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ABSTRACT: 

 

Due to the widespread inaccuracy of wireless sensor networks (WSNs) data, it is essential to ensure that the data is as complete, 

clean and precise as possible. To address data gaps and replace erroneous data, temporal correlation modelling can be applied, which 

takes advantage of temporal correlation and is also energy efficient. In this research, the suitability of adapting the ARIMA model 

into a WSN context is scrutinized, as technological requirements demand special considerations. The necessity of applying a 

smoothing technique is explored and the selection of an appropriate method is determined. Additionally, the available options with 

regards to ARIMA set-up are discussed, in terms of achieving accurate and energy friendly predictions. The effect of sufficient 

historical data and the importance of predictions’ life span on the estimation accuracy are additionally investigated. Finally, an 

adaptive, online and energy efficient system is proposed for maintaining the accuracy of the model that simultaneously detects 

outliers and events as well as substitutes any missing or erroneous data with estimated values.  

 

1. INTRDUCTION 

A wireless sensor network (WSN) typically consists of wireless 

devices that are able to sense a wide range of attributes and 

variables. These instrumental readings are then transmitted over 

a wireless channel. These instruments can potentially provide 

information with high spatial and temporal resolution, which is 

a key feature of their existence. The quality of the data, 

however, may be affected by noise and error, missing values, 

duplicated data or inconstant data. Due to harsh condition of a 

deployment environment, packet loss, collisions and low sensor 

battery levels (Elnahrawy and Nath, 2003), not all sensor 

readings can be successfully gathered simultaneously and some 

readings are lost altogether.  

The communication capability in wireless sensor networks is 

limited due to energy and cost considerations. The impact of the 

surrounding environments, such as mountains and obstacles, 

may cause temporary isolation, which can result in a loss of 

data. Additionally, the sensors’ communication quality may be 

affected via natural events including rain, thunder, lightning and 

so on (Amidi et al., 2013). Consequently, the transmission links 

among sensor nodes may connect and disconnect. WSNs are 

known as low-power systems, but when a sensor’s power is low 

one may expect unstable records. The low level of power may 

additionally lead to data loss or/and data abnormalities and 

errors.  

The quality of data provided by WSNs is highly critical, while 

raw data may be of a lower quality and less reliable, due to the 

nature of the sensors (Amidi et al., 2013). Limited numbers and 

low quality of WSN resources, as well as harsh deployment 

environments, lack of memory capability, computational 

capacity, and computational bandwidth can all cause unstable 

data (Zhang, 2010). Thus, observations may include absolute 

errors, clustered absolute errors, random errors, long-term errors 

(Zhang, 2010), dead band errors and systematic errors. 

Consequently, the low quality data should be replaced with 

adequate estimations when possible. A sensor node, regularly 

sensing local observations, can fit a prediction model to the real 

data-set and then apply the model to estimate the missing or 

future values. On the one hand, the model should be up to date 

in order to represent precise and accurate predictions; on the 

other hand, careful attention should be paid to the model’s 

energy efficiency. The model can be updated if the current 

measurement differs from the predicted measurement by more 

than a pre-defined tolerance, thus avoiding unnecessary energy 

consumption. Typically, the applied model is fixed in advance, 

since the model parameters are estimated on the basis of 

incoming data (Santini and Romer, 2006; Tulone and Madden, 

2006).  

The abovementioned problems are somewhat inevitable due to 

the inherent characteristics of WSNs. Thus, in an effort to 

ensure a high quality of service for a WSN, techniques should 

be made to withstand and combat said undesirable incidents, 

which will also improve the overall quality of the information. 

In this paper an appropriate statistical model, the auto-

regressive integrated moving average (ARIMA) model, is 

applied, using real WSN data-set that consists of Grand-St-

Bernard nodes. The current research is conducted to investigate 

the effects of a number of parameters on ARIMA modelling in 

the context of WSNs including: the necessity of applying 

smoothing techniques for ARIMA modelling in WSNs, 

assigning proper methods of smoothing by considering the 

technological requirements, adequate settings of ARIMA model 

parameters, the role of sample size in WSNs modelling and 

optimum prediction life span (prediction age) with respect to 

specifications of technology and application in WSNs. 

2. RELATED WORKS 

Many efforts have been made to recover missing data by using 

spatial information of neighbour nodes. For example 

Sheikhhasan (2006) and Collins (1995) discussed temperature 

interpolation with the help of spatial correlations. Generally 

speaking, spatial correlation for data interpolation and missing 
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data recovery can be investigated by applying inverse distance 

weighted averaging (IDWA) and Kriging (Guo et al., 2011; 

Umer et al., 2008, 2010; Zhang et al., 2012).  Additionally, the 

majority of outlier detection methods that take the advantage of 

spatial information can be employed to fill in missing values  

(Cheng, 2008; Wang and Cheng, 2008; Wang and Yu, 2005; 

Wu et al., 2007; Zhang et al., 2008). 

Generally, assuming spatially correlated attributes in real world 

application of adjacent nodes is oversimplified, especially in the 

context of WSNs, as they are deployed in harsh environments. 

Moreover, spatially correlated nodes may lead to errors that are 

also correlated, and thus utilizing adjacent information is not 

always a safe option. Alternatively, the main source of energy 

consumption in WSNs is communication. Utilizing neighbour 

information requires effective data communication, which may 

lead to a considerable decrease of network life and subsequent 

errors. In addition, they typically consider data within a single 

span and as a result do not benefit from information in the 

sequential data span. 

Several attempts have been made to adopt temporal data for 

data estimation. Liu et al. (2005) proposed a method that 

employed the ARIMA model as a way to construct a prediction 

model for sampled data. Specifically, their proposed method ran 

both on sensor nodes and at the base station. While the 

difference between the values sampled on the sensor nodes and 

those values predicted by the ARIMA model were smaller than 

a pre-defined tolerance, the values were not transmittable to the 

network at the base station. While the base station was running 

the same model, it was using the predicted values as actual 

values. Singh et al. (2011) utilized ARIMA modelling to locate 

anomalies within a stream of data for a single node and to 

correct anomalous data by appropriating forecast values.  

3. DATA 

The Grand-St-Bernard WSN deployment was utilized as a real 

data-set to perform the experiments in this research. The 

frequency of the sampling for the deployment was two minutes. 

The proposed methodology was developed and evaluated on the 

basis of an ambient temperature, for which the precision of the 

correspondent sensor was ±0.3c. The period of 23:54:59 to 

16:02:00 on 2007-09-28 was used to build the temporal model. 

Moreover, the temperature on 16:04:00 to 18:00:00 from the 

same day was used as reference data for validation of the 

methodology. 

4. BASIC IDEA 

In order to estimate and replace the missing values and error 

related outliers, temporal correlation modelling was performed. 

An inadequate choice of a prediction model naturally results in 

poor prediction performance (Le Borgne et al., 2007). An 

existing correlation among an attribute sensed by WSNs is 

acknowledged by applying temporal correlation based methods 

for value estimation.  

4.1 ARIMA models 

A time series is a chronological sequence of measurements of a 

particular attribute. Auto-regressive integrated moving average 

(ARIMA) models establish a powerful class of models, which 

can be applied to many real time series. ARIMA models are 

based on three parts: (1) an autoregressive component, (2) a 

contribution from a moving average and (3) an element 

involving the first derivative of the time series. 

The auto-regressive (AR) component of the model originates in 

the theory that individual time series values can be described by 

linear models based on preceding observations. The general 

formula for describing AR models is represented by Equation 1, 

where the order of the model is determined by p: 

 

 

 

 

(1) 

The fact that time series values can be expressed as dependent 

on the preceding estimation errors, leads to moving average 

models (MA models). Past estimations or forecasting errors are 

taken into account when estimating subsequent time series 

values. The difference between the estimation x(t) and the 

actually observed value x(t) is denoted ε(t). The general 

description of MA models is shown by Equation 2. 

 

 

 

(2) 

Combining both AR and MA models forms ARMA models. In 

general, forecasting with an ARMA (p,q) model can be 

described through Equation 3. 

 

 

(3) 

Chatfield (2013) identified the three major steps of time series 

analysis as: (1) removing the trend and seasonality, (2) fitting an 

auto-regressive moving average (ARMA) model to the time 

series and (3) predicating future values using the ARMA. 

Seasonal effects represent systematic and calendar related 

properties of the variable. Thus adjustments are made by 

estimating seasonal effects and then removing them from a 

given time series. The data need to be seasonally adjusted to 

uncover the substantive underlying movement in the series, as 

well as to identify certain non-seasonal characteristics, which 

may be of interest to analysts (Australian Bureau of Statistics, 

2005). When a time series is dominated by a trend or irregular 

components, it is almost impossible to identify and remove what 

little seasonality is present, thus seasonally adjusting a non-

seasonal series is impractical and will often introduce an 

artificial seasonal element (Australian Bureau of Statistics, 

2005). Alternatively, the trend can be defined as “long term” 

movement in a time series and can prove to represent the 

underlying inclination. To achieve a stationary series, trends 

and seasonality must be accounted for and subsequently 

removed. 

The ARMA or any set of it can be used to predict the future 

values.  ARMA modelling functions through a series of well-

defined steps. The first step involves identifying the model. 

Identification consists of specifying the appropriate structure 

(AR, MA or ARMA), as well as the order of model. The second 

step involves estimating the coefficients of the model. 
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4.2 Identifying the numbers of AR and/or MA terms 

After a time series has been stationarized, the next step in 

appropriating an ARIMA model is to determine whether AR or 

MA terms are needed to correct any autocorrelation that 

remains in the stationarized series. By examining the 

autocorrelation function (ACF) and the partial autocorrelation 

(PACF) plots of the series, one can empirically identify the AR 

and/or MA terms. An ACF plot is merely a bar chart of the 

coefficients of correlation between a time series and the time 

lags. The PACF plot is an illustration of the partial correlation 

coefficients between the series and the time lags. 

4.3 Evaluation methods 

To evaluate the proposed methodology, an algorithm was 

implemented in R software (Ihaka and Gentleman, 1996) and 

the performance was assessed using real sensor data across 

various scenarios. In the context of WSNs, energy efficiency 

and accuracy are critical for performance evaluation, given the 

technological requirements. The metric that is used to evaluate 

the method performance is leave-one-out cross validation. 

For the time-series model, each observation was predicted using 

its ARMA model. The differences between measured and 

predicted values are called errors. The mean prediction error 

(MPE) and the root mean square error (RMSE) are the two 

main metrics of cross validation that are utilized in this study. 

The MPE is an indication of bias and RMSE is a measure for 

accuracy. 

 

5. RESULTS 

Temporal correlation among consecutive records of the ambient 

temperature was used for value estimation to replace missing 

values and error based outliers.  

5.1 Data smoothing 

Figure 1 illustrates the errors and imprecise observations that 

are represented by small fluctuations. Imprecise properties of 

WSN data may result in an unreliable temporal model and 

consequently, incorrect future value predictions. Additionally, 

those small fluctuations that do not represent informative 

information can be ignored using smoothing techniques on the 

original time series. Figure 1 explicates the effects of smoothing 

with exaggeration for better understanding via the highlighted 

line. Additionally, the choice of smoothing window size is 

discussed in experiments.  

Commonly used smoothing techniques such as median 

smoothing (Basu and Meckesheimer, 2007) and average 

smoothing (Lohninger, 2012), which replace potential outliers 

using median and mean values within each smoothing window, 

were utilized. The choice of smoothing window size was 

determined by performing experiments, as is illustrated by 

Figure 2 and Figure 3.  

 

 
Figure 1 Example of errourness and imprecise data and 

fluctuations in a real time series data and corresponding data 

after performing smoothing. 

 

 
Figure 2 The effect of different window sizes using the 

moving median smoothing technique. 

 

 
Figure 3 The effect of different window sizes in using the 

moving average smoothing technique. 

 

Both of the techniques reduce the effect of imprecise 

observations. Implementing the median smoothing method 

leads to the omission of infrequent outliers. In the case of 

average smoothing, however, outliers are not completely 

disregarded from the data. Importantly, outliers are not always 

considered errors and may in fact include useful information, to 

which they are then known as events. As is presented in Figure 

2 and Figure 3, larger window sizes represent lower MPE and 

RMSE, which are translated to greater accuracy. While both 

techniques for the following data-set represent accurate results, 
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the moving average method demonstrates superior performance. 

Furthermore, the existence of outliers was studied using a 

tolerance of ±0.3c, where the measured values exceeded the 

predicted values. On the basis of the quantity of detected 

outliers, the moving average identified a larger number of 

abnormalities compared to the moving median. Thus, the 

moving average was selected as the smoothing technique for 

further analyses, since it represented a higher performance in 

accuracy and outlier detection rate. Additionally, the effects of 

different window sizes are assessed. Identifying adequate 

window size is a function of data frequency; whereas high 

accuracy for this data-set occurred in the presence of a larger 

window size, too large a window size could change the structure 

of the data. 

5.2 Removing trends and Seasonality 

Achieving stationary is a prerequisite for building a temporal 

correlation model, as a result, trends and seasonality need to be 

accounted for and subsequently removed. Seasonality analysis 

involves harvesting energy and thus requires a large amount of 

historical data. The current data-set, which was collected over 

two months, implies that no significant seasonal behaviour 

exists. An efficient and non-parametric first order differencing 

method was applied, due to its low cost of computation and lack 

of complexity with regards to removing trends.  

5.3 Identifying the AR and/or MA numerical terms 

The selection of an adequate model depends on the nature of the 

time series, prior knowledge about the data structure, the 

required accuracy of predictions and the available 

computational resources. To identify the optimal ARIMA 

model, ACF and PACF were investigated. Figure 2 illustrates 

the ACF of the data, before any differencing is performed. The 

autocorrelations are significant for a large number of time lags. 

However, the autocorrelations at lags two and above are caused 

due to the propagation of the autocorrelation at lag one. The 

evidence is provided by the PACF plot demonstrated in Figure 

3. The PACF plot shows a significant spike only at lag one, 

which is evidenced given all the other higher-order 

autocorrelations that are effectively explained by lag one 

autocorrelation. The PACF represents a sharp cutoff, whereas 

the ACF decays more slowly. Thus, it can be concluded that the 

stationarized series displays an AR signature, indicating that the 

autocorrelation pattern can be better explained by adding AR 

terms as opposed to adding MA terms. Additionally, if the 

PACF of the differenced series displays a sharp cutoff and/or 

the lag one  autocorrelation is positive, adding one or more AR 

terms to the model appears to make it more feasible (Nau, 

2014). The lag beyond the PACF cutoff reveals the number of 

AR terms (Nau, 2014). AR models are both theoretically and 

experimentally prime candidates for making time series 

predictions (G. Box and G. Jenkins, 1976; Makridakis et al., 

2008). Moreover, model parameters can be adopted to the 

underlying time series in an virtual (i.e. online) manner, without 

the need to store large amounts of physical historical data (Le 

Borgne et al., 2007). Subsequently, the ARMA model is 

simplified to the AR(p) model.  

 

 
Figure 4 Autocorrelation expolarity plot. 

 

 
Figure 5 Partial autocorrelation expolarity plot. 

The order of the model varied between [1, 2, 3 and 4] to 

identify the best selection as depicted by Figure 6. 

 

 
Figure 6 The effect of order variation in AR(p) modelling. 

As it is illustrated by Figure 6, the orders of AR (up to order 

three) result in a quite constant accuracy. Thus, the 

performances of AR models are essentially equivalent and 

convincing, regardless the model order. Applying AR with a 

small order maintains the system’s thrifty computation. 

However, in the context of WSNs, it is not only the accuracy, 

but also energy concerns that are of considerable importance.  

5.4 Effectiveness of the historic data size 

To identify the structure and patterns that are used for 

prediction, there needs to be a sufficient amount of historical 

data available (Hyndman and Kostenko, 2007). Accordingly, 

this research investigates the importance of historical data. 
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Analyses of historical data are performed to determine the 

effects of the sample size of historical data, of which achieve 

the most robust and accurate model(s). Nowadays, in the 

presence of cheap data storage and high-speed computing, 

historical data is made readily available and accessible and thus 

can and should be used to build statistical models. However, 

within the WSN’s domain, due to temporary deployments and 

special circumstances, accessing large amounts of historical 

data is not always feasible. At times, it may be necessary to 

forecast very short time series, and thus it is helpful to 

understand the minimum sample size requirements when fitting 

statistical models to such data. Table 1 displays the accuracy of 

the predictions, with respect to the different sample sizes. 

 
Table 1: The effects of sample size on the accuracy of the 

predictions. 

 

The results of Table 1 confirm that the larger sample size, 

including the trend, diurnal and seasonal components, produces 

the most accurate predictions. 

The number of times ahead for which the model is predicting is 

studied. Table 2 shows the results of predictions in the presence 

of various prediction life spans.   

 

 
Table 2: The effects of life span on the accuracy of predictions. 

The accuracy of predictions in Table 2 reveal that greater 

accuracy is achieved for the more recent predictions. Sample 

size, frequency of observations, expected accuracy, application 

domain and the structure of the data should all be taken into 

account when determining the adequate time to base 

predictions.  

5.5 The Dynamic adaption of the AR model 

An AR model is unlikely to be an adequate fit for non-linear 

physical phenomena (Tulone and Madden, 2006). Tulone and 

Madden (2006) note that WSN data is locally liner, but that it is 

also periodic non-linear, which cannot be precisely predicted by 

AR. Thus, to achieve convincing prediction accuracy, the model 

should be dynamically adapted. The precision of the current 

data-set is at ±0.3c; at the point where the prediction error 

exceeds the tolerated threshold, the model should be fed by the 

data being collected. Hence the model can be re-conceptualized 

using data coefficients, enabling the predicted values to be close 

to the actual records. This design inherently includes the 

advantages of being effective, (near) real time and energy 

efficient in outlier detection, since no communication overhead 

is needed. Outliers can be an error or, alternatively, can provide 

potentially useful information, known as an event. While errors 

happen infrequently, the system should nonetheless be able to 

distinguish errors from events. If the system updates the model 

when errors occur then it may misinterpret acceptable data as 

outliers; to solve this problem, the system should update the 

model only in cases of events. Consequently, the model is 

updated based on new observations whenever the multiple 

number of successive outliers (events) are recorded, as it 

assumes that the possibility of experiencing successive errors is 

low. 

5.6 Energy 

Energy consumption for WSNs is highly dependent on the data 

sampling rate, communication overhead and, last but not least, 

the applied prediction model. As was previously stated, larger 

sample sizes result in more accurate predictions. However, a 

wide availability of historical data implies more computation 

and storage energy consumption (Amidi et al., 2013; Li and 

Wang, 2013). While communication costs require several orders 

of magnitude higher, extra memory usage and computation 

costs are essentially negligible. Thus, the proposed 

methodology is also considered to be an energy friendly system. 

 

6. CONCLUSION 

The ARIMA model has the ability to capture a wide variety of 

realistic phenomena and it is efficient in terms of both memory 

and computational cost. Its applicability has not yet been 

recognized within the research community of WSNs, 

specifically with respect to technological requirements. WSN 

observations are often corrupt, missed or inaccurate due to the 

inherent imprecise characteristics of WSNs. Applicability of 

ARIMA modelling was assessed with respect to the nature of 

sensor data and the specific requirements and limitations of 

WSNs. Among data smoothing techniques, the moving average 

method represented better performance since it did not 

completely exclude outliers from data. The proposed method 

maintains the abnormalities where they may potentially 

introduce useful information called events. Moreover, the 

results demonstrate that a larger window size can improve 

predictions accuracy, up until the point where it becomes too 

large to differentiate the structure of the data. The experiments 

reveal the suitability of simplifying ARIMA to AR, as well as 

the need to, apply low order AR, which result in greater 

accuracy and energy efficiency. Furthermore, the results 

indicate that accurate and precise predictions hinge on sample 

sizes. Subsequently, larger sample sizes produce more accurate 

and precise predictions. The life span of the predictions is also 

relevant and accurate predictions tend to be those more recent 

ones. The proposed system was furthermore designed to 

monitor its local model and continually update as needed. 

Finally, it includes a capability to detect outliers and events in 

an (near) real time manner. 
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