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ABSTRACT: 

 

Buildings are the most important objects in urban areas. Thus, building detection using photogrammetry and remote sensing data as 

well as 3D model of buildings are very useful for many applications such as mobile navigation, tourism, and disaster management. In 

this paper, an approach has been proposed for detecting buildings by LiDAR data and aerial images, as well as reconstructing 3D 

model of buildings. In this regard, firstly, building detection carried out by utilizing a Supper Vector Machine (SVM) as a supervise 

method. The supervise methods need training data that could be collected from some features. Hence, LiDAR data and aerial images 

were utilized to produce some features. The features were selected by considering their abilities for separating buildings from other 

objects. The evaluation results of building detection showed high accuracy and precision of the utilized approach. The detected 

buildings were labeled in order to reconstruct buildings, individually. Then the planes of each building were separated and adjacent 

planes were recognized to reduce the calculation volume and to increase the accuracy. Subsequently, the bottom planes of each 

building were detected in order to compute the corners of hipped roofs using intersection of three adjacent planes. Also, the corners 

of gabled roofs were computed by both calculating the intersection line of the adjacent planes and finding the intersection between 

the planes intersection line and their detected parcel. Finally, the coordinates of some nodes in building floor were computed and 3D 

model reconstruction was carried out. In order to evaluate the proposed method, 3D model of some buildings with different 

complexity level were generated. The evaluation results showed that the proposed method has reached credible performance.  

 

 

 

*  Corresponding author.   

 

1. INTRODUCTION 

3D reconstruction of urban area using remote sensing and 

photogrammetry data has a lot of applications such as mobile 

navigation, environment simulation, urban planning, and 

tourist, as well as many other applications. LiDAR is a powerful 

system in photogrammetry and remote sensing and it is a worthy 

source in order to collect 3D point cloud with high accuracy 

and to rate from the urban regions. Before the reconstruction, 

detecting buildings would be needed. Combining aerial images 

and LiDAR data is very effective for classifying urban objects 

with high accuracy and precision.  

In the recent decade, many researches have been studied to 

detect and classify LiDAR data and aerial images. Moussa & 

EI-Shemy (2012) filtered point cloud in order to separate 

ground and non-ground points, and accordingly, divided them 

into trees and buildings using the Normalized Difference 

vegetation Index (NDVI). Zhao & You (2012) extracted the 

DTM using a progressive morphological filter (Zhang et. al., 

2003). Then devided non-ground objects into trees and 

buildings using convexity and flatness parameters. They 

detected road network by scanning region using some templates 

with various size and direction. Also, the algorithms such as k-

means clustering, fuzzy k-means clustering, as well as region 

growing based on slope  (Alharty & Bethel, 2004) and  normal 

vectors were utilized for classification data  (Zhang et. al, 2009; 

Wang & Chu, 2009). Two different approaches are existed to 

reconstruct buildings (Mass & Vosselman, 1999). The first one 

is ‘model driven’ approach that searches the most appropriate 

model among primitive models of model library (Mass & 

Vosselman, 1999). The second one is ‘data driven’ approach 

that separates each part of building point cloud and tries to 

simulate them for obtaining nearest polyhedral model (Mass & 

Vosselman, 1999). Kabolizade et.al. (2012) proposed a model 

based on estimating the model parameters using genetic 

algorithm for 3D reconstruction. Arefi and Reinartz (2013) 

proposed an approach for 3D reconstruction from DSMs and 

orthorectified images. In this approach, a building is divided 

into some smaller parts by using ridge lines which are extracted 

from orthorectified images. The final 3D model was acquired by 

merging the 3D models of individual parts models. RANSAC 

(Chen & Zhang, 2012; Vosselman & Dijkman, 2001) and 

Hough transforms (Tarsha-Kurdi & Landes, 2007; Rabbani & 

Van Den Heuvel, 2005) are powerful techniques to detect 

building edges and 3D reconstruction. Robustness of these 

methods in fitting a base line on noisy data is caused to use 

them for building edge detection. RANSAC and Hough 

transforms have some drawbacks such as high computational, 

storage requirements, and removing some worthy data as noisy 

data. This research has two aim purposes. The first one is 

building detection from LiDAR data and aerial images. In this 

regard, some features were produced according to textural and 

structural characteristics of building against the other objects. 

Then some training data were selected from features and 

utilized as inputs of SVM to detect buildings. For the second 

purpose of this study, an approach was proposed for 3D 
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reconstruction buildings. In this regard, the slope change 

regions were recognized to separate roof plates. Then the 

corners of building were obtained by calculating the intersection 

of detected plates. Finally, the models of plates were merged to 

reconstruct the final 3D model of buildings. 

This study is organized as follow. The proposed approach to 

detect buildings and reconstruct 3D models are explained in 

section 2. In section 3 the experiment results are presented, and 

in section 4, the conclusion is represented.  

 

2. PROPOSED METHODOLOGIES 

In this section, firstly, an approach is illuminated in order to 

classify data in section 2.1, and then the proposed approach for 

3D reconstruction is explained in section 2.2. 
  

2.1 Building Detection 

Building detection is carried out in two sections. At first, the 

utilized features in this study are introduced with their abilities 

and characteristics for collecting training data (Section 2.1).  

Then SVM algorithm is illustrate clearly in Section 2.2.  

 

2.1.1  Generating Features  

Building detection by using supervised systems need the 

training data, because, these systems decide about a pixel entity 

by considering feature vectors of that pixel. Accordingly, the 

features that are effective for detecting considered objects 

should be selected. Actually, suitable knowledge about textural, 

geometrical, and structural characteristics of objects would be 

needed to choose appropriate features. In this paper, five 

features were selected and produced using LiDAR data and 

aerial images in order to detect buildings in urban areas. The 

first feature is intensity image of LiDAR data. This feature has 

approximately same values for objects with similar gender. This 

means this feature is only sensitive to objects gender in a way 

having similar values in two various objects would be possible 

because of their genders. The second feature is the normalized 

Digital Surface Model (nDSM). This feature contains the off-

terrain objects, which are equal to the difference between the 

DSM and the DTM. In this paper, the morphological 

reconstruction based on geodesic dilation was utilized to 

produce the nDSM. In this regard, range image of LiDAR is 

specified as Mask (I) and a Marker (J) is computed according to 

Eq. (1) (Arefi & Hahn, 2005).       

,J I h                                                                               (1) 

where h is determined according to object elevation of 

considered region. Subsequently, the morphological 

reconstruction based on geodesic dilation is carried out as 

follow (Arefi & Hahn, 2005): 
1
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where  is the point-wise minimum and  is the dilation 

operator. The procedure would be continued until achieving the 

stability. Finally, nDSM is computed by Eq. (3) (Arefi & Hahn, 

2005). 

,nDSM I Rim                                                                  (3) 

where Rim is the reconstructed image. The third feature is the 

NDVI, which is the most well-known vegetation index and is 

very sensitive to chlorophyll. Because, chlorophyll strongly 

absorb visible light and strongly reflect near infrared light. 

Hence, this index has high values for green biomass and low 

values for other regions [Eq. (4)]. 

,
NIR R
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NIR R


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where NIR is the near infrared band and R is the red band. The 

slope of region is so useful to detect building and separate it 

from other objects like Trees. Because buildings usually have 

constant slope, but trees have various slope in a small region. 

Hence slope is utilized as fourth feature. For computing the 

slope, a structural element with 3×3 kernel size (Figure 1) was 

used (Eqs. 5-7) (Li et.al., 2005) 

 
Figure 1: structural element with 3×3 kernel size (Li et.al., 

2005) 
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Finally, the fifth feature is roughness which is used to determine 

the texture of surface by computing the proportion between the 

vertical changes on considered surface and the flat surface. 

Whatever this feature has less value, smoother the surface 

would be and vice versa. The introduced structural element 

(Figure 1) is utilized in order to compute the roughness by 

uttilizing range image of LiDAR as follow: 

1 2 3 4 5 6 7 8 9max( , , , , , , , , ),VR z z z z z z z z z                               (8) 

0_ .VRough Max R z                                                         (9) 

After generating features, some training data should be 

collected by an operator. This is very important that the training 

data don’t have any mistake. Existence any mistake in training 

data decreases the detection results accuracy and procedure 

encounters a problem. Training data should contain the pixels 

of building and non-building. 

 

2.1.2 Support Vector Machines 

The theory of Support Vector Machines (SVMs) was proposed 

in 1965 by Vladimi. SVMs are supervised learning algorithms 

which recognize pattern and analyze data. They have been 

utilized for regression and classification. Assume some training 

data is existed that contains a set of n points as follows (Taylor, 

2000):  

1{( , | , { 1,1})} .n
i i i i iD x y x R y                                    (10) 

The goal is finding the maximum-margin to divide data into two 

groups. The first group has yi=1 and the other one has yi=-1. 

The points of each group have maximum distant with the points 

of the other one. The hyperplanes can be a set of point x 

according to Eq. (11) (Taylor, 2000): 

: 0,H w x b                                                                     (11) 

where w is the normal vector to the hyperplane, b is the bias, 

and H is the hyperplnae that is identified for separating data. If 

separating the training data using linear equations would be 

possible, selecting two planes that divide data without any point 

between them could be possible. The bounded region, called 

margin should be minimized. The hyper planes equation is as 

follows: (Taylor, 2000). 

1 : 1,H w x b     2 : 1.H w x b                                 (12) 
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The distant between computed hyperplanes is equal to 
2

|| ||w
 

and this value should be maximized. Hence, ||w|| should be 

minimized. It is necessary to prevent from falling these data 

points into the margin in order to classify data correctly. 

Therefore, optimized hyperplane is computed by Eq. (13) 

(Taylor, 2000): 

21
min || || ,

2
w  ( ) 1 0,j iy w x b     1,2,..., .i n             (13) 

In order to resolve this convex optimized equation, a primal 

Lagrange multiplier is formed [Eq. (14)]. By placing derivatives 

equal to zero and using its result in Eq. (14), an equation, called 

Wolf dual [Eq. (15)] is produced (Taylor, 2000). 
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where αi and αj are Lagrange’s coefficients. After computing 

Lagrange coefficients, the normal vectors and the biases are 

calculated by Eq. (16) and decision function for classification is 

obtained using Eq. (17) (Taylor, 2000): 
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It is possible that the classes have overlap. So, 0  as an 

additional variable is used to form a primal Lagrange multiplier 

[Eq. (18)] (Taylor, 2000): 
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where C is a penalty parameter that establishes the balance 

between the marginal separating and the training data. If C has a 

small amount, the number of support vectors is increased. But, 

if C has a large value, over-fit is happened on training data. 

When the distribution of class is none-linear, the data 

transforms into space with higher dimension with a none-linear 

function as a kernel to classify data in this space. There are 

some kernels such as linear, polynomial, hyperbolic tangent, 

and radial basic function. 

In this paper the collected training data are utilized as input of 

SVM with radial basic function kernel to train system. Then the 

trained SVM is used to detect building using input features. 

 
2.2 3D Reconstruction 

In this section, the proposed approach to reconstruct 3D model 

is explained completely. In Section 2.3.1, the planes of building 

roofs are separated and neighbor plates are recognized. The 

corners of each plate are computed in section 2.3.2. Finally, in 

Section 2.3.3, the extracted corners are connected to reconstruct 

the building.   

 
2.2.1 Separating the planes of the roof  

The result of building detection using SVM for each area is a 

binary image. In this image, the pixels which are equal to 1 

indicate buildings and the other pixels that are equal to 0 

indicate non-building regions. Thus, the detection result is 

labelled to separate buildings from each other. The height of 

hipped and gabled roofs is increased initially and then is 

decreased; after reaching the maximum height (ridge line). In 

this regard, in order to separate planes, a labelled parcel which 

belongs to a building with hipped or gabled roof is evoked and 

multiplied to the horizontal slope [Eq.(5) ]. Then a ribbon with 

1×5 kernel size is introduced to scan the building parcels in 

horizontal direction for finding the ridge lines. In each scan, if 

negative and positive slope values are exist in ribbon 

simultaneously, the central pixel will be equal to 1 and 

otherwise, the central pixel will be equal to 0. Subsequently, 

this procedure is repeated in vertical direction to extract ridge 

line, completely. After acquiring ridge lines, these pixels are 

eliminated from building parcels to separate roof planes. 

Finally, the separated planes are labeled and the adjacent planes 

are identified to produce adjacent matrix. The adjacent matrix 

causes to decrease the calculation volume and increase the 

accuracy. Because, when the adjacent planes are known, the 

only adjacent planes will be used to find corners as explained in 

the next section. 
 

2.2.2 Computing corner coordinates 

At least, three points are needed to generate a plane. This means 

if three points with 3D coordinates of a roof plane would be 

existed; it is possible to compute its plane parameters. Each 

separated roof planes (Section 2.3.1) has more than three points. 

Hence, the coefficients of each plane are computed by all points 

of each plane using linear polynomial curve. The goal of this 

paper is 3D reconstruction of buildings with hipped and gabled 

roofs. The proposed approach to find outline of these two roof 

types are explained individually: 

Hipped: Each point on top of the hipped roof is the intersection 

of three adjacent pages (Figure 2). So, the coordinates of these 

nodes can be achieved by using coefficients (Ai, Bi, Ci, Di | 

i=1,2,3)  of planes as follows: 
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Figure 2: Three adjacent planes and their intersection 

 

Building outlines can be determined using labelled parcels of 

building detection. In this way, the extracted outline is so noisy 

with high perturbation. Some methods like RANSAC and 

Hough can be used to fit a line on noisy node. But using these 

methods cause to lose some edges as noisy data. Also, the base 

line can be fitted wrongly because of existence of too much 

noise on the detected outline. Hence, in this study, the bottom 

plane of roof is detected (Figure 3) and intersection between 

this plane (red plane) and other planes (green and blue planes) 

is computed (Figure 3) by using Eqs. (19) and (20) in order to 

determine the outline.  
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Figure 3: Intersection between bottom plane and top planes 

 

The bottom plane only has height (z direction) without any 

value in x and y direction. Accordingly, for computing the 

bottom plane coefficients, minimum height of upper plane is 

found. Then the intersection between planes is calculated by 

Eqs. (19) and (20).  

Gabled: In these buildings, usually there are only two planes 

that have intersection with together. So, there is no intersection 

between planes. This means that with two planes, the 

intersection nodes of outline (Figure 4) can not be detected (red 

circle in Figure 4) and a line (intersection line) without end 

nodes can be achieved (Figure 4).       

 
Figure 4: Intersection line of two planes 

 

The intersection between intersection lines and boundary of 

each plane parcels is utilized to determine lines of end nodes 

intersection for detecting building outline. The extracted points 

which are closer together more than a specified threshold are 

removed and would be replaced by their mean value.  
 

2.2.3 Connecting extracted nodes and reconstructing 

model  

After computing the corners of each plane, these nodes should 

be connected together regularly to reconstruct each plane. If two 

nodes are connected together wrongly, each plane formed 

incorrectly. Thus, connecting extracted nodes is very important. 

In this regard, the nodes are connected randomly at first. Then if 

the lines of the constructed polygon cut together, another sort of 

nodes is chosen. The procedure is carrying out till achieving a 

polygon without any wrong intersection. Subsequently, the 

generated polygon of each plane are merged together to 

reconstruct the final roof model. Constructing buildings need 

the height of nodes in the floor. Hence, a buffer zone is 

specified around each node to find minimum height of range 

image in the buffer zone.   

 

3. EXPERIMENT 

To do experiment, firstly, the test data are presented in Section 

3.1. Then the proposed approach is implemented and the results 

of classification are presented in Section 3.2, and finally, the 

results of 3D reconstruction are represented in Section 3.3. 

3.1 Test Data Set 

ISPRS published a test data-set as a benchmark in which the 

researchers can evaluate their methods and compare the results 

with each other. This data-set contains aerial images and 

LiDAR data and carried out by German Association of 

Photogrammetry and Remote Sensing (DGPF) from Vaihingen 

in Germany. The aerial images contain three bands including 

red, green, and near infrared with 11 bits radiometric resolution 

and 8cm ground resolution. The LiDAR data have 10 strips 

with 30% overlapping and 7 or 8 point/m2 in overlap regions 

and 4 point/m2 in individual regions. Each area has unique 

characteristics as the proposed approach can be evaluated 

completely. Figure 5 shows the two test areas and their 

boundaries.  

   
                              (a)                           (b) 

Figure 5: Test data set, (a) Area 1, (b) Area 2  

 

3.2 Building Detection 

According to Section 2.1.1, implementing the approach to 

detect building begins by generating introduced features using 

LiDAR data and aerial images. Figures 6 and 7 show the 

produced feature for Areas 1 and 2. 

 

   
                   (a)                      (b)                    (c)      

   
                               (d)                       (e) 

Figure 6: The produced features of Area1, (a) Intensity image of 

LiDAR, (b) NDVI, (c)nDSM, (d) Slope, (e) Roughness. 
 

     
                   (a)                      (b)                    (c) 

   
                                (d)                    (e) 

Figure 7: The produced features of Area2, (a) Intensity image of 

LiDAR, (b) NDVI, (c)nDSM, (d) Slope, (e) Roughness. 
 

After producing features, some training data are selected from 

features rigorously. Table 1 presents the collected training data 

of Areas 1 and 2. Approximately 0.09% of Area 1 and 0.18% of 

Area2 are selected as training data.  
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Objects 
Training Data 

Area1 (pixel) Area2(pixel) 

building 255 162 

non-building 341 764 

Table 1: The number of training data for each area 

 
The selected training data were utilized in SVM algorithm to 

detect buildings in test areas. In order to evaluate building 

detection results three parameters such as completeness, 

correctness and quality are computed as follow (Rottensteiner et 

al., 2013): 

,
TP

Completeness
TP FN




                                               (21) 

,
TP

Correctness
TP FP




                                                    (22) 

,
TP

Quality
TP FP FN


 

                                                 (23) 

where, TP is the number of pixels which have been detected 

correctly, FP is the number of pixels which have been detected 

wrongly, and FN is the number of pixels which not have been 

recognized. Figure 8 shows evaluation parameters schematically 

and Table 2 represents the evaluation results based on Eqs. (21), 

(22), and (23). 

 

Quality 

Assessment 

Building 

Area 1 Area 2 

Completeness 87.87% 80.40% 

Correctness 93.96% 94.49% 

Quality 83.17% 76.80% 

Table 2: Evaluation results of building detection 

 

   
Figure 8: Evaluation results schematically (yellow: TP, red: FP, 

blue: FN)  

 

According to Table 2 and ISPRS report  (Rottensteiner et al., 

2013), the ulitized approach has very good performance for 

building detection.   

 

3.3 3D Reconstruction 

The proposed approach to reconstruct building is implemented 

separately for each building. Some reconstructed buildings are 

presented in Figures  9-12. 

    
(a)                       (b)                   (c)                   (d)  

   
 (e)                                             (f) 

Figure 9: The reconstructed building, (a) detected parcel, (b) 

ridge line with boundary, (c) separated planes of roof, (d) the 

roof corners, (e) 3D model, (f) Reconstructed 3D model on 

range image of LiDAR 

 

    
           (a)                    (b)             (c)                    (d)  

   
                          (e)                                             (f) 

Figure 10: The reconstructed building, (a) detected parcel, (b) 

ridge line with boundary, (c) separated planes of roof, (d) the 

roof corners, (e) 3D model, (f) Reconstructed 3D model on 

range image of LiDAR 

 

     
           (a)                  (b)                 (c)                (d)  

 

   
                          (e)                                    (f) 

 
Figure 11: The reconstructed building, (a) detected parcel, (b) 

ridge line with boundary, (c) separated planes of roof, (d) the 

roof corners, (e) 3D model, (f) Reconstructed 3D model on 

range image of LiDAR 

 

    
           (a)                    (b)                     (c)                    (d)  

  
                          (e)                                        (f) 
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Figure 12: The reconstructed building, (a) detected parcel, (b) 

ridge line with boundary, (c) separated planes of roof, (d) the 

roof corners, (e) 3D model, (f) Reconstructed 3D model on 

range image of LiDAR 

 

4. CONCLUSION 

This paper proposed an approach to detect and reconstruct 

building using LiDAR data and aerial images. In this regard, 

five features were produced. Then some training data was 

selected from features. The training data contained building and 

non-building pixels and they were collected with high accuracy. 

The training data was used as input of SVM for detecting 

buildings. Evaluating detection results by ISPRS reference data 

showed that the utilized approach has very good performance. 

The detected buildings were labelled to reconstruct 3D model of 

buildings individually. By specifying a ribbon, the regions that 

have slope change direction were recognized for detecting 

building boundaries and ridge lines. Recognizing ridge lines 

and boundaries caused to separate roof planes. The corners of 

hipped roofs were obtained by computing the intersections 

among each three adjacent planes. Also, the corners of gabled 

roofs were computed by finding the intersections between 

separated roof planes and intersection line of two adjacent 

planes. Subsequently, the computed nodes were connected 

correctly with an approach. Finally, 3D model of the building 

was acquired by both reconstructing each roof planes and 

merging them. The proposed approach for 3D reconstruction 

has reached credible performance regarding to different 

buildings. Moreover, this approach didn’t use some methods 

like Hough and RANSAC to estimate ridge line or boundaries 

and this caused to reduce the complexity the computational 

volume. 
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