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ABSTRACT: 

 

"You cannot step into the same river twice"1. Perhaps this ancient quote is the best phrase to describe the dynamic nature of the earth 

system. If we regard the earth as a several mixed systems, we want to know the state of the system at any time. The state could be 

time-evolving, complex (such as atmosphere) or simple and finding the current state requires complete knowledge of all aspects of 

the system. On one hand, the Measurements (in situ and satellite data) are often with errors and incomplete. On the other hand, the 

modelling cannot be exact; therefore, the optimal combination of the measurements with the model information is the best choice to 

estimate the true state of the system. Data assimilation (DA) methods are powerful tools to combine observations and a numerical 

model. Actually, DA is an interaction between uncertainty analysis, physical modelling and mathematical algorithms. DA improves 

knowledge of the past, present or future system states. DA provides a forecast the state of complex systems and better scientific 

understanding of calibration, validation, data errors and their probability distributions. Nowadays, the high performance and 

capabilities of DA have led to extensive use of it in different sciences such as meteorology, oceanography, hydrology and nuclear 

cores. In this paper, after a brief overview of the DA history and a comparison with conventional statistical methods, investigated the 

accuracy and computational efficiency of two main classical algorithms of DA involving stochastic DA (BLUE2 and Kalman filter) 

and variational DA (3D and4D-Var), then evaluated quantification and modelling of the errors. Finally, some of DA applications in 

geosciences and the challenges facing the DA are discussed.   

 

 

*Corresponding author.   
1 Heracleitus, Trans. Basil. Phil. Soc. Miletus, cca.500 B.C. 
2 Best Linear Unbiased Estimator 

1. MANUSCRIPT 

1.1 Introduction 

The first application that has motivated the growth of data 

assimilation is weather forecast, but nowadays its applications 

have been developed from weather forecast to engineering and 

geosciences applications. Increasing availability of acquired 

observations from satellite instruments and the role of 

propagating observational information in time (in addition to 

the spatial interpolation) are the reasons that lead us to necessity 

of having a synoptic view of the state of the system from 

asynoptic data. The difficulty is to use these data, which are 

sometimes conflicting, to find a best estimate of the state of the 

earth system which will be used for diverse applications. But we 

need to ensure that a time sequence of these estimated states is 

consistent with any known equations that govern the evolution 

of the system. The method to achieve this goal is known as data 

assimilation [Mathieu and O’Neill, 2008]. Data assimilation is a 

set of techniques thereby information from observations is 

optimally combined with model and it will estimate the state of 

an unknown system based on an imperfect model and a limited 

set of noisy observations. Over the past decades, numerous 

algorithms were developed by scientists. The summary of data 

assimilation history is mentioned on the table 1. Roger Daley 

[Daley, 1993] was one of Pioneers of modern data assimilation. 

The assimilation data can be investigated from several aspects, 

based  on  the theory  and  functions (estimation theory [Cohn, 

1997], probability theory [Cohn, 1997; Lorenc, 1981; Van 

Leeuwen and Evensen,  1996],  control  theory  [Gelb, 1974; 

Lions, 1971], variational  analysis  [Courtier, 1997]. From the 

point of estimation theory, in engineering applications of 

estimation theory are often small-scale and sometimes linear, 

while data assimilation in Earth System usually involve Large-

scale, nonlinear, complex models. Therefore, we need a number 

of methods from modern computational statistics and 

mathematics for solving the basic problems of data assimilation 

in the geosciences. Data assimilation methods are classified into 

two general classes. First, statistical (stochastic) methods are 

based on estimation theory and they use from direct 

computation of the BLUE such as Kalman filter. Second, 

variational methods, are based on control theory and they use 

from minimization of J such as 4D-Var. Important differences 

also remain between the specific methods that are most suitable 

for a given application. Since atmospheric and oceanic 

dynamics are chaotic (that is, small errors in the initial 

condition can lead to large differences at later times in the 

model integration), data assimilation in these areas is very much 
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concerned with the estimation of initial conditions. By contrast, 

land surface dynamics are damped, and land surface 

assimilation is all about estimating errors in uncertain 

meteorological forcing (boundary) conditions and model 

parameterizations [Reichle, 2008] The roll of error modelling 

and error statistics uncertainty analysis play great role in 

forecasting and parameters estimation of complex systems state.  

 

End of the 18th century 

Planet orbit computations by Gauss 

Least square method by Legendre 

Beginning of the 20th century 

Concept of maximum likelyhood by Fisher 

Mid of the 20th century 

Kalman filter for the APOLLO program 

Objective analysis of meteorological fields 

End of the 20th century 

3D-var data assimilation method for weather forecast model 

Gain of 20% forecast quality at Météo-France going to 4D-var 

Table 1.  A summary of data assimilation history � � 

 

 

1.2 Definitions and basic concepts 

 

First, we must define the parameters and properties of the model 

and its relationship with observations. Variables are defined the 

following:  

 

 

 

 

 

x: Inputs of the model 

xb: Background state, a priori knowledge of x 

H: Observation operator, the link between the initial condition and 

Observations: y=H(x) 

y: Vector of modelled observations, i.e., the outputs of the model 

yo: Vector of observations (true measurements) 

xa: Analysis model state 

xt: True state 

 : Observation error 

εb : Background error 

a : Analysis error 

 

Figure 1. Variables and operators involving at DA 

 

 

2. METHODS 

 

2.1 Stochastic data assimilation 

 

2.1.1 The best linear unbiased estimate (BLUE) 

For estimation the true state xt of a system, by assuming some 

assumptions involving unbiased data, the observation operator 

is assumed linear and the uncertainties are given in the form of 

the covariance matrices R and Pb, we will have: 

y xt  H  ,  =0  , TPt b b
   ,  TR    

Mentioned linear combination of the observation and the 

background terms gives the best estimation of true state: 

x = x + ya b bA K  

A and K are coefficients are characterized for the estimation 

optimal. By an unbiased estimate with minimum variance 

condition, we will reach to the estimation optimal, i.e.   

a =0    ,     tr min imumaP  

When those conditions are satisfied that the following equations 

established: 

      = -A K         
-1

T T= +b bK P H HP H R                 (1) 

K is called the Kalman gain. The final form of the equation is  

        x x y xa b b  K H      = -a bP I KH P                (2) 

The last equations are the Best Linear Unbiased Estimate 

(BLUE) equations. 

 

2.1.2 Kalman filter (KF) algorithm 

When the state of a system is dynamic instead of a fixed state, 

the system encounters with a series of states kxt .  k in 

superscript is a time that pointing observation dates. We assume 

to have the Following assumptions: 1- The initial state 0xt and 

the model errors kη are gaussian-distributed with mean 0x
b

and 

covariance kQ  respectively 2- Again, observation operators is 

linear. Under these hypotheses, KF presented the estimate of the 

states kxt . KF is a sequential algorithm and divided into two 

steps: analysis and forecast steps.  

Analysis step: we know k 0:k-1P x y
 
 
 

by the mean kx
f

at time 

kt (f in subscript pointing forecast). In this step, pdf will be 

updated by the observation available at time kt  to finding the 

value of the k 0:kP x y
 
 
 

 and their parameters calculated with 

the BLUE equations. Therefore, we will reach to kxa and 

kP
f

values (a in subscript kxa  donates with the analysis): 

 k k k k k kx =x y xa f f
 K H   ,   k k k k

a f
 P I K H P       (3)                     

   
T T

k k k k k k k
f f


 

   
  

1

K H P H H P R                   (4) 

Forecast step: after finding pdf by mean kxa and kPa , to find a 

estimation of k+1xt by using dynamical model, it is provided the 

forecast: 

                                      k k,k kx xaf
 1 1

M                            (5)   

                               k,kk k,k k k
a Tf

  
11 1

P M P M Q               (6)     

xb xa yo 

x H y 

Background Analysis Observations 

 

Control 
Observations 

Observation Operator 
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Based on what mentioned above, KF is started with a forecast 

state fx and error covariance f
P then the assimilation sequence 

is done by KF equations. There are some important issues about 

implementation of KF algorithm that should be noticed. In 

following we will mention these implementation problems. 

 Dimensions Problem 

The size of state covariance matrix is one of the implementation 

issues in KF algorithm, especially in oceanography or 

meteorology applications that models usually include millions 

or even tens of millions of variables. The common solution to 

this problem is rank reduction of the state covariance matrix by 

some mathematical methods such as Square-root 

decomposition. 

 Filter Divergence Problem 

 Filter divergence problem occurs when the input statistical data 

are mis-specifed. As a result, filtering system goes to 

underestimate of the error variances and it is caused some 

observations ignored by the system (due to the too much 

confidence is given in state estimation step).   

 Symmetric Covariance Matrix Problem 

The matrix equation (6) yields a symmetric matrix, but we 

practically encounter with an asymmetric covariance matrix, 

Therefore the filter cannot work correctly. One way to solve this 

problem is to add additional step to reach the symmetric matrix 

or using the square root form of covariance matrix. 

 Nonlinear dynamics problem 

Nonlinearity of model M (such as second-order equations in 

atmospheric and Oceanic models)   and observation operator H 

(such as the radiance parameter at optical satellite observations) 

in KF causes two main problems: 1- nonlinearity damages 

gaussianity of statistics 2- Failure to define the transposed 

model. One way that we can adapt the nonlinear models and 

observations with KF algorithm is to use the Extended Kalman 

Filter (EKF). The EKF uses M and H (tangent linear of M and 

H) in equations of analysis and forecast steps. In the next 

section, we will introduce an efficient method called variational 

data assimilation for solving the nonlinear dynamics problem.   

 

2.2 Variational Data Assimilation 

 

If the observation operator is found to be linear in cost function, 

it leads to the Best Linear Unbiased Estimation (BLUE) 

method. But at the time evolution models that measurements 

spread on a time interval, the cost function uses the computation 

of adjoint model for minimization. Most of the data assimilation 

algorithms often result in a cost function that must be 

minimized (a typical cost function shown in figure 2). This cost 

function has quadratic forms and including observation and 

background covariance matrices. Equation 7 shows a typical 

form of the cost function. Regarding a large number of 

parameters acquired from satellite observations with high 

spatial and temporal scales, solving the high-dimensional and 

nonlinearity problems of observations are inevitable. The goal is 

finding the minimum x of a quadratic cost function in equation 

7.  

 

J(  )=1/2║  -   ║2
B+1/2║  -  ║2

R 
 

Figure 2. A simple example of distances minimization (weather 

forecast and estimation application) [Thual, 2013]. 
 

         

b

TT
x x - x x - x y - H x y - H xb b

J J

  1 1
J B R      (7) 

B: covariance matrix of the background errors 

R: covariance matrix of observation errors 

 

Solving the problem of minimization needs efficient and 

advanced numerical methods to minimize J. we are searching 

for a state trajectory x that is satisfying the background error 

statistics Jb , with the least distance to the observation. Since J 

is quadratic and strictly convex, therefore definitely exists at 

least a unique minimum or there maybe some local minima.  

The goal is to find this minimum or minima. In the following, 

some of the most important of minimization algorithms will be 

pointed. For more information and details you can see [Bishop, 

1995], [Saporta, 2005] and [Tarantola, 2005]. 

 

  

Figure 3. Schematic shows a cost function and minimization 

process. Figure from [Bouttier and Courtier, 1999].  
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2.2.1 Minimization Algorithms 

2.2.2 Newton algorithm 

 

As we know from mathematics, a minimum of the function J is, 

the gradient J , equal to zero. Newton Algorithm takes an 

iterative approach to reach the minimum of the J: 

k k kx x .J
k

  1 1
H                                  (8) 

kH  is  the  Hessian  matrix (square  matrix  of  second-order  

partial  derivatives  of a function). Because of following reasons 

this algorithms could become unstable: a) assessment of 

kH and also obtaining the matrix inverse of kH need 

computations and it is possible the matrix size of second terms 

of equation 6 become larger than a size that can be validated. 

 

2.2.3 Quasi-Newton algorithm 

 

Quasi-Newton algorithm creates an approximation to the 

inverse Hessian over iterative steps, contrary to Newton 

algorithm that initially computed Hessian matrix directly and 

then investigating its inverse. Despite the algorithmic 

complexity, it provides a good convergence speed rather than 

Newton algorithm.   

2.2.4  3D-VAR and 4D-VAR analysis   

 

One of the most important variational data assimilation, that it 

is based on the 3D-VAR algorithm, is 4D-VAR algorithm. We 

seek for an approximate solution to the equivalent minimization 

problem with J. With descent algorithm, we can reach the 

minimum value, by gradient of the cost function: 

 

     1 b -1x 2 x x 2H y xT
       J B R H                            (9)   

 

The minimization process can be stopped by specific number of 

iterations or by a predefined amount of incremental norm of the 

gradient  xJ during the minimization. The geometry of the 

process is shown in Figure 4. 

 

 
Figure 4. Minimization of cost function and its gradient. The 

shape of  xJ is a paraboloid with the minimum at the optimal 

analysis ax . Figure from [Bouttier and Courtier, 1999]. 

   

Although 3D-VAR dose not need to compute the gain K in 

equation (1), it requires designing a model for B. 3D-VAR 

gives us a global analysis that can be applied to any 

observation, especially in the case of nonlinear observations.   

When the observations are distributed in time, we use the 

simple generalization of 3D-VAR that called 4D-VAR. There is 

no considerable difference between 3D-VAR and 4D-VAR, the 

equations are the same. In figure 5 we can see the differences 

and similarities. The main difference related to the observations 

at different times in the definition of the  xJ : 

     x y x R y x x x x x

Tn
-1 b -1 b

i i i i i ii
i 0

   
               

   

J H H B (10) 

Index i denotes the observation at any time. 

 

 
Figure 5. The comparison between 3D-VAR and 4D-VAR. 

Figure from [Holm, 2003] 

 

4D-VAR behaves like the integration of an adjoint model 

backward in time, it try to find the initial condition for the 

forecast that has the best fit for the observations. In this 

algorithm if M and H are nonlinear, 4D-VAR uses adjoint 

methods for computation of gradient, because the result of the 

gradient remains exact. 4D-VAR algorithm provides an efficient 

tool for numerical forecasting. The graphical function of 4D-

VAR process is provided in figure 6. 

 

 
Figure 6. Example of 4D-VAR assimilation in a numerical 

forecasting system. Every 6 hours a 4DVAR is performed to 

assimilate the most recent observations, using a segment of the 

previous forecast as background. This updates the initial model 

trajectory for the subsequent forecast. Figure from [Bouttier and 

Courtier, 1999]. 

 

2.3 Error quantification and modelling in data assimilation 

 

Since to get the best estimation all data must be combined in 

statistical methods, therefore having a reliable and accurate 

error statistics is necessary. As we know, models in the real 

world are chaotic and nonlinear; therefore errors exist in 

background, observation and analysis parts of DA. For 

statistical analysis of error, we initially assume probability 

density function (pdf) for errors. According to the definitions of 

the figure 1:  

x xb b t            
T

b bb b     B =  
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 y xt  H      
T

     B =  

x xa a t         
2

Tr aa   A  

Error covariance is a appreciate tool for analyzing the error. The 

errors are considered based on the two statistical parameters 

(i.e. biases and covariance matrix). Errors are functions of our a 

priori knowledge of the errors, background and observations. In 

general, for computing the error statistics is to assume that the 

errors are uniform over the interval and stationary over a period 

of time (called ergodicity assumption). For the suitable quality 

of the analysis, we need a proper statistics of background and 

observation error covariances. The necessary parameters are 

correlations and variances. The observation error variances, we 

must not permit to the observation biases contribute to the 

observation error variances, because it creates biases in the 

analysis increments. Therefore, after determining the 

observation biases, it must be removed from observation and 

background. The observation error correlations, they are often 

zero (an assumption). This assumption about observations that 

acquired from different instruments is correct, but about the 

observations acquired from the same platform such as satellite 

observations and radiosonde are not the proper assumption. The 

estimation of observation error correlations is not easy task and 

often causes problems in the quality of control algorithms and 

numerical analyses. The background error variances estimate in 

forecast step and in KF algorithm they estimate by tangent-

linear model. Among the mentioned statistical parameters of 

errors in the first part of this section, Background error 

correlations is placed on the specific site, because following 

reasons: 1) when the data in an area are Sporadic, the form of 

the analysis increment is specified by the covariance structures 

and correlations of B shows the spatial distribution of data from 

the observations, this fact often called Information spreading, 2) 

since the degrees of freedom in a model are more than in  

reality, the balance properties (refer to the stable properties of a 

system, for example, hydrostatic properties of atmosphere) 

impose some unwanted and annoying limitations on the analysis 

step. Using covariance matrix B help to better error analysis, for 

more details see [Bouttier and Courtier, 1999], 3) when the data 

in an area are dense, correlations in B is the best index for 

discrete observations the amount of smoothing of the observed 

data (called information smoothing). Since the errors can only 

be estimated by statistical fashion and they cannot be seen 

directly, the most suitable way to consider the errors is to 

evaluate   y xbH . Also we can use some empirical methods 

(forecast-based) such as NMC algorithm or adjoint sensitivity. 

 

3. Applications 

 

3.1 Applications of data assimilation in geosciences  

 

 Atmosphere 

 

The applied use of variational assimilation techniques returns to 

the mid-1980s. At first, thses methods were used to assimilating 

radiosonde observations over a 24-h period in northern 

hemisphere. The researchers founded that these techniques can 

reconstruct all structures of the flow resolvable by the model to 

an accuracy of about 30 m for geopotential heights 

and 18ms for wind vectors (Courtier and Talagrand[1987] and 

Talagrand and Courtier[1987]. Also assimilation techniques 

have a wide range use in atmospheric chemistry field and 

especially assimilating the measurements of global circulation 

models and chemistry-transport model. One of the most 

significant uses of assimilation techniques is to understanding 

of the global carbon cycle. For instance, we can point to 

estimating atmospheric CO2 from advanced infrared satellite 

radiances within an operational (4-D VAR) data assimilation 

system (Engelen and McNally [2005]). In assimilation data, 3D 

atmospheric indices such as humidity, temperature, winds, 

pressure can be considered as Control vectors x and Satellite 

data or In-situ data can be assumed as Observations vector y. 

Weather forecast is the most significant application of data 

assimilation in meteorological models. 

 

 oceanography 

 

In oceanography studies, reconstructing, monitoring and 

forecasting the state of the ocean are pillars of this science. Data 

assimilation gives us initial conditions for monthly and seasonal 

forecasts. Although ocean observations are less than 

atmospheric observations, DA can decrease the large 

uncertainty (due to the forcing fluxes). As mentioned in the 

previous section, in the case of oceanography, currents, 

temperature and salinity observations (3D) and altimetry (2D) 

can be considered as Control vectors x and so on. A number of 

DA has been developed for linear ocean models and ocean 

circulation models [Fukomori and Malanotte-Rizzoli, 1995- 

Ngodock et al., 2000]. One of the main problems in ocean 

modelling process is bias and DA is an efficient way of  

controlling model bias. Also DA provides ocean reanalysis for 

instance, SODA3 ( using sequential OI technique) and GECCO4 

(using variational DA).  

 

4. Conclusion 

Our ability to accurately characterize large-scale variations in 

geosciences applications is severely confined by process 

uncertainty (error) and imperfect models. Assimilation data as 

an analysis that combines time-distributed observations and a 

dynamic model is a technique to overcome these restrictions. In 

real world when we face nonlinear chaotic systems that 

involving high flow dependent variability of error dynamics 

such as Atmosphere and Ocean, therefore having accurate and 

proper description of the error entering the estimation is 

necessary. Nonlinearity is a problem that spoils Gaussianity, it 

could be related to the observation operator H the model and or 

initial guess B. Variational and ensemble schemes are two main 

solutions for solving that problem. Each of them has drawbacks 

and abilities. For example, some drawbacks of variational 

method can be noted: 1) Lack of being Non-quadratic J(x) in 

4D-VAR, 2) Having several Multiple Minima in cost function. 

Of course, there are ways to overcome mentioned problems (for 

example, using incremental 4D-VAR for problems 1and 2). The 

drawbacks of ensemble methods can include: 1) Sampling error, 

2) observations must be used at analysis time, 3) Gaussian 

distribution assumption of fP . Again, there are solutions for 

solving or alleviating the problems such as, using covariance 

localization or additive inflation for problem (1), using hybrid 

method (several ensemble schemes) for problem (2), and using 

Particle Filters for problem (3). Despite the computational and 

statistical abilities of DA algorithms, there are still big 

challenges and difficulties for data assimilation techniques 

involving: 

 

3 Simple Ocean Data Assimilation 
4 For more information see: ifm.zmaw.de 
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 Background Error Covariance Modelling 

 reduction of systematic errors in the model and 

observation 

 Processing of data to approximate Gaussianity 

 Model errors and Non-Linearities 

 

Data assimilation techniques have traveled long path so far, 

from meteorology applications in the past to the engineering 

applications in the current era, this vicissitudes path still 

continues. 
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