (BGA) was 86 (Santos et al., 2012), which 

are selected automatically. Figure 3 shows the best and the 

mean of fitness values in each generation for a single run of 

CGA. 

 

 
Figure 3: Fitness values achieved by the proposed CGA. 

 

5.3 Evaluation 

As shown in Table 2, the results of our proposed CGA method 

were close to the widely used BGA, but, improvements in each 
of classes are noticeable. Results for BGA are derived from 

(Santos et al., 2012). Because of reduced feature space in CGA 
approach, classification process is less computationally 

expensive than BGA. Figure 4 shows the classification map. 
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           (a)                   (b) 

Figure 4: (a) The achieved classification map, (b) Ground truths. 

 

 

6. CONCLUSION AND FUTURE WORK 

Due to the high dimensionality of remote sensed hyperspectral 

images, their rich content and some drawbacks for data 

discrimination, we have investigated the benefits of using 

feature selection approaches for the problem of classification of 

this data type. Thus, in this paper, a new filter feature selection 

approach was proposed. The main idea in this proposal was that 

smaller subsets of features, which generate high values of OA, 

may provide enough discriminant information for the 

classification task and hence it would be easier to build decision 

boundaries with good power of generalization. In this regard, 

we used the advantages of continuous genetic algorithms to lead 

a search for finding better clusters from a subset of features 

 

 

 

Number 

of 

Samples 

SVM-

GA 

(%) 

SVM-

CGA 

(%) 

Alfafa 46 90.7 95.5 

Corn-notill 1428 63.3 85.6 

Corn-mintill 830 53.2 89.2 

Corn 237 23.5 83.1 

Grass-pasture 483 83.1 98.8 

Grass-trees 730 95.2 95.4 

Grass-pasture-mowed 28 88.5 0.0 

Hay-windrowed 478 93.5 95.2 

Oats 20 100 0.0 

Soybean-notill 972 60.5 79.2 

Soybean-mintill 2455 84.9 79.8 

Soybean-clean 593 83.0 87.0 

Wheat 205 93.4 95.5 

Woods 1265 98.5 94.4 

Buildings-Grass-Trees-Drives 386 39.5 100 

Stone-Steel-Towers 93 98.9 100 

                        OA 77.1 78.5 

Table 2: Comparison of a classification performed using CGA 

and BGA (Santos et al., 2012). 
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