The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-2/W3, 2014
The 1st ISPRS International Conference on Geospatial Information Research, 15-17 November 2014, Tehran, Iran

AN ADAPTIVE POLYGONAL CENTROIDAL VORONOI TESSELLATION
ALGORITHM FOR SEGMENTATION OF NOISY SAR IMAGES

G. Askari 2 *, Y. Li®, R. MoezziNasab 2

@ School of Earth Science, Damghan University, Damghan, IRAN 36716-41167- gh.askari@du.ac.ir, reza.m1371@yahoo.com

b Institute for Remote Sensing Science and Application, School of Geomatics, Liaoning Technical University,Fuxin, Liaoning
123000, China - liyu@Intu.edu.cn

KEY WORDS: SAR, Centroidal VVoronoi Tessellation, Segmentation, Clustering, Gamma Distribution

ABSTRACT:

In this research, a fast, adaptive and user friendly segmentation methodology is developed for highly speckled SAR images. The
developed region based centroidal Voronoi tessellation (R-BCVT) algorithm is a kind of polygon-based clustering approach in
which the algorithm attempts to (1) split the image domain into j numbers of centroidal VVoronoi polygons (2) assign each polygon a
label randomly, then (3) classify the image into k cluster iteratively to satisfy optimum segmentation, and finally a k-mean clustering
method refine the detected boundaries of homogeneous regions. The advantages of the novel method arise from adaptively,
simplicity and rapidity as well as low sensitivity of the model to speckle noise.

1. INTRODUCTION

One of the oldest and yet still popular tools employed to
analyze and understand images is provided by clustering (Diday
and Simon, 1980; Jain, 1989). Broadly speaking, clustering is a
commonly used technique for the determination and extraction
of desired features from large data sets and for the
determination of similarities and dissimilarities between
elements in the data set (Hartigan 1975; Jain and Dubes, 1988).
In the context of image processing, data sets take the form of
one or more images.

CVT is a particular type of Voronoi tessellation that has many
applications in computational sciences and engineering,
including computer graphics. The basic definition of the CVT
can be generalized to very broad settings ranging from abstract
spaces to discrete point sets. The concept of CVT has recently
received much attention in numerous applications, including
computer graphics and image processing (Du et al., 1999; Du et
al., 2003; Hausner, 2001; Ju et al., 2002; Kanungo et al., 2002).
CVT can be viewed as being a very natural clustering strategy.
In the simplest mode, CVT-based clustering coincides with the
well-known k-means clustering scheme. Applied to image
segmentation problems, CVT’s also fall within the class of
thresholding segmentation methods. Among such methods,
CVT has the distinct feature that as part of the CVT
methodology, the threshold values are determined through an
optimization procedure (Du et al., 2006). This feature of the
CVT methodology accounts for much of its effectiveness in the
segmentation and other image processing settings. Furthermore,
CVT provides a general mathematical framework that allows for
a natural means for developing substantial extensions,
improvements, and enhancements of k-means clustering and
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other existing clustering and thresholding methods. In this
research, the two concepts of centroidal VVoronoi polygons and
CVT-based clustering approaches are integrated to the resolve
the problem of segmentation of speckled SAR images. In image
segmentation, the central tasks are to (1) divide an image into
centroidal Voronoi polygons, (2) classify the splitted regions
into a known number of homogeneous regions based on a
novel, multi-scale and adaptive R-BCVT algorithm, (3) refine
the boundaries of the provided segmentation using of a k-mean
clustering method.

2. IMAGE MODEL

Assume that a SAR image contains a known number of
homogeneous regions k and its domain is partitioned into an
unknown number of polygons m a priori by CVT. Associated
with each polygon, there is a prior variable that indicates the
homogeneous region to which the polygon belongs, and label
variables for all polygons forms a label field L = {Lj; j=1, ...,
m}. A realization of L, I = {lj e {1, ..., k}; j=1, ..., m},
corresponds to the segmentation of the image. In a given set of
polygons having same label, A gy = {Pj; lj=1,j € {1, ..., m}},
the intensity values of pixels in Ai, Z 1) = {Zi; (xi, yi) € A }, are
conditionally characterized by identical and independent
Gamma distributions as follows:

1 - -1 Z
Zy)= AL - @
P(Zgy) (X}i_)!% F(a,)’B exp[ ﬁuj

where I'( -) is Gamma function, a1 = {a, ..., ox} and i = {41,
..., B¢ are shape and scale parameters of Gamma distribution,
respectively. Then the joint PDF of Z becomes
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Voronoi diagrams, centroidal VVoronoi Polygons

The concept of Voronoi diagrams plays a central role in our
meshing algorithm. Given a set of n distinct points or seeds G,
the Voronoi tessellation of the domain Q < R? is defined by:
TGQ={WwNQ:yeG}

where Vy is the Voronoi cell associated with point y:

Vy={x e R?: |[x—y| < [x—-2|, Vz € G\ {y}}

Therefore Vy consists of points in the plane closer to y than any
other point in G.The regularity of Voronoi diagrams is
determined entirely by the distribution of the generating point
set. A random or quasi-random set of generators may lead to a
discretization not suitable for use in finite element analysis.
Therefore, we restrict our attention to a special class of Voronoi
tessellations that enjoy a higher level of regularity. A Voronoi
tessellation T (G;Q) is centroidal if for every y € G (Talischi et
al., 2012)

y=Yc, where

b Xu(X)dx

x)dx ©
jvymu( )

C

and u(x) is a given density function defined over Q. Hence, in a
CVT each generating point y coincides with the centroid y. of
the corresponding region (i.e., Vy N Q).

An alternative variational characterization of a CVT is used on
the deviation of each VVoronoi region from its generating seed,
measured by the following energy functional:

e(G;Q)= ()| x=y|* dx @)
yez(;-[vy(e)mo

In Du et al. (2006), it is shown that the energy functional
decreases in consecutive iterations of Lloyd’s algorithm, that is,
&Gir1; Q) <¢(Gi; Q)
which means that the Lloyd’s algorithm can be viewed as a
descent method for the energy functional. The above discussed
concept is employed to generate the centroidal Voronoi
polygons. The Rasterized centroidal Voronoi polygons for
different number of generating points, Np = [100, 800, 1500,
2500] is provided in Figure 1

[Na=1500)
Figure 1. Rasterized centroidal VVoronoi polygons for different
number of generating points, Np=[100, 800, 1500, 2500].

3. R-BCVT CLUSTERING

Given an image Z from a spatial domain Q c R? , letz={zi=z
(xi, yi); i =1, ..., n} denote the set of (not necessarily distinct)
intensity values in the original SAR image. Given a set of
intensities at generating points, lc = {wi1= z(uj, vj) € z ; j = 1,
..., K 1=1, ..., k}, where k is the number of generating points,
the Voronoi tessellation classifies image into | clusters {A}%=1
based on distance minimization of pixel values z(xi, yi) from Is
that is,

A= {z(xi, vi) € Z; |z(xi, yi) -wi | < | z(Xi, Vi) -wr |}, wi e |/

Wi

Note that in the process of image clustering using Voronoi
tessellation the number of Voronoi clusters or Voronoi cells Aj
is equal to the number of generating points. In addition,
geographical location of generating points in CVT clustering
are not used in contrast to Voronoi tessellation.

For a general Voronoi tessellation of Z, we have that % #W for
I =1, ..,k ie., the intensity values that generate the VVoronoi
clustering are not the means or centroids of the corresponding
clusters. CVTs of Z are special Voronoi clusters {Ai}¥=1 whose

generators {wik=1 satisfy wi =W for | = 1, ..., k, ie, the
intensity values that generate the VVoronoi clustering are also the
means or centroids of the associated clusters.

On the other hand, for any non-overlapping covering of Z=Zk=1
into k subsets, we can define the means or centroids of each

subset A1 as the intensity W e Z, that minimizes energy of
CVT given by,
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z(Xi,Yi)€Z,

4. SEGMENTATION IMPLEMENTATION FOR R-
BCVT CLUSTERING
Given a set of centroidal Voronoi polygons P = {P;j ; j = 1,
.., m} and the associated intensity average Z and a digital
imagez={zi;i=1, ..., n}, choose any | intensity values {7},
associated based Voronoi

and determine the region

clustering{Ai} =1.

1- Forevery Z € Z,

a) Evaluate the CVT energy for all possible transfers of

Z from its current cluster Ai to any of other clusters
AI’EQ, I'#I

b) If moving Z from its current cluster A to the cluster
Ar most reduces the CV'T energy, then

i. Transfer Z from cluster Ai to cluster

Ar;
ii. Replace intensities {’z’}:;l by the
associated means of the newly

modified clusters {A} 4 =1.
2-  If no transfers occurred, exit; otherwise go to step 1.

3- Detect the buffer zone of homogenous regions and refine
segmentation by use of k-mean clustering method.

5. EXPERIMENTAL RESULTS

Figure 2 shows RADARSAT ScanSAR images with
dimensions of 512x512 pixels. The image shows a
RADARSAT-2 image of a coastal scene with spatial resolution
of 30 m. Visually, it includes three homogeneous regions. The
proposed algorithm is developed using MATLAB (R2007b) on
a Lenovo B450 computer. For all calculations, the time needed
for image segmentation is approximately 3 seconds for an image
with a dimension of 512x512 pixels. Therefore the model can
be asses as fast image segmentation approach.

fc) (d)
Figure 2. (a) SAR intensity image (b) R-BCVT algorithm
outcome. (c) Buffer zone around the outlines of segmented
image. (d) Refined segmentation image in buffer zone by use of
k-mean clustering.
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Figure 3.The energy graph decay in the condition of Np =[100,
800, 1500, 2500] for SAR intensity image (a) presented in
Figure 2.
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Figure 4. Histogram and Gamma distribution with estimated
parameters of segmented regions (b1, bz, bs) with Ne =800 for
SAR intensity image shown in Figure 2.

6. CONCLUSION

In this research, a novel, adaptive and fast CVT based
segmentation methodology is developed. The model takes
advantage of both regional and local information extracting
with the aid of R-BCVT and k-mean clustering, respectively.
The Adaptivity of the presents algorithms arise from the
optional selection of number of classes and centroidal VVoronoi
polygons as well as calculation of distance function in one
(mean) and two (mean-STD) dimension. Furthermore the user is
authorized to manually determine the filter window and buffer
zone for segmentation process. Certainly, user specification of
generating seeds is possible. Similar to many segmentation
methodologies, the presented algorithm conveys some
limitations, for instance, deficiency of the model in detection of
objects in noisy texture images. In such cases integration of the
methodology with some other global segmentation models such
as fuzzy and MRF models is recommended. The fuzzy models
taking advantage of definition a threshold value for proximity of
a segment to the associated homogenous regions. For instance
the centroidal Voronoi polygons located on the border of two or

more classes can be categorize as less reliable area than other
polygons within a cluster.
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