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ABSTRACT: 
 
As the largest carbon reservoir in ecosystems, soil accounts for more than twice as much carbon storage as that of vegetation biomass 
or the atmosphere. This paper examines spatial patterns of soil organic carbon (SOC) in Canadian forest areas at an eco-region scale 
of analysis.  The goal is to explore the relationship of SOC levels with various climatological variables, including temperature and 
precipitation. The first Canadian forest soil database published in 1997 by the Canada Forest Service was analyzed along with other 
long-term eco-climatic data (1961 to 1991) including precipitation, air temperature, slope, aspect, elevation, and Normalized 
Difference Vegetation Index (NDVI) derived from remote sensing imagery. In addition, the existing eco-region framework 
established by Environment Canada was evaluated for mapping SOC distribution.  Exploratory spatial data analysis techniques, 
including spatial autocorrelation analysis, were employed to examine how forest SOC is spatially distributed in Canada.  Correlation 
analysis and spatial regression modelling were applied to determine the dominant ecological factors influencing SOC patterns at the 
eco-region level.  At the national scale, a spatial error regression model was developed to account for spatial dependency and to 
estimate SOC patterns based on ecological and ecosystem factors. Based on the significant variables derived from the spatial error 
model, a predictive SOC map in Canadian forest areas was generated.  Although overall SOC distribution is influenced by climatic 
and topographic variables, distribution patterns are shown to differ significantly between eco-regions.  These findings help to 
validate the eco-region classification framework for SOC zonation mapping in Canada. 
 

*  Corresponding author 

1. INTRODUCTION 

As the largest organic carbon reservoir in ecosystems, soil 
accounts for more than twice as much carbon storage as 
vegetation biomass or the atmosphere (Galbraith et al., 2003). 
Globally, about 30% of soil organic carbon (SOC) is estimated 
to be preserved in tundra and boreal ecosystems (Lee et al., 
2010). In forest ecosystems, the amount of SOC is calculated as 
the difference between organic carbon inputs and releases. 
Consequently, due to effective vegetation-soil interactions and 
decades of accumulation, considerable organic carbon has been 
stored in forest soils. 
 
The dynamics of such large quantities of organic carbon stored 
in forest soil not only influence soil fertility and forest 
productivity, but also partly account for changes in atmospheric 
carbon concentration (Mishra et al., 2010). Many studies have 
pointed out that SOC distribution is temperature-sensitive and 
small fluctuations in SOC could greatly affect atmospheric 
carbon concentration (Shakiba & Matkan, 2005; Tewksbury & 
Van Miegroet, 2007). To date, the influence of temperature on 
SOC distribution remains controversial. In comparison to 
temperature effects, the impact of precipitation on SOC 
distribution is usually observed to be dominant and positive. 
Soils in humid eco-regions usually accumulate more organic 
carbon (Buringh, 1984), because high levels of soil moisture 
tend to reduce SOC decomposition rates by slowing and 
restricting oxygen diffusion processes. 
 
In SOC-landscape modelling, topography is considered to be a 
dominant influence on pedogenic processes (Tewksbury & Van 
Miegroet, 2007). Vegetation cover also influences SOC input 
and distribution through litterfall accumulation. In particular, 

SOC distribution is positively related to forest age (Chen et al., 
2003), and old-growth forest is more capable of SOC 
sequestration than young-growth forest (Luyssaert et al., 2008). 
Moreover, the amount of SOC is influenced by historic land use 
changes and human disruptions (Galbraith et al., 2003). As a 
result, policy making and forest resource management 
necessitates having a solid understanding of SOC distribution 
and influencing variables.  
 
Recent studies have used geostatistical techniques and spatial 
regression analysis to incorporate environmental information 
into SOC mapping, rather than relying on ground soil surveys 
and in situ measurements (Mishra et al., 2010). These studies 
are based on two main assumptions. First, specific soil 
properties (e.g., SOC distribution) vary in space and through 
time across ecosystems, because different ecological conditions 
have varying impacts on pedogenic processes (Chen, et al., 
2003). Second, ecological factors contribute to SOC-
environment relationships unequally and to varying levels in 
different environments.  
 
In Canada, about 4,690,000 km2 (47% of total area) are covered 
by intact forest (Lee et al., 2010). This forest-dominant 
landscape indicates that Canada is one of the vital carbon 
reservoirs in the world. Consequently, many efforts have been 
made to estimate Canadian SOC distribution and to model 
SOC-environment relationships. However, most studies have 
been conducted at the local scale with limited SOC distribution 
and SOC-environment modelling conducted at a national or 
regional scale of analysis. Therefore, the main research goal of 
this study is to examine spatial patterns of SOC distribution in 
Canadian forest regions at the eco-region scale and to explore 
relationships between SOC and various ecological variables.  
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More specifically, the objectives of this study include:  
1. To explore the spatial distribution of SOC levels in 

Canadian forests in seven eco-regions: the Subarctic, 
Boreal, Cool Temperate, Subarctic Cordilleran, 
Cordilleran, Interior Cordilleran, and Pacific Cordilleran, 

2. To assess the influence of ecological factors on forest 
SOC stock in growing seasons at regional scales of 
analysis, including elevation, slope, aspect, Normalized 
Difference Vegetation Index (NDVI), precipitation, and 
maximum/mean/minimum air temperatures, and 

3. To assess how SOC-environment relationships vary 
geographically with respect to ecological factors. 

 
 

2. MATERIALS & METHODS 

2.1 Study Area 

This study focuses on forest covered areas in Canada, excluding 
tundra areas, grassland, and main water bodies, as shown in 
Figure 1. Based on ecological responses (e.g., vegetation types, 
hydrological conditions, and biota) to different climatic 
regimes, seven eco-climate regions are delineated: Subarctic, 
Boreal, Cool Temperate, Subarctic Cordilleran, Cordilleran, 
Interior Cordilleran, and Pacific Cordilleran. The treeline or 
altitude above which fewer trees grow is located in the 
Subarctic eco-region, also shown in Figure 1.  MacDonald and 
Gajewski (1992) emphasizes that the tree line is not a specific 
curve that explicitly separates forested and non-forested areas. 
Instead, it represents a transitional zone consisting of forest and 
other northern surface features (e.g., tundra). 
 

 
 

Figure 1. Study area of Canadian forest regions 
 
2.2 Data & Data Preprocessing 

The Canadian Forest Service (CFS) database consists of field 
survey data collected before 1991, making it a useful source of 
historical SOC data. By excluding tundra areas, the remaining 
1,317 records in forest regions were used in this study. The 
SOC stock was measured to a depth of one meter of mineral 
soil for each soil profile record. A map of the distribution of 
original SOC sample points is shown in Figure 2. 
 
Long term climate data in growing seasons (April to October) 
from 1961 to 1991 were collected. Daily 10 km Gridded 
Climate datasets were provided by the National Land and Water 
Information Service, Agricultural Canada with the average 
maximum, mean, and minimum air temperatures (°C) for each 

year’s growing seasons calculated. Daily precipitation data 
(mm) was summed for growing seasons.  
 

 
 

Figure 2. The spatial distribution of 1,317 CFS soil samples 
collected in Canadian forest areas before 1991 by the Canada 

Forest Service 
 
In order to obtain complete landmass coverage of seasonal 
climate data beyond the 60⁰ latitude, data from 34 weather 
stations across Northern provinces from Environment Canada 
were collected. Data points were interpolated by Ordinary 
Kriging and merged by using the ArcGIS Mosaic software tool.  
 
The 16-day NDVI datasets from 1981 to 1991 at 8 km spatial 
resolution were acquired from the Global Inventory Modeling 
and Mapping Studies (GIMMS). Other topographic attributes – 
elevation, slope, and aspect – were derived from a digital 
elevation model (DEM) provided by CFS. All datasets were re-
sampled to 10 km resolution for comparable cell size. 
 
2.3 Spatial Data Analysis 

Global and local autocorrelation analyses were applied to test 
the null hypothesis of spatially independent SOC samples. The 
global Moran’s I test measures the overall degree of spatial 
autocorrelation and returns a single value applied to the entire 
study area to indicate an overall spatial clustered or dispersed 
pattern (Anselin, 2005). A positive global Moran’s I value 
suggests the comparability among proximal observations, while 
a negative value indicates a spatially dispersed pattern. The 
local spatial autocorrelation analysis highlights four types of 
local spatial patterns: High-High (HH), Low-Low (LL), High-
Low (HL), and Low-High (LF). The HH and LL patterns are 
known as ‘spatial clusters’ within which the observations have 
positive Moran’s I values and share similar spatial information. 
The HL and LH patterns are considered to be ‘spatial outliers’, 
whose values are significantly different from their neighbours. 
 
In this study, the global and local spatial autocorrelation is 
measured at both national and eco-region scales. The Subarctic 
Cordilleran eco-region was excluded, since it contained a small 
sample of only 14 observations. According to ESRI (2013), the 
optimal number of samples used to calculate the Moran’s I 
should not be less than 30. 
 
This study adopted the Incremental Spatial Autocorrelation 
approach to automatically calculate the global Moran’s I at a 
series of incremental distances (ESRI, 2013). This entails 
calculating a Z-score associated with each global Moran’s I 
value at each distance increment to quantify the strength of 
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spatial dependency. Significant and positive peak Z-scores 
signify the spatial scales at which the ecological responses of 
targeted objects to cluster-patterns are most notable (ESRI, 
2013). In particular, the peak Z-scores associated with larger 
distances indicate general distribution trends (e.g., decreasing 
SOC stock from coasts to interior continental regions), while 
the peaks associated with smaller distances could preserve local 
variations. Thus, the distance where the first peak Z-score 
occurs was considered to be optimal for the spatial analysis. In 
this study, the Nearest Neighbour Distance (NND) of each soil 
sample was calculated. Any sample with a NND three times 
larger than its standard deviation (SD) was considered as spatial 
outliers and removed from the dataset (ESRI, 2013).  
 
In order to investigate whether the detected spatial patterns of 
targeted objects are generated by specific processes, the 
relationships between SOC and ecological variables at national 
and eco-region scales were tested based on spatial regression 
models. The Lagrange Multiplier (LM) test illustrated in Figure 
3 was applied to assist with model selection (Anselin, 1988). 
Given regression equation: 
 
 y = α + ρ Wy + β X + ɛ  ;  ɛ = λ Wɛ + u  (1) 
 
where y is the dependent variable, X is a set of independent 
variables, α is the intercept, β is the parameter, λ is the 
parameter for an autocorrelated spatial error term, ρ is the 
parameter for an autocorrelated spatially lagged term, W is the 
spatial weights, Wy is the spatially lagged component of y, Wɛ 
is the spatial autocorrelated error terms, and u is the 
independent and identically distributed (i.i.d.) errors. LM 
diagnostics are empirical tests with the null hypothesis of λ = 0 
or ρ = 0 (Anselin, 1988): 
- When the null hypothesis, λ = 0 and ρ = 0, is accepted, a 

traditional OLS model is the appropriate model specification.  
- If λ = 0 and ρ ≠ 0 is true, a spatial error model should be 

applied.  
- If λ ≠ 0 and ρ = 0 is true, a spatial lag model should be 

applied.  
 

 
 

Figure 3. (a) Sub-workflow of regression model selection 
process, and (b) illustration of spatial processes described by 

spatial error and lag models (Source: Anselin, 2005) 
 

The spatial lag model is considered to be more appropriate 
when: (1) the existence of interactions among dependent 
variable, y , is pronounced, (2) the impacts of nearby dependent 
variables on yi are greater than those of independent variables, 

xi at location i (Anselin, 2005). In contrast, the spatial error 
model takes unobservable factors into consideration, suggesting 
that omitted variables showing certain spatial patterns should 
account for most of the spatial dependence of estimation errors. 
 
The last part of this study employs a multi-criteria analysis to 
produce a predictive map of SOC in Canadian forest areas. At 
the national scale, statistically significant environment 
determinants (p < 0.1) were selected as predictive criteria, and 
were weighted by corresponding regression coefficients derived 
from the spatial error model. The Analytic Hierarchy Process 
(AHP) scheme was employed to calculate the weights for each 
environmental determinant. The final predictive SOC map was 
created from a three-step procedure: (1) multiplying each 
environmental determinant (the resampled raster data generated 
in the data preprocessing step) with its corresponding weight, 
(2) summing the weighted environmental determinants on a 
pixel by pixel basis, and (3) standardizing the pseudo SOC-
stock range to zero to one. The final predictive map is not used 
to rigorously represent the actual amounts of SOC stock across 
Canadian forest areas. Rather, the main intention is to map the 
spatial distribution of the forest SOC gradient under certain 
climatic conditions and terrain attributes on a national scale. By 
comparing the predictive SOC map with the interpolated 
version, differences in the spatial patterns of SOC distribution 
between the two maps could be visualized and assessed. 
 
 

3. RESULTS 

3.1 Forest SOC and Ecological Variables 

The statistical description of SOC and environmental 
determinants is summarized in Table 1. In Canadian forest 
areas, SOC stock ranges from 0.8 kg/m2 to 57.8 kg/m2.  
Compared to the maximum SOC stock (57.8 kg/m2), the mean 
(11.12 kg/m2) and median (9 kg/m2) values are relatively small. 
The standard deviation of SOC stock was 7.73 kg/m2, 
suggesting that only a small number of samples have very high 
SOC stock. Some soil samples were collected from the areas 
with very low vegetation biomass (NDVI = 0.15), such as 
mountainous areas and the forest-tundra zone. Moreover, all soil 
samples were collected from low-relief areas, with the maximum 
percent of slope of 5.64 % (equals to 3.23 degrees). 
 

Table 1. Descriptive statistics of SOC stock and ecological 
variables within the study area (n = 1,317) 

 
Parameter  Min Max Mean Median Standard 

deviation 
SOC (kg/m2) 0.80 57.80 11.12 9.00 7.73 
Max. Temp. (°C) 1.49 19.69 14.38 15.06 2.85 
Mean. Temp.  (°C) -2.12 14.54 8.75 9.33 2.53 
Min. Temp.  (°C) -5.73 9.55 3.20 3.26 2.41 
Precipitation (mm) 138.66 1,216.80 443.34 431.11 160.33 
Elevation (m) 6.00 2,690.00 627.53 439.00 507.10 
Slope (%) 0.01 5.64 0.68 0.33 0.83 
Aspect (⁰) 0 359.21 169.44 158.91 105.42 
NDVI 0.15 0.73 0.52 0.55 0.12 

 
Calculated from the historical soil profiles (Figure 4), B.C. 
coastal areas (Pacific Cordilleran eco-region) holds the 
maximum SOC stock of about 28 kg/m2. In the northern 
woodlands (Subarctic Cordilleran and Subarctic eco-regions), 
SOC stock is relatively high ranging from 12 kg/m2 to 17 kg/m2. 
The lowest mean SOC stock of about 9.7 kg/m2 was surprisingly 
observed in the largest Boreal eco-region. 
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Figure 4. Mean SOC stocks (1961-1991) of each Canadian 
forest eco-region 

 
3.2 Spatial Data Analysis of Canadian Forest SOC 

A fitted semi-variogram of SOC levels in the study area is 
shown in Figure 5 with a nugget effect of 0.211 and total sill of 
0.391. The high nugget-to-sill ratio of 54% indicates that strong 
local-scale variations exist. A spatially continuous SOC 
distribution map was estimated using Ordinary Kriging (Figure 
6). A west-to-central gradient of decreasing SOC stock and an 
increasing trend from central to eastern regions are observed. 
Forest SOC stock ranges from 3.66 kg/m2 to 35.89 kg/m2, 
which is a lower range than shown in Table 1. The leave-one-
out cross validation approach resulted in a Pearson correlation 
coefficient of 0.76, indicating that the interpolated SOC values 
are in relatively good agreement with the measured SOC stocks. 
 

 
 

Figure 5. Semi-variogram model of Canadian forest SOC 
distribution using Ordinary Kriging based on 1,317 samples 

collected from the Canada Forest Service 
 

 
 
Figure 6. 10 km gridded SOC data (before 1991) for Canadian 
forest areas based on Ordinary Kriging of 1,317 soil samples 

collected from the Canada Forest Service 
 

3.3 Spatial Soil-Environment Modelling 

3.3.1 Global Spatial Autocorrelation: The optimal 
neighbourhood-sizes at which ecological activities were 
believed to promote the most intensive cluster-pattern were 
measured based on Incremental Spatial Autocorrelation analysis 
(Table 2). At the national scale, the first peak Z-score occurred 
at a distance of about 313,805 m. 
 

Table 2. Optimal distance for spatial analysis 
 

Eco-region Samples Standard 
Deviation 

Outliers Average 
Nearest 

Neighbor (m) 

First Peak Z-
Score 

Distance (m) 
Entire study  
   area 

1,317 22,678.25 53 16,392.04 313,805.45 

Subarctic  129 38,757.55 5 33,741.42 148,467.05 
Boreal  649 22,504.70 21 18,371.85 260,811.32 
Cool  
   Temperate 

86 21,150.86 6 17,706.42 114,605.65 

Cordilleran 306 21,076.25 15 13,633.76 72,983.24 
Interior  
   Cordilleran 

71 14,473.06 4 10,810.77 57,580.51 

Pacific  
   Cordilleran 

62 23,451.71 1 11,746.60 94,840.38 

 
As shown in Table 3, the global Moran’s I of SOC at the 
national scale is about 0.289, which is relatively low yet 
statistically significant (p < 0.01). Positive global spatial 
autocorrelation indicates that spatial clusters of SOC may be 
found across the study area, with similar values clustering close 
together. To explore how SOC is distributed in different 
climatic zones, the global Moran’s I index of each eco-region 
were calculated with a maximum Moran’s I (0.391) observed in 
the Subarctic eco-region, while the minimum Moran’s I (0.069) 
was the Cordilleran eco-region. This suggests that although 
spatial dependence in SOC samples in the Cordilleran eco-
region is significant, it is still nevertheless very weak. 
 

Table 3. Global Moran’s I values for each eco-region 
 

Eco-region Moran’s I value 
All Eco-regions (entire study area) 0.289 
Subarctic  0.391 
Boreal  0.154 
Cool Temperate 0.267 
Cordilleran 0.069 
Interior Cordilleran 0.281 
Pacific Cordilleran 0.193 

 
3.3.2 Local Spatial Autocorrelation: A local spatial 
autocorrelation (LISA) map of SOC distribution at the national 
scale is shown in Figure 7. It was observed that the SOC 
outliers were distributed throughout HH and LL clusters across 
the entire study. This likely contributes to the strong nugget 
effect that was previously observed (Figure 5). Due to local 
variations, any sample of relatively higher SOC stock (e.g., 
perhaps due to poor drainage) is considered to be an outlier 
within a LL cluster. In addition, multiple HH clusters are 
identified, including along the southwest coast. This finding is 
consistent with descriptive statistics, confirming that the B.C. 
forest coastal areas are rich in terms of SOC stocks.  
 
A small HH cluster was also observed in the south-east of 
Québec forests, where the growing season is warmer and longer. 
Another significant HH cluster is on the border of Yukon and 
Northwest Territories, corresponding to the Peel Watershed. 
When comparing the location of HH clusters to a map of forest 
age distribution, it was found that all three HH clusters are 
located in old-growth forest areas (green-blue areas in Figure 8). 
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Figure 7. Local spatial autocorrelation (LISA) cluster map of 
SOC distribution at the national scale 

 
Most SOC LL clusters were located in central forest 
ecosystems, suggesting that soils in these regions have 
comparatively low carbon stock compared to the rest of the 
study area. The LL clusters encompass the Western Boreal eco-
region, which has a drier and warmer climate compared to other 
eco-region classifications and consists of forest groups of a 
majority within the range of 10 years to 30 years (Figure 8). All 
of these attributes potentially explain why lower SOC levels are 
observed in this region. 
 

 
 

Figure 8. Distribution map of forest age (1973 to 1998) 
 
The LISA map SOC distribution in the Subarctic eco-region is 
shown in Figure 9. Soil samples with higher organic carbon 
stock (highlighted by a red ellipse) are mainly clustered in Peel 
Plateau and Peel Plain region. Soils in this area are usually cold 
and wet (likely affected by snowmelt), and thus accumulate a 
considerable amount of organic matter, as highlighted by a HH 
cluster. Another small HH cluster occurs along the east coast, 
mainly located in Melville Lake estuary (Newfoundland and 
Labrador). This area is also considered to be an area of interest 
where ongoing soil organic matter research is being undertaken 
(e.g., the Earth Science Laboratory of Memorial University). A 
LL cluster was also observed in central Quebec, where there is 
little vegetation biomass.  This may also play a role in 
influencing SOC distribution. 

 
 
Figure 9. LISA cluster map of SOC distribution in the Subarctic 

eco-region with the Peel Watershed area labelled 
 
For the Boreal eco-region, as shown in Figure 10, LL patterns 
were mainly observed in western regions (e.g. Alberta, 
Saskatchewan, and Manitoba) and HH patterns in eastern 
regions. This spatial pattern is quite consistent with the 
precipitation regime and the forest age distribution characteristic 
of this region. Partly caused by the strong local variations in 
SOC stock, the distribution of LL clusters was not 
homogeneous with many HL outliers also prevalent. Western 
Boreal areas experience a mixed forest age distribution, thus 
different amounts of litterfall potentially result in variations in 
SOC stocks. Differences in other terrain attributes (e.g. drainage 
capacity) may also partly account for SOC variation. 
 

 
 
Figure 10. LISA cluster map of SOC levels in Boreal eco-region 
 
The SOC distribution pattern in the Cool Temperate eco-region 
is mainly characterized by a single HH cluster and LL cluster 
(Figure 11). Soil samples with high organic-carbon stock are 
clustered in the St. Lawrence watershed, which receives the 
highest level of precipitation. The LL cluster is observed around 
Prince Edward Island (PEI). 
 

 
 
Figure 11. LISA map of Cool Temperate eco-region SOC levels 
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Figure 12. LISA maps of SOC levels in Interior Cordilleran 
eco-region (left) and Pacific Cordilleran eco-region (right) 

 
The cluster patterns of the Interior Cordilleran and Pacific 
Cordilleran eco-regions are not apparent. A small LL cluster is 
observed in low-lying areas (about 850 m elevation) of the 
Interior Plateau (Figure 12), where the climate is dry and 
vegetation does not effectively contribute to SOC accumulation. 
Although the overall SOC stock is high in the Pacific 
Cordilleran eco-region, a LL cluster is observed in the northern 
region (Figure 12). This is likely caused by insufficient rainfall 
input and less vegetation biomass. Another LL cluster is 
identified in the Lower Fraser Basin in southern B.C. Province. 
 
3.3.3 Spatial Soil-Environment Modelling: From the 
spatial autocorrelation results presented in Section 3.3.2, 
significant spatial dependency in SOC distribution at the 
national scale was noted. Any statistically significant Moran’s I 
value suggests that it is necessary to take spatial effects into 
consideration. Before specifying a spatial regression model, a 
traditional OLS model is tested. The models are based on six 
independent variables: precipitation, temperature, NDVI, 
elevation, slope, and aspect. The selection of a spatial 
regression model specification is determined based on the 
Lagrange Multiplier diagnostic. A statistically significant LM-
lag test suggests the inclusion of a spatially lagged dependent 
variable, while a statistically significant LM-error test suggests 
adding an autocorrelated error term. When both tests are 
statistically significant, robust versions are tested for model 
specification. 
 
Table 4 shows the results of the initial estimation of three OLS 
models. Regression model (1), (2), and (3) differ in terms of the 
type of temperature readings included in the model 
specification, based on maximum, mean, and minimum 
temperature. For the three estimated OLS models, the R2 values 
were approximately 0.24, indicating that about 24% of variation 
in SOC distribution was explained by the initial OLS models. 
With the exception of NDVI and aspect, all other four 
independent variables were statistically significant at a 10% 
level. Compared to other independent variables, precipitation (p 
= 0.000) was shown to have the most significant influence on 
SOC distribution at the national scale. 
 
To evaluate the performance of three OLS models, the strength 
of residual spatial autocorrelation was measured based on the 
Moran’s I test statistic. As shown in Table 5, all three Moran’s I 
tests were positive and highly significant (p < 0.01), indicating 
that spatial dependency is present in the regression residuals. 
Thus, spatial regression models were tested to take spatial 
information into consideration. The results of Lagrange 

Multiplier tests are shown in Table 5. Since both standard LM-
lag and LM-error tests were highly significant (p = 0.001), 
robust versions were tested for model specification. The robust 
LM-error tests (p = 0.000) were slightly more significant than 
the robust LM-lag tests (p = 0.001). Therefore, a spatial error 
regression model specification was selected. 
 

Table 4. OLS and spatial error regression models of 
relationships between SOC (dependent variable) and 

environmental factors (independent variables) (n=1317).  
Models (1), (2), and (3) include maximum, mean, and minimum 
temperature as one of the independent variables, respectively. 

 
Independent 
Variables  

OLS 
Model 

(1) 

Spatial 
Error 

Model 
(1) 

OLS 
Model 

(2) 

Spatial 
Error 

Model 
(2) 

OLS 
Model 

(3) 

Spatial 
Error 

Model 
(3) 

Precipitation 
(mm) 
 

0.20*** 
0.00 

0.24*** 
0.00 

0.21*** 
0.00 

0.24*** 
0.00 

0.22*** 
0.00 

0.22*** 
0.00 

Max. Temp. 
(°C) 

-0.30*** 
0.01 

 

0.21 
0.19 

- - - - 

Mean. Temp.  
(°C) 

- 
 

- -0.23* 
0.10 

0.41** 
0.05 

- - 

 
Min. Temp.  
(°C) 

 
- 

 
- 

 
- 

 
- 

 
-0.30** 

0.02 

 
0.58** 

0.01 
 
Elevation (m) 

 
-0.85* 

0.07 

 
0.82 
0.32 

 
-0.99* 

0.05 

 
1.25 
0.15 

 
-1.09* 

0.04 

 
1.68* 
0.07 

 
Slope (%) 

 
1.97*** 

0.00 

 
0.57** 

0.06 

 
2.00*** 

0.00 

 
0.57* 
0.06 

 
2.03*** 

0.00 

 
0.57* 
0.07 

 
Aspect (⁰) 

 
-0.002 

0.00 

 
0.00 
0.97 

 
-0.001 

0.27 

 
0.00 
0.93 

 
-0.002 

0.25 

 
0.00 
0.89 

 
NDVI 

 
2.35 
0.40 

 
-2.62 
0.36 

 
1.11 
0.68 

 
-3.27 
0.24 

 
-0.91 
0.71 

 
-2.61 
0.30 

 
Spatial Error 
Term (λ) 

 
- 

 
0.79*** 

0.00 

 
- 

 
0.81*** 

0.00 

 
- 

 
0.81*** 

0.00 
 
Intercept 

 
4.80*** 

0.00 

 
-1.68 
0.56 

 
3.38*** 

0.01 

 
-1.95 
0.44 

 
2.31* 
0.09 

 
-0.001 

0.99 
 
R2 (Pseudo 
R2) 

 
0.24 

 
-0.34 

 
0.24 

 
-0.35 

 
0.24 

 
-0.35 

 
Log 
Likelihood 

 
-4883.5 

 
-4298.4 

 
-4384.5 

 
-4297.4 

 
-4385.9 

 
-4296.2 

 
AIC 

 
8780.9 

 
8610.7 

 
8782.9 

 
8608.7 

 
8785.8 

 
8606.5 

Sig:  p < 0.1 (*), p < 0.05 (**), and p < 0.01 (***) 
 

Table 5. Lagrange Multiplier diagnostic tests for SOC-
environment relationships. Model (1), (2), and (3) include 
maximum, mean, and minimum temperature, respectively. 

 
Dependence Test  

 
 Value 
Model (1) Model (2) Model (3) 

Moran’s I 
(Residual) 
Sig. 
 

0.129 
 
0.000 

0.133 
 
0.000 

0.134 
 
0.000 

LM-lag 
Sig. 

358.725  
0.000 

370.806  
0.000 

382.745 
0.000 

 
Robust LM-lag 
Sig. 

 
12.832  
0.000 

 
11.338  
0.001 

 
11.244 
0.001 

 
LM-error 
Sig. 

 
576.000  
0.000 

 
605.507  
0.000 

 
618.851 
0.000 

 
Robust LM-error 
Sig. 

 
230.107  
0.000 

 
246.038 
0.000 

 
247.350 
0.000 
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A spatial error model specification suggests that cluster patterns 
in Canadian forest SOC distribution are likely due to the 
omission of other spatially autocorrelated variables potentially 
influencing SOC distribution, such as soil pH and nitrogen 
content.  These factors were not included in this analysis due to 
data availability. Compared to initial OLS models (Table 4), 
general improvements in model fit (e.g., lower AIC values and 
higher log likelihood values) are observed. Precipitation (p = 
0.000) was the most significant environmental determinant 
influencing SOC. The spatial error term (λ) was also statistically 
significant (p = 0.000), further supporting the notion that 
important unobservable or unmeasurable variables are missing 
from the model specification. Initial estimation of spatial error 
models suggested that aspect of slope and NDVI had a weaker 
relationship with SOC distribution. Compared to maximum and 
mean temperature (p = 0.192, p = 0.046), the minimum 
temperature regime (p = 0.011) had a more significant 
relationship with SOC distribution in Canadian forest areas. 
 
In order to improve the performance of spatial error models, 
independent variables that were less significant (p > 0.1) were 
removed from the model specification. As shown in Table 6, 
the re-estimated spatial error model (a) includes two 
independent variables, namely precipitation and slope, while 
model (b) also includes elevation and minimum temperature. 
Comparing the two models, the AIC values remained almost the 
same, suggesting minimal improvement in the model goodness 
of fit. Compared to the initial spatial error model (3) (Table 5), 
an increase in the significance of independent variables resulted 
in the re-estimated model (b) (p < 0.05). This finding suggests 
that model (b) is the best model fit. All ecological variables and 
the error term were positively related to the SOC distribution, 
while precipitation proved to be the most important variable (p 
= 0.000). Therefore, we conclude that four dominant ecological 
variables influence SOC distribution at the national scale:  
precipitation, minimum temperature, elevation, and slope. 
 

Table 6. Re-estimated spatial error models of relationships 
between SOC (dependent variable) and environmental factors 

(independent variables) (n=1,317). Model (a) includes two 
independent variables of precipitation and slope. Model (b) also 

includes minimum temperature and elevation. 
 

Independent Variables Spatial Error Model (a) Spatial Error Model (b) 
Intercept  
Sig. 

0.942 
0.441 

-1.299 
0.425 

Precipitation (cm)  
Sig. 

0.229*** 
0.000 

0.221*** 
0.000 

Min. Temperature (˚C)  
Sig 

-- 0.500** 
0.021 

Elevation (km)  
Sig. 

-- 1.877** 
0.036 

Slope (%) 
Sig. 

0.626** 
0.032 

0.570* 
0.065 

Spatial Error Term (λ) 
Sig. 

0.779*** 
0.000 

0.810*** 
0.000 

Pseudo R2 0.342 0.347 
Log Likelihood -4299.498 -4296.780 
AIC 8605.000 8603.560 

 
3.4 Predictive SOC Distribution Map 

At the national scale, spatial regression results indicated four 
ecological variables that have dominant influence on Canadian 
forest SOC distribution, namely precipitation, elevation, 
minimum temperature, and slope. Accordingly, a predictive 
SOC distribution map in the period 1961-1991 was generated 
from the three-step procedure previously described in Section 
2.3.  

 
 

Figure 13. (a) Predictive SOC distribution (1961-1991) 
estimated from spatial error model parameters. (b) Interpolated 
SOC distribution (1961-1991) using Ordinary Kriging based on 

CFS SOC data. For each map, the SOC stock is standardized 
from zero to one by dividing the difference between raw SOC 
stock and the minimum value by the range of raw SOC stock. 

 
Since it is difficult to obtain absolute SOC stock from the 
modelled SOC distribution map based on four ecological 
variables, the modelled SOC stock was standardized to a range 
of zero to one for mapping or visualizing the forest SOC 
distribution gradient at a national scale. In order to make the 
modelled SOC distribution map comparable with the 
interpolated SOC map, the latter was also standardized to a 
range of zero to one. In this way, it was possible to examine the 
differences in spatial patterns between the modelled and 
interpolated SOC distribution maps. Figure 13 shows the final 
predictive SOC distribution map estimated by spatial error 
model parameters.  
 

 
 

Figure 14. Spatial distribution of differences between the 
predictive SOC stock estimated from spatial error model 

parameters and interpolated SOC stock using Ordinary Kriging. 
 

An image differencing method involved subtracting the 
interpolated SOC map from the previous predictive SOC map 
(Figure 14). It was found that general trends in SOC distribution 
were captured by the four dominant ecological variables. In 
general, SOC estimates in B.C. coastal areas were in high 
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agreement, since differences were close to zero. However, 
larger differences in SOC estimates were observed in the 
Subarctic Cordilleran eco-region (Yukon Territory), southern 
Ontario, and Prince Edward Island. It should be noted that the 
legend values shown do not have absolute meaning, since they 
are calculated from pseudo SOC levels. 
 
 

4. DISCUSSION & CONCLUSIONS 

According to spatial autocorrelation analysis results, the eco-
region framework proved to be a suitable classification scheme 
for SOC distribution patterns in Canada. Multiple HH SOC 
clusters were found in east and west coasts, which typically 
have a humid climate. LL clusters of low SOC levels were 
mainly concentrated in central continental regions, such as the 
Great Plains, which is characterized as arid or semi-arid. In 
B.C. mountainous areas, the global Moran’s I (0.069) suggests 
that local variations in SOC distribution exist, which could be 
attributed to complex geographic conditions and topography. 
Ehrlich et al. (1977) found that high soil clay content variability 
in B.C. mountainous areas were due to sediment movement and 
erosion processes, which may contribute to the weak spatial 
autocorrelation observed in this area. 
 
Observed SOC spatial patterns also closely correspond to forest 
age distribution. According to Chen et al. (2003), forests in the 
B.C. coast and east Quebec are generally more than 100-year 
old with few disturbances detected, whereas young forests 
(between 10- to 40-years old) are mainly in western Boreal 
areas. Such regrowth forests are largely from fire disturbance 
and human inference, providing less carbon inputs into soils, 
leading to poor regional SOC sequestration ability. 
Consequently, findings from this study support the importance 
of protecting old-growth forests for SOC management.  
 
Our assessment of relationships between SOC and 
environmental factors revealed a positive SOC-precipitation 
association. Sufficient rainfall supply maintains good water-
saturation in soils, which tends to limit SOC decomposition 
rates. In this study, minimum temperature proved to have a 
significant and positive effect on SOC distribution. Recalling 
that SOC stock is the difference between organic-carbon inputs 
and carbon decomposition, any changes in the two processes 
will alter SOC stock. In mid- and high-latitude forest 
ecosystems, increasing minimum temperatures tend to result in 
a longer growing season. Thus, we conclude that although SOC 
decomposition rates tend to accelerate with increasing 
temperatures in forest areas, the amount of carbon loss is offset 
by increasing vegetation biomass and litterfall accumulation.  
 
Moreover, the highly significant spatial error term in our 
estimated model, suggested that other important ecological 
factors may be excluded from this analysis.  These could be 
immeasurable and unobservable factors, which would likely 
partly account for the variation in SOC distribution. This 
affirms that regional-scale interactions between SOC and its 
surroundings are quite complex to model.  Many researchers 
have suggested that there is a lack of research into quantifying 
SOC distribution and modelling SOC-environment 
relationships (Galbraith et al., 2003). Thus, the effects of 
ecological factors on the Canadian forest SOC distribution are 
potentially underrepresented. Although using a spatial error 
model partly moderates the effects of omitted variables, the low 
pseudo R2 of 0.347 indicated that 65.3% of variation in SOC 
distribution pattern remains unexplained. 

Finally, potentially missing independent variables ultimately 
limit the performance of regression models. As previously 
discussed, topographic factors such as forest age, soil pH, 
nitrogen content, and other soil properties were not considered 
due to data availability. With increasing data availability and 
improved data quality, the relationships between SOC and 
ecological variables are becoming better described. This 
information will, in turn, provide valuable information to better 
inform SOC management and land use practices. 
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