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ABSTRACT: 

 

K-means is definitely the most frequently used partitional clustering algorithm in the remote sensing community. Unfortunately due 

to its gradient decent nature, this algorithm is highly sensitive to the initial placement of cluster centers. This problem deteriorates for 

the high-dimensional data such as hyperspectral remotely sensed imagery. To tackle this problem, in this paper, the spectral signatures 

of the endmembers in the image scene are extracted and used as the initial positions of the cluster centers. For this purpose, in the first 

step, A Neyman–Pearson detection theory based eigen-thresholding method (i.e., the HFC method) has been employed to estimate the 

number of endmembers in the image. Afterwards, the spectral signatures of the endmembers are obtained using the Minimum Volume 

Enclosing Simplex (MVES) algorithm. Eventually, these spectral signatures are used to initialize the k-means clustering algorithm. 

The proposed method is implemented on a hyperspectral dataset acquired by ROSIS sensor with 103 spectral bands over the Pavia 

University campus, Italy. For comparative evaluation, two other commonly used initialization methods (i.e., Bradley & Fayyad (BF) 

and Random methods) are implemented and compared. The confusion matrix, overall accuracy and Kappa coefficient are employed 

to assess the methods’ performance. The evaluations demonstrate that the proposed solution outperforms the other initialization 

methods and can be applied for unsupervised classification of hyperspectral imagery for landcover mapping. 

 

 

1.  INTRODUCTION 

Classification can be categorized into two main groups of 

supervised and unsupervised classification methods. Although 

supervised methods lead to the better results, unsupervised or 

clustering techniques have been attracted a lot of attentions 

because they don’t need any training data and procedure 

(Melgani and Pasolli, 2013). 

Among different clustering algorithms, partitional methods are 

one of the best techniques for high-dimensional data, e.g., 

hyperspectral data. This is mainly because they have lower 

complexity (Celebi et al., 2013). The k-means algorithm is 

undoubtedly the most widely used partitional clustering 

algorithm (Jain, 2010). However, k-means has two significant 

disadvantages. First, it is sensitive to the outlier and noise. 

Second, it is highly sensitive to the selection of the initial clusters. 

Adverse effects of improper initialization include empty clusters, 

slower convergence, and a higher chance of getting stuck in bad 

local minima. Fortunately, these two drawbacks can be alleviated 

using an appropriate initialization method (Celebi et al., 2013). 

The problem of the initialization can be addressed by either 

deterministic (Celebi et al., 2013) or heuristic methods (Abraham 

et al., 2008). Although heuristic methods like particle swarm 

optimization (PSO) may lead to the best results, they are time-

consuming and may have less stability in high-dimensional data. 

Accordingly, deterministic methods have priority if they lead to 

an acceptable result.  

To address the initialization problem, different methods have 

been proposed especially for hyperspectral imagery. In (Sun et 

al., 2013), an artificial bee colony algorithm is used to find the 

appropriate position of cluster centers in hyperspectral data. In 

another similar work, (Namin et al., 2013) used the PSO 

clustering algorithm in Minimum noise fraction space. The 

comparison of their results with the K-means clustering method 

*  Corresponding author. 
 

showed better performance for the PSO clustering in minimum 

noise fraction feature space. In (Celebi et al., 2013), the authors 

compared different initialization methods for k-means. Although, 

they have shown Bradley and Fayyad’s method is one of the best 

initialization methods, it was also demonstrated that the popular 

initialization methods often perform poorly and that there are in 

fact strong alternatives to these methods. 

In this paper, a new initialization method for hyperspectral data 

clustering using k-means has been proposed. In this method, first, 

the number of endmembers is estimated by using the HFC 

(Harsanyi et al., 1993) technique. Then the spectral signature of 

endmembers (i.e., initial position of cluster centers) is obtained 

based on the MVES method.  

The rest of the paper is organized as follows. Section 2 presents 

a summary of k-means, HFC and MVES algorithms. Section 3 

introduces our proposed method. Section 4 describes the 

experimental setup and results. Lastly, section 5 gives our 

conclusion.  

 

2. THEORETICAL BACKGROUND  

2.1 K-Means Clustering 

K-means clustering (MacQueen, 1967) is a method commonly 

used to automatically partition a dataset into K groups. It 

proceeds by selecting K initial cluster centers and then iteratively 

refining them as follows. 1) First, each point is assigned to its 

closest cluster center, 2) Each cluster center Cj is updated to be 

the mean of its constituent points (Wagstaff et al., 2001). From 

the mathematical perspective, given a data set X =
{x1, x2 , … , xN} in ℝD, i.e. N points (vectors) each with D 

attributes (components), K-means algorithm divides X into K 

exhaustive and mutually exclusive clusters P = {p1, p2, … , pK}, 
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⋃ 𝑝𝑖 = 𝑋𝐾
𝑖=1 , 𝑝𝑖 ⋂ 𝑝𝑗 = ∅ for 1 ≤ i ≠ j ≤ K. This algorithm 

generates clusters by optimizing a criterion function. The most 

intuitive and frequently used criterion function is the Sum of 

Squared Error (SSE) given by: 

 

SSE =  ∑ ∑ ‖𝑥𝑗 − 𝑐𝑖‖
2

2

𝑥𝑗∈𝑝𝑖

𝐾

𝑖=1

 (1) 

 

 Where ‖. ‖2 denotes the Euclidean (ℒ2) norm and 𝑐𝑖 =
1

|𝑝𝑖|
 ∑ 𝑥𝑗𝑥𝑗∈𝑝𝑖

 is the centroid of cluster 𝑝𝑖 whose cardinality is |𝑝𝑖|. 

The optimization of (1) is often referred to as the minimum SSE 

clustering (MSSC) problem (Celebi et al., 2013) . Based on 

application, different similarity measures can be used instead of 

Euclidean distance (ED). In this study, Spectral similarity value  

(SSV) (Farifteh et al., 2007), as one of the most successful 

similarity measures  in hyperspectral data (Homayouni and Roux, 

2004), is used. SSV combines brightness and shape similarity.  It 

is a combined measure of Pearson correlation (PC) and ED 

measures.  

 

2.2 HFC Method 

A Neyman–Pearson detection theory-based eigen-thresholding 

method, referred to as the HFC method, was developed to 

determine the number of endmembers, which called Virtual 

Dimensionality (VD), in AVIRIS data (Harsanyi et al., 1993). It 

first calculated the sample correlation matrix RL×L and sample 

covariance matrix KL×L and then found the difference between 

their corresponding eigenvalues, where L is the number of 

spectral band in the image. Let {λ’
1 ≥ λ’

2≥ … ≥ λ’
L} and {λ1 ≥ λ2≥ 

… ≥ λL}  be two sets of eigenvalues generated by RL×L and KL×L, 

called correlation eigenvalues and covariance eigenvalues, 

respectively. By assuming that signal sources are nonrandom 

unknown positive constants and noise is white with zero mean, 

we can expect that: 

'
λ > λ , for i = 1, ,VDi i  (2) 

and 

'
λ = λ , for i = VD +1, , Li i  (3) 

More specifically, the eigenvalues in the ith spectral channel can 

be related by 

' 2
λ > λ , for i = 1, ,VDni i i

   (4) 

and 

' 2
λ = λ , for i = VD +1, , Lni i i

   (5) 

Where σ2
ni is the noise variance in the ith spectral channel (Chein 

and Qian, 2004). In order to determine the VD, Harsanyi et al 

formulated the problem of determination of VD as a binary 

hypothesis problem as follows:  

'
: z 0 : 0,10 i i i

'H , versus H zi i i      
 (6) 

for i = 1,2, , L
 

Where, the null hypothesis H0 represents the case that the 

correlation eigenvalue is equal to its corresponding covariance 

eigenvalue. The alternative hypothesis H1 is for the case that the 

correlation eigenvalue is greater than its corresponding 

covariance eigenvalue. In other words, when H1 is true (i.e., H0 

fails), it implies that there is an endmember contributing to the 

correlation eigenvalue in addition to noise, since the noise energy 

represented by the eigenvalue of R L×L in that particular 

component is the same as the one represented by the eigenvalue 

of K L×L in its corresponding component. 

Despite the fact that the λi and λ’i are unknown constants, we can 

model each pair of eigenvalues λ’i and λi under hypothesis H0 and 

H1 as random variables by the asymptotic conditional probability 

densities given by  

2
(z ) p(z H ) N(0, )00 i i zi

p , for i = 1,2, , L    (7) 

and 

2
(z ) p(z H ) N( , )11 i i i zi

p , for i = 1,2, , L   
 

(8) 

respectively, where μi is an unknown constant and the variance 

σ2
zi is given by 

 

σ2
zi=Var[λ’

i – λi]= Var[λ’
i]+Var[λi]-2Cov(λ’

i , λi) 

 

for i= 1, 2, …, L. 

(9) 

Eventually, they defined the false-alarm probability and 

detection power (i.e., detection probability) by using above 

mentioned equations and some approximations as follow: 

P = p (z) dzF 0
τi



  (10) 

P = p (z) dz1D
τi



     (11) 

A Neyman–Pearson detector for λ’
i – λi, denoted by δNP(λ’

i – λi), 

in the binary composite hypothesis testing problem can be 

obtained by maximizing the detection power PD in (11), while the 

false-alarm probability PD in (10) is fixed at a specific given 

value, α, which determines the threshold value τi in (10) and (11). 

So, a case of λ’
i – λi > τi indicating that δNP(λ’

i - λi) fails the test, 

in which case there is signal energy assumed to contribute to the 

eigenvalue λ’
i in the ith data dimension. It should be noted that 

the test for hypothesis must be performed for each of L data 

dimensions. Therefore, for each pair of λ’
i – λi, the threshold τ is 

different and should be i-dependent, i.e., τi (Chein and Qian, 

2004). 

 

2.3 MVES Algorithm 

Minimum Volume Enclosing Simplex (MVES) is an unmixing 

algorithm without requiring the pure-pixel assumption, which 

estimates the endmembers by vertices of a minimum-volume 

simplex enclosing all the observed pixels.  

Linear mixture model is a widely used approach for spectral 

unmixing of remotely sensed hyperspectral imagery. Let M be an 

L×P endmember signature matrix denoted by [𝐦1 , … 𝐦P], 
where 𝐦i is an L×1 column vector represented by the signature 

of the ith material resident in the image scene, and P is the 

number of materials in the image scene. In linear mixture model, 

spectral signature of a pixel vector 𝐫 = (r1, r2, … , rL)T can be 

represented by a linear regression model as follows: 

𝐫 = ∑ ai𝐦i + 𝐧

P

i=1

= 𝐌𝐚 + 𝐧 (12) 

 

In the equation above, 𝐚 = (a1, a2, … , aP)T is a P×1 column 

abundance vector associated with r, and 𝐧 = (n1, n2, … , nL)T is 

noise or can be interpreted as a measurement error (Heinz and 

Chein, 2001). The final goal of a spectral unmixing method is to 

recover the matrix M and the endmember fractional abundance a 

for each observed pixel. To do so, usually, noise needs to be 

minimized (in least squares fashion), and the volume of the 
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simplex spanned by the columns of matrix M should be 

minimized (Winter, 1999). In MVES algorithm, Craig’s 

unmixing criterion (Craig, 1994) was employed to formulate the 

hyperspectral unmixing as an MVES optimization problem. 

The key property of this method is that all the dimension-reduced 

pixels 𝐫𝐢 for i = 1, …, N, must be inside the simplex constructed 

by the dimension-reduced endmembers αi for i=1, …, P. This 

concept is illustrated in figure 1. 

 

 
Figure 1. Scatter plot of two-dimensional dimension-reduced 

pixels illustrating the MVES problem for hyperspectral 

unmixing (Chan et al., 2009) 

 

This figure also demonstrates that dimension-reduced pixels 𝐫𝐢 

can also be enclosed by a different simplex, denoted by 

conv{ β1, … , βP}. Nevertheless, by intuitive grounds, one would 

expect that the data enclosing simplex with the minimum volume 

should coincide with the true endmember simplex conv{ α1, … ,
αP}. This is exactly the belief of Craig’s unmixing criterion 

(Craig, 1994). The problem of finding the MVES can be 

formulated as an optimization problem as follows (Chan et al., 

2009): 

 

min
 β1,… ,βP

V( β1, … , βP) 

s.t.      𝐫i ∈ conv{ β1, … , βP}, ∀ i 
(13) 

 

Where V( β1, … , βP) is the volume of the simplex conv{ β1, … ,
βP}  ⊂  ℝP−1given by  

 

V( β1, … , βP) =
|det(Δ( β1, … , βP))|

(P − 1)!
 (14) 

 

Where 

Δ( β1, … , βP) = [
 β1 …  βP

1 … 1
] (15) 

 

Where Δ( β1, … , βP) is always a square matrix, since the 

dimension-reduced pixels and endmembers are in a p-1 

dimensional space. 

A cyclic minimization algorithm for approximating the MVES 

problem was developed using linear programs (LPs), which can 

be practically implemented by readily available LP solvers (Chan 

et al., 2009). 

 

3. PROPOSED METHODS 

In order to clustering of hyperspectral data, in this study, a multi-

step framework was presented to resolve the problem of 

initialization of k-means and improve the clustering efficiency. 

The stages of this proposed method, namely, MVES initialization 

method has been illustrated in figure 2. 

 

 
Figure 2.  MVES Initialization method 

 

 

4.  DISCUSSION AND RESULTS  

4.1 Dataset  

Experiments are performed using the Pavia University data set. 

This data set was acquired by the ROSIS sensor during a flight 

campaign in 2003 over the campus of Pavia University in the 

north of Italy. This data contains 610 by 340 pixels with 103 

spectral bands. The geometric resolution is 1.3 m. nine ground-

truth classes were considered in the experiments: Trees, Gravel, 

Meadows, Asphalt, Metal sheets, Bricks, Bitumen, Shadows and 

Bare soil. Figure 3 shows the ground-truth map and a color 

composite image of this data set. 

  
(a) 

 

(b) 

 

 
Figure 3. ROSIS hyperspectral dataset over Pavia University 

used in experiments: (a) colour composition image  

(R: 60, G: 30, B: 10). (b) Ground truth map. 

 

To reduce the effects of spectral bands with higher radiance 

values on those having lower values, the data is linearly 

normalized in the range of [0, 1]. Furthermore, before using this 

data sets, its background is ignored. This is because no 

information is available about these areas. 

 

4.2 Experimental results 

In this study, the proposed initialization method for k-means 

clustering of hyperspectral data is compared with two of most 

frequently used methods, i.e. Bradley &. Fayyad (BF) and 

Estimation the number of endmembers 
using HFC technique

Estimation  spectral signatures of the 
endmembers using MVES algorithm

k-means clustering using MVES's 
spectral signatures
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random methods. In the first step of the new method, the number 

of endmembers is estimated by HFC algorithm as 9. The false 

alarm probability for this detection problem is set to 0.001. As it 

is said earlier, among different similarity measures for k-means 

clustering, SSV is used here in all three cases.  

In the first case, initial position of cluster centers are obtained 

using Bradley &. Fayyad (BF) method (Bradley and Fayyad, 

1998). According to (Celebi et al., 2013), this method is one of 

the best methods for k-means initialization in different datasets, 

and as a result, it is used here to be compared with our proposed 

method. BF method starts by randomly partitioning of the dataset 

into J=10 subsets. Clustering results of this case are tabulated in 

table 1. 

 

 
Table 1. Confusion matrix based on BF initialization method. 

 

According to table 1, both Gravel and Asphalt classes have not 

been recognized. That’s why Gravel class has spectral signatures 

nearly the same as Bricks class on the one hand, and on the other  

both Asphalt and bitumen have nearly the same spectral 

signatures. Figure 4 and 5 show these spectral similarities. 

 

 
Figure 4. Spectral signatures of nine classes in Pavia 

University Hyperspectral dataset. 

 

 
Figure 5. Spectral signatures of similar classes in Pavia 

University Hyperspectral dataset. 

 

In the second case, cluster centers are randomly initialized. 

Clustering results in this case have been shown in table 2. 

 

 
Table 2. Confusion matrix based on Random initialization 

method. 

 

Like the first case, both Gravel and Asphalt classes have not been 

discriminated in this case. This is because of the above-

mentioned reasons.  

In the third case, initial position of cluster centers are obtained 

using MVES method. Clustering results of this case have been 

shown in table 3. 

 

 
Table 3. Confusion matrix based on MVES initialization 

method. 

 

According to table 3, this case leads to highly better results than 

the other cases. As is obvious, using MVES method not only the 

best kappa coefficient are obtained but also Asphalt and Bitumen 

classes are discriminated. For comparative purpose, kappa 

coefficients and overall accuracies for three cases above are 

shown in figure 6. 

 
Figure 6. Kappa coefficients and overall accuracies of k-

means clustering for different initialization methods. 

 

As shown in figure 6, among these three methods, our proposed 

method with kappa coefficient of 55.3 leads into better result than 

BF and random methods with kappa coefficients of 3.09 and 31.5 

respectively. Furthermore, unlike both BF and random method, 
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our proposed method is independent of iterations. In other words, 

our proposed method leads to the same result in different 

iterations. 

5. CONCLUSION 

In order to clustering of hyperspectral data, in this study, a multi-

step framework was presented to resolve the problem of 

initialization of k-means and improve the clustering efficiency. 

In the first step, HFC is used to estimate the number of 

endmembers in the image. Then, the spectral signatures of the 

endmembers are obtained using the MVES algorithm. Lastly, 

these spectral signatures are used to initialize the k-means 

clustering algorithm. The proposed method has been compared 

with two well-known initialization methods, namely, BF and 

Random methods. Clustering using MVES initialization method 

with kappa coefficient of 55.3 leads to highly better result than 

the other two methods. In other words, when MVES’s spectral 

signatures are used as initial cluster centers, k-means clustering 

leads to the best result. More importantly, unlike the other two 

cases, using MVES’s spectral signatures clustering leads to the 

same results in different iterations, which means, MVES method 

has the most stability. According to the confusion matrices in all 

three cases, despite the initial positions of cluster centers, the high 

spectral similarities of Asphalt and Bitumen classes on the one 

hand, and Gravel and Bricks classes, on the other, results in 

deteriorating clustering accuracy. To address last problem, either 

using another similarity measure or merging these two similar 

classes can be recommended. 
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