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ABSTRACT: 

 

In this paper, we propose a novel approach to reason with spatial proximity. The approach is based on contextual information and 

uses a neurofuzzy classifier to handle the uncertainty aspect of proximity. Neurofuzzy systems are a combination of neural networks 

and fuzzy systems and incorporate the advantages of both techniques. Although fuzzy systems are focused on knowledge 

representation, they do not allow the estimation of membership functions. Conversely, neuronal networks use powerful learning 

techniques but they are not able to explain how results are obtained. Neurofuzzy systems benefit from both techniques by using 

training data to generate membership functions and by using fuzzy rules to represent expert knowledge. Moreover, contextual 

information is collected from a knowledge base. The complete solution that we propose is integrated in a GIS, enhancing it with 

proximity reasoning. From an application perspective, the proposed approach was used in the telecommunication domain and 

particularly in fiber optic monitoring systems. In such systems, a user needs to qualify the distance between a fiber break and the 

surrounding objects of the environment to optimize the assignment of emergency crews. The neurofuzzy classifier has been used to 

compute the membership function parameters of the contextual information inputs using a training data set and fuzzy rules. 
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1. INTRODUCTION 

One of the objectives of Human–Machine Interaction (HMI) is 

to provide systems that users can use in an intuitive way. In the 

context of qualitative spatial reasoning, the notion of proximity 

is one of the foundational concepts in daily human cognition 

studied by researchers during the last decades. Several authors 

proposed tools to reason about proximity and solutions which 

can be automated and integrated in geographic information 

systems (GIS). The goal is to reduce the semantic gap between 

quantitative data in GIS (metric distance) and qualitative data 

(proximity) as used by humans (Cohn and Renz, 2007). Such 

works used advanced qualitative techniques such as fuzzy sets 

and fuzzy logic as well as conceptual notions such as influence 

and impact areas. Empirical experiments were also conducted. 

However, spatial distance, on which most of these works based 

their solutions, is not the only factor that influences human 

reasoning about spatial proximity. Actually, proximity relations 

have two characteristics: they are context dependent and 

uncertain. For example, the means of transportation used to 

travel from Paris to London may change the traveler’s 

perception of distance (context-dependence). When a person 

parks a car, she does not need to know the exact distance of the 

empty space between two cars (uncertainty). A suitable model 

of spatial proximity should consider both characteristics in 

order to be closer to the human apprehension of proximity.  

 

In this paper, we propose a novel approach to reason with 

spatial proximity. The approach is based on contextual 

information and uses a neurofuzzy classifier to handle the 

uncertainty aspect of proximity. Neurofuzzy systems are a 

combination of neural networks and fuzzy systems and 

incorporate the advantages of both techniques. Fuzzy systems 

are focused on knowledge representation, but they do not allow 

the estimation of membership functions. Conversely, neuronal 

networks use powerful learning techniques but they are not able 

to explain how results are obtained. Neurofuzzy systems benefit 

from both techniques by using training data to generate 

membership functions and by using fuzzy rules to represent 

expert knowledge. Moreover, contextual information is 

collected from a knowledge base. The complete solution that we 

propose is integrated in a GIS, enhancing it with proximity 

reasoning capabilities. From an application perspective, the 

proposed approach was used in the telecommunication domain 

and particularly for fiber optic monitoring. In such systems, a 

user needs to qualify the distance between a fiber break and the 

surrounding objects of the environment to optimize the 

assignment of emergency crews. The neurofuzzy classifier 

(NFC) was used to compute the membership function 

parameters of the contextual information inputs using a training 

data set and fuzzy rules. 

 

This paper is organized as follows. Section 2 discusses some 

related works about qualitative spatial proximity and their 

limitations. Section 3 presents an overview of the neurofuzzy 

classifier used in our approach. Section 4 presents a case study 

that will be used to illustrate our approach. Section 5 presents 

the results and section 6 discusses some research outlooks and 

concludes this paper.  

 

2. RELATED WORKS 

Reasoning with spatial proximity is a research area which has 

been addressed by the qualitative spatial reasoning community, 

adopting different perspectives such as geography, cognitive 

science, linguistics and others (Yao and Thill, 2007). A large 

number of prior works used fuzzy logic and qualitative 

techniques to deal with spatial proximity because it has inherent 

fuzziness (Robinson, 1990). While reasoning with proximity, 

human beings may also consider metric distances and other 
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parameters called contextual information. In the following sub-

sections, we present an overview of some of the works which 

used uncertainty techniques and contextual information or a 

combination of both aspects.  

 

2.1 Distance-based approaches 

Guesgen (2002) used fuzzy sets and associated each set with a 

qualitative spatial relation. The idea behind Guesgen’s approach 

is to interpret qualitative proximity relations between spatial 

objects as restrictions of spatial linguistic variables such as near 

and far. Each linguistic variable is associated with a fuzzy set. 

The proximity relation is therefore represented by a membership 

degree of each of these fuzzy sets using a membership function. 

For example, the relation “the object A is near to” may be 

interpreted by a near membership value which is associated 

with each near relation between object A and surrounding 

objects such as B, C and D. Generally, the nearest an object is 

to A, the highest its membership value is. A software 

implementation used Euclidian distance between two objects to 

implement Guesgen’s formalism. A Java-based implementation 

allows a user to define a “nearness” factor which will be used to 

specify other proximity relations. Then, the user can qualify the 

distance between two spatial objects using proximity relations.  

(Brennan and Martin, 2006) stated that most of fuzzy based 

proximity formalisms proposed in the literature suffer from a 

major shortcoming: membership functions are not clearly 

defined. To overcome this limitation, they used Gahegan’s 

approach (Gahegan, 1995) who proposed a method to identify 

spatial proximity using three factors: the absolute distance, the 

relative distance between two spatial objects and the 

combination of both. An absolute distance may be a spatial 

relation such as very close, close and far. Relative distance may 

be a spatial relation such as closest or farthest. The combination 

of both absolute and relative distances was defined by Gahegan 

to reason about spatial relations using a fuzzy union operator. 

Since Gahegan did not use experimental data to validate his 

approach, Brennan and Martin (2006) proposed an approach to 

evaluate membership functions and showed how they can be 

combined using fuzzy logic operators. To this end, they used 

the absolute distance membership function ������, �	 proposed 

by Gahegan.  This function is presented in Table 1 where A and 

B are spatial objects, Dist(A,B) is the absolute distance between 

A and B . Max is the maximum distance between all the places 

in the data set and it is used to normalize the value of Dist(A,B). 

For relative distance membership function, they used the 

function �
����, �	 proposed in (Worboys, 1996) and given in 

Table 1 where reldis(A,B) is relative distance between A and B 

which is calculated using the distance between A and B divided 

by the mean of distance between A and each object in the data 

set. The result given by the Brennan and Martin’s experiments 

demonstrated that the absolute distance and relative distance 

membership function can be used separately and generate linear 

distributions. However, combination of both metrics by union 

gives clustered distributions and may not be relevant for 

proximity reasoning whereas fuzzy intersection gives better 

results. The authors proposed to use this option and 

implemented it in a GIS.  However, they neither expressed the 

meaning of fuzzy intersection in terms of spatial proximity,, nor 

did they justify the use of fuzzy logic in general. Moreover, how 

to apply such an approach to qualitative spatial reasoning was 

not obvious.  

 

 

 

Absolute Distance Metrics ������, �	 
 1 � ������, �	���  

Relative Distance Metrics �
����, �	 

1

���������, �	 � 1	 
Fuzzy Union �����_ ��, �	 
 ��!���"���, �	, ������, �		 
Fuzzy Intersection �����_#��, �	 
 �$%���"���, �	, ������, �		 
 

Table 1: Fuzzy distance as proposed by (Brennan and Martin, 

2006) 

 

Later, (Brennan and Martin, 2012) proposed a conceptual 

framework to qualitatively represent spatial proximity and to 

enhance the capacity of spatial reasoning systems using 

contextual information. They consider contextual information as 

a key element in any model of spatial proximity. For example, a 

degree of proximity to an object may vary if the object is meant 

to be seen or reached. To reason about spatial proximity 

Brennan and Martin introduced the notion of impact area which 

is a generalization of the influence area introduced by (Kettani 

and Moulin, 1999). An influence area is a portion of space 

surrounding an object: it has an interior and exterior border 

such that the borders of the influence area and the border of the 

object have the same shape (Kettani and Moulin, 1999). 

Euclidean geometry has been used by Kettani and Moulin to 

calculate the width of an influence area. Brennan and Martin 

proposed a more generic approach motivated by the fact that 

spatial proximity is not just a metric measure. Proximity is 

rather context dependent. Furthermore, other spatial relations 

such as topological and directional relations have some unified 

views within the research community. Hence, they introduced 

the notion of impact area which involves contextual information 

to qualify spatial proximity. The impact area of an object takes 

into account both the nature of the object and its surrounding 

environment. Some examples in (Brennan and Martin, 2012) 

demonstrate how impact area is more generic than influence 

area, and how this notion uses contextual information in 

proximity analysis. Contextual information is defined as any 

“information collated by an expert who is expected to 

incorporate all relevant factors into the impact area”.  Figure 1 

illustrates the difference between influence area and impact area 

for two couples of objects. Objects A1 and B1 are water tanks 

and objects A2 and B2 are radio towers. The distance between 

A1 and B1 is equal to the distance between A2 and B2. The 

influence area of water tank is equal to the influence area of 

radio towers because all objects have the same shape and size 

and because they are located at the same distance from each 

another. If we consider the functionality of the towers (range of 

frequency) and the surrounding Cliff, the impact areas will be 

different. 

 

 
Figure 1. An example of difference between influence areas 

(Kettani and Moulin, 1999) and impact area (Brennan and 

Martin, 2012) 
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2.2 Contextual-based approaches 

(Yao and Thill, 2007) emphasized that proximity relations have 

two main characteristics. The first one is that proximity relation 

is context dependent. The authors classified context factors as 

‘objective’ and ‘subjective’. Subjective context factors may 

have different values according to the involved person. 

Examples include the navigator’s familiarity with the area, his 

time and his budget. Objective context factors have independent 

values relative to the person who perceives the distance like the 

type of activity (run, walk), object reachability and 

transportation mode to name a few. The second characteristic of 

proximity is the uncertainty of distance measures. If a person 

wants to park his car, he does not need to know the exact 

distance between his car and the other cars around. The authors 

proposed a review on existing approaches based on fuzzy logic 

to handle the uncertainty aspect of proximity measures and they 

noticed that most of these works presume the form of 

membership functions. To overcome this limitation, Yao and 

Thill proposed a novel approach based on neurofuzzy 

techniques which allows for reasoning with spatial proximity by 

considering contextual information and by handling its 

uncertainty aspect. Neurofuzzy systems are a combination of 

neural networks and fuzzy systems. They incorporate the 

advantages of both techniques. Fuzzy systems are focused on 

knowledge representation while they do not support learning 

techniques. Conversely, neuronal networks are more powerful 

in learning techniques but they cannot explain how the results 

are obtained. Neurofuzzy systems, take advantage of both 

techniques by using training data instead of preset membership 

functions and by using fuzzy rules fto represent expert 

knowledge.  

 

The contextual factors used in Yao and Thill’s approach 

(objective and subjective) take the form of crisp inputs. They 

are fuzzyfied using membership functions (which can be 

predetermined by an expert). Fuzzyfied outputs are generated as 

consequences of applying all fuzzy rules. The final output 

(either fuzzy or crisp) is calculated through defuzzification 

using the weighted average of fuzzyfied outputs. Yao and Thill 

used ANFIS (Adaptive NeuroFuzzy Inference System) to 

implement and validate their approach. ANFIS is a Takagi-

Sugeno fuzzy inference system (Yao and Thill, 2007). It uses a 

back propagation algorithm to train the fuzzy neural network. 

This algorithm computes the error between the training data and 

the neural network output and uses the error to adjust the rules’ 

weights. The experimental results demonstrated that a 

neurofuzzy approach gives higher prediction accuracy when 

training data and testing data are compared. Finally, the 

proposed approach allowed resolving the problem of using 

presumed membership functions reported by the authors and by 

(Brennan and Martin, 2006). 

   

2.3 Discussion 

Qualitative reasoning with spatial proximity has been addressed 

by the above works which tried to design solutions that can be 

automated and easily integrated in a GIS and which reduce the 

semantic gap between quantitative data in a GIS (distance) and 

qualitative data (proximity) as perceived by humans. However, 

the distance-based approaches are not necessarily the only 

factor that influences human cognitive apprehension of spatial 

proximity. A suitable model of spatial proximity should 

acknowledge other factors such as contextual information as 

proposed by (Brennan and Martin, 2012). The latter work 

suffers from two main shortcomings: first it only allows to 

reason about nearness. There is no clear definition of other 

proximity relations such as “far”, “close to” and so on. 

Therefore, it difficult to relate their definition of impact area 

with different proximity relations used by humans and in GIS 

solutions. Second, the definition of impact area seems to be 

very domain specific. Examples provided by the authors do not 

clearly explain how and from where contextual information is 

gathered and how contextual information can impact the spatial 

proximity. Therefore, implementing this work in a generic GIS 

is quite challenging. (Yao and Thill, 2007) proposed an 

innovative solution to reason about proximity by using 

contextual information to handle the cognitive aspect and 

neurofuzzy techniques to handle the qualitative aspect of spatial 

proximity. Although Yao and Thill’s approach may be suitable 

for qualitative spatial reasoning, it suffers from several 

drawbacks. The neurofuzzy system used for the implementation 

and experiments is ANFIS which is an approximation system 

(Nauck and Kruse, 1999). ANFIS’ output is a crisp value which 

does not help in “classifying” the spatial proximity. Usually, 

given a number of context factors, a user/agent tries to answer 

to the following question: what is the proximity relation 

between object A and object B? Possible answers may be very 

near, near, far or very far. We believe that qualitative proximity 

is a classification problem rather than an approximation 

problem. Furthermore, Yao and Thill proposed a general 

architecture to implement their solution and conducted 

experiments to prove its relevance. However, teh solution was 

not integrated in a GIS. In the next sections, we propose a new 

framework to reason about qualitative proximity with the 

following features: first, a neurofuzzy classifier is used instead 

of ANFIS in order to handle the uncertainty aspect of proximity. 

Second, we integrate the proposed solution in a GIS to enhance 

its qualitative proximity reasoning capabilities. Figure 2 

illustrates the general architecture of our approach. A user 

specifies contextual information and fuzzy rules to generate 

training data set which is used by the NFC to train the fuzzy 

inference system. An overview of the NFC structure used in our 

approach is presented in the following section. 

 

 
 

Figure 2. An overview of the proposed approach 

 

3. NEUROFUZZY CLASSIFIER STRUCTURE 

The structure of a neuro-fuzzy system is similar to a multilayer 

neural network. In general, a neuro-fuzzy system has one input 

layer, one output layer, and three hidden layers (Negnevitsky, 

2011). In the neuro-fuzzy classification systems, the feature 

space is partitioned into multiple fuzzy subspaces which are 

managed by fuzzy rules. Rules are represented by a network 

structure and their parameters (weights) are optimized using 

learning techniques.  

 

A fuzzy classification rule &�; establishes the relation between 

the input feature spaces and classes (output). It is defined as 

follows: 

 

&#: �(	��*	��	+#*	�,�……		��.	��	+#.	 
 �,�	��/	��	+#/	�0�,	12�32�	4����	��	56 	 (1) 
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Where ��.is the 7th input variable of the cth sample; +#.denotes 

the fuzzy set of the 7th feature in the �th rule; and 59 represents 

the 9th label of class. +#. is associated with the suitable 

membership function (Sun and Jang 1993).  

 

Using fuzzy rules allows for splitting the feature space into 

multiple fuzzy subspaces. These rules can be represented by a 

neural network. Figure 3 depicts an example of a space partition 

of two inputs x1 and x2. Each input (feature) has three fuzzy 

sets described by linguistic variables. Hence, we have nine 

fuzzy rules overall. A neurofuzzy classifier is a multilayer 

network with five layers. The first layer is the input layer 

(features). The last layer is the output layer (classes). The other 

layers are defined as follows: 

 
Figure 3. partition of the feature space (Sun and Jang, 1993). 

 

Membership layer: each input is identified using fuzzy sets and 

each fuzzy set is associated with a linguistic variable. Fuzzy sets 

are represented by membership functions. According to (Cetişli 

and Barkana, 2010) bell-shaped functions are the most used 

functions in neurofuzzy classifiers since this function has fewer 

parameters and smoother partial derivatives as parameters. This 

function is used for this layer and is defined as follows: 

 

�#.:��.; 
 exp	�� :?@AB�CA;
D

EFDCA 														(2) 

 

Where �#.:��.;	 is the membership grade of �th rule and 7th 
feature; ��. represents the cth sample and 7th feature; 4�7 and G�7 
are the center and the width of bell shaped function, 

respectively. The membership functions of input variables x1 

and x2 of Figure 3 are examples of bell shaped function.  
 

Fuzzification layer: each node in this layer is a fuzzy rule. The 

antecedent of the fuzzy rule is a fuzzy set. The output is a 

singleton membership function. The fuzzy rule premises 

become weights for the rule neurons of this layer (Gliwa and 

Birsky, 2011). The conclusion of a rule is a connection from the 

rule neuron to the next layer. Each node in this layer has an 

activation function which corresponds to the degree of 

fulfillment of the fuzzy rule for the ��. sample.  The activation 

function �#� of a fuzzy rule is defined as follows: 

 

�#� 
 ∏ �#.:��.;/.I*   (3) 

 

Where n is the total number of features. 

 

Defuzzification layer: in this layer, each rule affects each class 

according to their weights. The more a rule impacts a class, the 

bigger the weight between that rule output and the specific class 

is. Otherwise, the class weights are small. The weighted output 

for a given sample x that belongs to a class k is computed as 

follows: 

 

J�6 
	K�#�L#6
M

#I*
 

 

Where L�9 denotes the degree of belonging to the 9th class that 

is controlled by the �th rule and Z represents the number of rules 

(Do and Chen, 2013).  

 

Normalization layer:  in some cases, the summation of the 

weighted sum can be larger than 1. Therefore, this sum should 

be normalized using the following formula: 

  

%�6 
 N@O
∑ N@QR
QST

   (4) 

 

Where %�6 is the normalized value of the cth sample that 

belongs to the 9th class and U is the number of classes.  

Finally, the output class Cc is the maximum of normalized 

values given by the normalization layer:  

 

5� 
 V��6I*,E,…..,6X%�6Y   (5) 

 

Figure 4 depicts a neurofuzzy classifier network with the 

different layers and with two input features and 3 output classes. 

 

 

 
 

Figure 4. A neurofuzzy classifier (Cetişli and Barkana, 2010) 

 

 

4. CASE STUDY 

We use a case study to illustrate the relevance of our approach 

and for experimentation purposes. A Remote Fiber Test System 

(RFTS) is a real time acquisition system which is designed to 

monitor fiber optic networks. It is widely used in the 

Telecommunications industry to optimize the service level 

agreement (SLA) between service providers and consumers. It 

can also be used in the Oil and Gas industry to monitor 

pipelines. Fibers can be installed along the pipelines and the 

occurrence of a fiber fault means the occurrence of a pipeline 

damage event.  

 

The RFTS is based on the Optical Time Domain Reflectometer 

(OTDR) technology. OTDRs are commonly used to characterize 

the loss and length of fibers as they go from initial 

manufacturing, through to cabling, warehousing while wound 

on a drum, installation and then splicing. OTDRs are also 

commonly used for fault finding on installed systems. In this 

case, reference to the installation OTDR trace is very useful, to 

determine where changes have occurred (Wikipedia, 2014). 
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Figure 5 depicts the accordance between the OTDR trace and 

the fiber optic characteristics.  

 

An RFTS is a distributed system where Remote Terminal Units 

(RTU) are geographically deployed and continuously run to 

monitor the fiber status using OTDRs. When a fiber fault 

occurs, it is detected by an RTU and reported to a central server 

which maps the fault in a GIS. Figure 6 depicts the general 

structure of a remote fiber test system. 

 

A user needs to evaluate the distance between the fault location 

and several locations such as: crew location, location of critical 

sites where service level agreement must be fully respected 

(bank, broadcasting channel building) and asset locations 

(splice point, transmission equipment and so on). Hence, the 

notion of proximity is very important in such applications and it 

helps users make decisions. In the following section, we present 

an overview of the NFC which we use to build such a spatial 

proximity framework. 

 

 
 

Figure 5. OTDR Trace Information (Thefoa.org, 2014) 

 

 

 
 

Figure 6. General architecture of RFTS 

 

 

5. EXPERIMENTS 

5.1 Training the neurofuzzy classifier 

One of the advantages of using a neurofuzzy classifier is that 

membership functions and rules can be learned from data sets. 

If +MZ/ and  5MZ/ are the sigma and the center values of the bell 

membership function; and [MZ\  is the weight matrix of 

connection from fuzzification to defuzzification layers; then 

] 
 X	+MZ/, 5MZ/, [MZ\Y is the set of parameters that will be 

optimized by the learning algorithm. 

 

Several training algorithms have been proposed for neurofuzzy 

classifiers (Do and Chen, 2013). However, the scale conjugate 

gradient (SCG) is one of the most efficient algorithms with less 

errors and high efficiency. This algorithm was enhanced and 

implemented in a software package by (Cetişli and Barkana, 

2010). We use this algorithm for our data set training. A 

detailed overview about this training algorithm can be found in 

(Cetişli and Barkana, 2010).  

A Matlab implementation of the NFC has been developed by 

(Cetişli and Barkana, 2010). It first trains the NFC, and then it 

generates the fuzzy inference system parameters that are used by 

the qualitative proximity reasoning engine. In this section, we 

present how data sets are prepared to train the NFC and we 

present the obtained results. 

 

5.2 Input selection and data set 

We use Yao and Thill’s definition (2007) of contextual 

information to select the NFC inputs.  Objective and subjective 

contextual informations are used respectively when variables 

are independent from the person who perceives the distance, 

and when variables are dependent on the person who perceives 

the distance. We use Euclidian distance as the objective input. 

Road traffic and user’s familiarity with the area are used as 

subjective contextual information. Three classes are used for the 

proximity output (short, medium and far). The following tables 

2 and 3 detail the NFC inputs and outputs: 

 

Variable name Fuzzy sets Range 

Euclidian 

distance 

Short, medium, far 0-10000 KM 

Traffic Light, medium, heavy 0-1 

User familiarity 

with the site 

Week, average, good 0-1 

 

Table 2: NFC features (inputs) 

 

Class Value 

Very Short 1 

Short 2 

Medium  

Far 3 

 

Table 3: NFC Classes (outputs) 

 

It is worth noting that the Euclidian distance is used for 

simplification purposes. Normally, a distance between two 

geographic features is computed using a path planning software. 

A data set with 300 samples has been prepared using locations 

in Quebec City. 150 samples are used to train the NFC and 150 

samples are used to test the trained NFC. To generate the 

different classes (outputs) in the sample data set, we used a 
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fuzzy inference system (FIS) with 13 rules specified thanks to 

the user’s experience and illustrated by Figure 7. 

 

Each feature is associated with three fuzzy sets which are 

represented by a bell shaped membership function. The FIS 

uses a Sugeno type system to calculate the weighted sum of the 

fuzzy rules output for each sample vector. The FIS gives a crisp 

output with a float number which is not suitable to make a 

decision about which class the proximity belongs to. Therefore, 

we apply a “round function” to generate the number that 

converts it to the final class. An algorithm to automate data 

generation is described by the pseudo code in Table 4. 

 

The data set has been created using a specific area which is 

delimited using a square. All the distances are computed 

between geographic objects that belong to this specific area. 

Therefore, the training results will be valid only for this specific 

area. If the area changes, the NFC training must be repeated for 

the new area.  

 

 
 

Figure 7. Fuzzy rules used to prepare the data set 

 

Generate Data Set (V, O)   

V: vector of inputs 

O: output of the FIS 

1. Get all the geographic objects inside the training 

area. 

2. Compute the Euclidian distance between the 

objects. 

3. For each distance between two geographic 

objects,  

4. Assign two contextual information 

5. Save in the Sample Data Set 

6. End For 

7. Load Sample Data  

8. For each vector feature from the V= 

��*
��E
��^

 in the 

data set,  

9. Calculate the output of the fuzzy rules.  

10. Calculate the FIS output of the specific vector V 

11. The output class = Ceil the FIS output. 

12. End For 

 

Table 4: NFC data set training preparation 

6. RESULTS 

Now that our data set is ready, we use it to train the NFC. The 

root mean square error (RMSE) is used to evaluate the error 

between the NFC output and the testing output. It converges 

after 55 epochs and remains stable at 0.229963 (Figure 8). This 

means that 77% of the testing inputs have been successfully 

classified by the NFC. The classifier generated a new set of 

features with new fuzzy sets and new membership functions. 

For example, the distance feature in the data set used to train the 

algorithm had three fuzzy sets:  short, medium and far. The new 

distance feature has four fuzzy sets named as follows: close, 

average, far and very far. Obviously, these names are chosen by 

an expert who intuitively associates the linguistic variables with 

different features proposed by the NFC.  

 

 
 

Figure 8. NFC training Performance for 3 features and 4 classes 

 

The same logic applies to other features (road traffic and user’s 

familiarity with the region). Figures 9 (a, b, c, d, e, f)  illustrate 

the fuzzy sets of each input feature as proposed by the user to 

generate the data set and the fuzzy sets of each input feature as 

classified by the NFC. These outputs are only valid for the 

geographic area in which the data set has been defined. If the 

area changes, these membership functions are no longer valid 

and the system should be trained again.   

 

 
(a) distance feature as defined by user to train the NFC 
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(b) distance feature after the NFC training 

 

 

 

 

 

 
(c) road traffic feature as defined by user to train the NFC 

 

 

 

 

 
(d) road traffic feature after the NFC training 

 

 

 

 

 

 
(e) User’s familiarity with area feature as defined by user to 

train the NFC 

 
(f) User’s familiarity with area feature after the NFC training 

 

Figure 9. NFC outputs 

 

7. A QUALITATIVE PROXIMITY TOOL: 

ARCHITECTURE AND IMPLEMENTATION 

The main goal of using NFC is to generate membership 

functions for the fuzzy inference system based on expert’s 

knowledge. A software tool has been developed to integrate the 

NFC output in a qualitative proximity reasoning tool which is 

integrated to a GIS.  

 

7.1 Architecture 

The general architecture of the tool is depicted in Figure 10. 

The NFC is a Matlab based program which uses the data set to 

generate the fuzzy membership functions and the fuzzy rules. 

These outputs are used by a fuzzy inference system (FIS) 

managed by the jFuzzyLogic module. jFuzzyLogic is an open 

source fuzzy logic library implementing industry standards to 

simplify the development of fuzzy systems. It is a java package 

which uses FIS files to reason with fuzzy rules. The Java 

Topology Suite (JTS) is a software package which is used to 

handle the spatial calculus of geographic features which are 

stored in the database (PostGIS). 

 

7.2 Workflow 

Training the system using the NeuroFuzzy classifier is the very 

first step in using the developed tool. A user should select a 
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specific geographic area where contextual information is 

available (distance, traffic and so on) and then generate the data 

set that will be used to train the classifier. When a fiber fault 

occurs in the field, a distance between the fault location and the 

reference object is calculated. The reference object can be 

selected by the user using various criteria: 

• The distance between the fiber fault location and the 

RTU that is monitoring the fiber status; 

• The distance between the fiber fault location and the 

central office location. The central office is a 

corporate building where crews are waiting to be 

assigned for a fiber inspection; 

• The distance between the fiber fault location and 

telecommunication assets such as splice points, patch 

panels, transmission equipment, etc. 

• The distance between the fiber fault location and 

critical locations where service level agreement with 

customers must be fully respected such as banks, 

military locations etc. 

A user shall select the distance and other contextual 

informations to qualify the distance. The software output is a 

qualitative proximity measure expressed using a linguistic 

variable (close, far from etc.). Such a tool can be integrated in 

any decision based system where the concept of quality of 

service is very important and the notion of proximity to an event 

plays a key role in the user’s decision.  

 

 
Figure 10. Qualitative proximity software architecture 

 

8. DISCUSSION AND CONCLUSION 

Qualitative reasoning about spatial proximity is not only a 

distance issue. Other factors can influence the user’s perception 

about proximity relation between two locations. In addition, the 

proximity relation is uncertain and fuzzy. A human being does 

not need to know the exact metric values of distances in his 

daily’s life.   

 

In this paper, we considered the former aspects in designing a 

solution for qualitative spatial proximity reasoning tool. Such a 

solution is integrated in a GIS and can be used in various 

application domains. Some improvements remain to be made in 

our solution. For example, it would be interesting to enhance 

the human machine interaction model so that a user can pick up 

locations and select contextual information and get the 

proximity relation. Also, the contextual information is currently 

specified from a simplified database. In the future, it would be 

interesting to gather such information from a knowledge base.   
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