Application of ECOC SVMS in Remote Sensing Image Classification
Keywords: Remote Sensing Classification, ECOC-SVMs, Multi-class Classifier
Abstract. Image processing has been one of the efficient technologies for GIS data requisition. Support Vector Machines (SVMs) have peculiar advantages in handling problems with small sample sizes, nonlinearity, and high dimensionality. However, SVMs can only solve two-class problems while multi-class decision is impossible. Error correcting output coding (ECOC) SVMs enhance the ability of fault tolerance when solving multi-class classification problems, which makes ECOC SVMs suitable for remote sensing image classification. In this paper, the generalization ability of ECOC SVMs is discussed. ECOC SVMs with optimum coding matrices are selected by experiment, and applied to remote sensing image classification. Experimental results show that, compared with Conventional multi-class classification methods, less SVM sub-classifiers are needed for ECOC SVMs in remote sensing image classification, and the classification accuracy is also improved.