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ABSTRACT: 

 

It is widely accepted that land degradation and desertification (LDD) are serious global threats to humans and the environment. 

Around a third of savannahs in Africa are affected by LDD processes that may lead to substantial declines in ecosystem functioning 

and services. Indirectly, LDD can be monitored using relevant indicators. The encroachment of woody plants into grasslands, and the 

subsequent conversion of savannahs and open woodlands into shrublands, has attracted a lot of attention over the last decades and 

has been identified as a potential indicator of LDD. Mapping bush encroachment over large areas can only effectively be done using 

Earth Observation (EO) data and techniques. However, the accurate assessment of large-scale savannah degradation through bush 

encroachment with satellite imagery remains a formidable task due to the fact that on the satellite data vegetation variability in 

response to highly variable rainfall patterns might obscure the underlying degradation processes. 

 

Here, we present a methodological framework for the monitoring of bush encroachment-related land degradation in a savannah 

environment in the Northwest Province of South Africa. We utilise multi-temporal Landsat TM and ETM+ (SLC-on) data from 1989 

until 2009, mostly from the dry-season, and ancillary data in a GIS environment. We then use the machine learning classification 

approach of random forests to identify the extent of encroachment over the 20-year period. The results show that in the area of study, 

bush encroachment is as alarming as permanent vegetation loss. The classification of the year 2009 is validated yielding low 

commission and omission errors and high k-statistic values for the grasses and woody vegetation classes. Our approach is a step 

towards a rigorous and effective savannah degradation assessment. 

                                                                 
*  Corresponding author 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-2, 2014
ISPRS Technical Commission II Symposium, 6 – 8 October 2014, Toronto, Canada

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-2-29-2014

 
29



1. INTRODUCTION 

Land degradation takes place in all agro-ecological zones 

threatening some 1.5 billion people (Nater, 2011). 

Desertification, a specific kind of land degradation, occurs 

mainly, but not exclusively, in dryland regions and is affecting 

some 1.9 billion hectares of land word-wide and 250 million 

people (Mishaud, 2004). The various definitions of, and 

perspectives on, desertification will not be repeated here but 

their sheer existence is indicative of the fact that it is still 

difficult to identify a unifying explanation of the causes of 

desertification (e.g. Schwilch, 2011; Sommer, 2011; Reynolds 

et al., 2011; Verstraete et al., 2011). 

 

One of the most seriously affected regions in the world is South 

Africa (SA) with ~440,000km2 vulnerable to some extent, 

according to the United Stated Department of Agriculture 

(Reich et al., 2001). A number of unsustainable land use 

practices, which result in habitat and land degradation in the dry 

land areas can be blamed, including expansion of rain fed 

cultivation onto unsuitable lands; soil mining and shortening of 

fallow periods; overgrazing, and uncontrolled harvesting of 

biomass. Through desertification, soil in SA has lost 25% or 

more of its fertility and the process is ongoing (De Beer et al., 

2005); moreover, large scale erosion and desertification have 

led to food insecurity in several areas. Other regional effects 

include: disruption of the surface water balance; reduced carbon 

sequestration and release of carbon through soil erosion; 

impacts on regional climate through changes in the evaporation 

ratio, roughness, albedo and increased atmospheric dust loads 

(Reynolds and Stafford Smith, 2002). Meadows and Hoffman 

(2003) identify six areas as the most severely degraded in the 

country, including large areas of the North West Province, and 

conclude that these are likely to become even more susceptible 

under predicted climate change scenarios. 

 

In view of the far-reaching consequences of land degradation 

and desertification (LDD) in SA and the large areas that are said 

to be affected there (Reich et al., 2003), there is a need for 

inventories and monitoring at the regional to country scales 

using consistent, objective, repeatable, and spatially explicit 

measures (Prince, 2004; Prince et al., 2009). Objective 

measurement of degradation for large areas has, however, 

proved extremely difficult, mainly due to multiple criteria and 

the lack of reliable methods (Prince, 2002; WMO, 2005). 

Existing maps such as the USDA NRCS 1:35,000,000 

Desertification Vulnerability map of Africa (Eswaran and 

Reich, 2003), or even the larger scale land degradation map of 

the 226 local municipalities of SA by Meadows and Hoffman 

(2003), all depend on coarse resolution soils maps and indicate 

vulnerability to degradation, rather than actual degradation. 

 

A particularly important issue in assessing and monitoring LDD 

is to gain an overview about affected areas, and to connect the 

large scale with regional and local processes. Earth observation 

(EO) data are of considerable value in the context of monitoring 

environmental processes. With the history of operational EO 

sensors reaching back over four decades, they allow 

retrospective analysis of the state and development of 

ecosystems at different scales and with different spatial 

coverage. Remote sensing data adhere to the principles of 

repetitiveness, objectivity and consistency, which are 

prerequisites in the frame of monitoring and surveillance (Hill 

et al., 2004). Consequently, observatories based on EO satellite 

data and additional information have repeatedly been suggested, 

with a view to serving requirements of policy-making, planning 

and land management (Group of Earth Observation, 2005). 

 

Remote sensing data, along with geocomputation techniques, 

have substantially contributed to correcting various ‘myths’ 

surrounding the desertification process and have provided 

tangible items, such as soil and vegetation properties (Hill et al., 

2008). Nevertheless, there is no indicator of degradation that is 

directly inferable from satellite-based data. Suitable indirect 

indicators need to be defined, which can be related to processes 

of erosion, salinisation, increase of flammable vegetation 

volume, etc. (Perez-Trejo, 1994 and Verstraete, 1994). 

Secondly, land degradation essentially operates in the time 

dimension and can be conceptualized as a pathological process 

of multi-annual land cover dynamics (Prince, 2002). 

Correspondingly, indicators need to be derived for a sequence 

of time steps and the time dimension needs to be incorporated 

into the analysis (Gutman, 1999  and  Lu et al., 2004 ). 

Moreover, the choice of LDD indicators should always be based 

on the fact that they are scale-specific (Geeson et al., 2002) as 

well as site-specific, if they are to best describe the dynamics of 

the region in question.   

 

Bush encroachment is identified by many researchers as an 

indicator of land degradation (Gibbens et al., 2005; Maestre et 

al., 2009; Van Auken, 2009). According to Eldridge et al. 

(2011), ‘encroachment’ bears the same meaning with other 

terms such as woody thickening (Van Auken, 2000), regrowth 

(Eldridge et al., 2003), thicketization (Kerley et al., 1995; 

Lechmere-Oertel et al., 2005), woody weed invasion (Booth et 

al., 1996), xerification (Archer et al., 2001) and shrub invasion 

(Noble, 1997). In South Africa, heavy livestock grazing and 

concomitant suppression have caused the replacement of 

palatable grass species by less palatable bushes and shrubs 

(Hudak, 1999). According to Grossman and Gander (1989), this 

has rendered 1.1 million ha of South African savannah 

unusable, threatening another 27 million ha, and has led to a 

reduction of the grazing capacity throughout the region by up to 

50% (Hudak, 1999). 

 

Over the last years, bush encroachment is increasingly being 

monitored using EO data. The vast majority of studies have 

employed Landsat data due to the archive reaching back to the 

beginning of the 1970s. Classification techniques have varied 

from pixel-based (e.g. ML) to object classification (Vogel and 

Strohbach, 2009). More recently, machine learning classifiers 

have evolved that can achieve high land cover classification 

accuracies, such as classification trees (CT), artificial neural 

networks (ANN), support vector machines (SVM) and random 

forest (RF). Random forest (RF) is a machine learning classifier 

that is not commonly used in land remote sensing and has not 

been evaluated thoroughly by the remote sensing community 

compared to more conventional pattern recognition techniques 

(Rodriguez-Galiano et al., 2012). The most important 

advantages of RF are their non-parametric nature, their high 

classification accuracy and their capability to determine variable 

importance (Rodriguez-Galiano et al., 2012). Rodriguez-

Galiano et al. (2012) applied RF to classify 14 different land 

categories in a Mediterranean environment (Spain) and 

concluded that RF is highly accurate and robust to training data 

reduction and noise. In a different study, Rodriguez-Galiano and 

Chica-Rivas (in press) evaluated the performance of four 

different machine learning classifiers, namely CT, ANN, SVM 

and RF, in south Spain and found that RF was the most accurate 

algorithm and second most robust to noise and data reduction 

after SVM. Moreover, Mellor et al. (2013) tested the 

performance of RFs in an operational setting for large area (7.2 

million hectares) sclerophyll forest classification in the state of 

Victoria, Australia and found very high overall accuracy (96%) 
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and kappa statistic (0.91) for a forest/non-forest classification. 

In African environments, RF classification and multitemporal 

Landsat imagery have been successfully employed to map land 

cover in Zanzibar (Knudby, et al., 2014), Madagascar (Grinand, 

et al., 2013), However, RF classification has not been employed 

so far to map southern African savannah land cover types. 

 

Within this context, the present study aims to monitor bush 

encroachment-related land degradation in a savannah 

environment in the Northwest Province of South Africa. For 

this purpose, we employ random forests and multi-temporal 

Landsat data spanning 20 years to investigate the performance 

of the methodological approach and identify the extent of 

encroachment over the 20-year period from 1989 to 2009.  

 

2. METHODOLOGY 

2.1 Study area 

The study area is the part of the Landsat scene with path = 173 

and row = 78 that falls within the Dr Ruth Segomotsi Mompati 

District Municipality (formerly known as Bophirima District 

Municipality), which is one of the four districts of the North 

West province of South Africa. Temperatures range from 17° to 

31 °C in the summer and from 3° to 21 °C in the winter. Annual 

rainfall totals about 360 mm, with almost all of it falling during 

the summer months, between October and April (Wikipedia, 

2014). The geology of the area consists mainly of sandy soils 

and the lithology consists of sedimentary rocks dating back to 

the Quaternary, sandstone, limestone, conglomerates and 

alluvium deposits (State of Environment Report, 2002).  

 

 

Figure 1. The study area, mainly within the Dr Ruth Segomotsi 

Mompati District Municipality of the Northwest Province 

 

2.2 Datasets 

The Landsat data used are shown in Table 1 below: 

 

Acquisition Date Sensor & Source 

28/8/1989 Landsat 5 TM, U.S. Geological 

Survey (USGS) 

18/8/1997  Landsat 5 TM, USGS 

5/8/2001 Landsat 7 ETM+, USGS 

31/5/2009 Landsat 5 TM, South African 

National Space Agency (SANSA) 

Table 1. Acquisition date, sensor and source of Landsat scenes 

(Path-Row: 173-78)  

Ancillary datasets used include a 20m-pixel Digital Elevation 

Model (DEM) from the South African National mapping 

organisation (National Geo-spatial Information, NGI). For 

training the classification and for validation purposes, 0.5m 

resolution colour digital aerial imagery of the NGI were 

employed. 

 

2.3 Methods 

 

2.3.1 Pre-processing: The pre-processing applied in this 

research was based on the joint Commonwealth Scientific and 

Industrial Research Organisation (CSIRO) and Australian 

Greenhouse Office (AGO) approach used for the National 

Carbon Accounting System (NCAS, Furby 2002). 

 

Orthorectification of the available images was first performed 

using a viewing-geometry approach. The viewing-geometry and 

block adjustment model implementing Toutin’s approach 

(Toutin, 1994) for ortho-rectifying images  was employed. 

 

In order to produce radiometrically consistent images that can 

be compared to each other, image calibration was then applied. 

The images were normalised to a reference image, as a reliable 

correction to absolute reflection units is not possible. The 

following three calibration steps were undertaken in the 

radiometric correction procedure: 1) Top-Of-Atmosphere 

(TOA) reflectance calibration (also called sun angle and 

distance correction); 2) Bi-directional Reflectance Distribution 

Function (BRDF) calibration, and 3) terrain illumination 

correction (Wu et al. 2004). 

 

2.3.2 Random forest classification: Ground-truth data 

showing the location and extent of representative bush and non-

bush land cover classes to train the land cover mapping process  

were derived from the colour aerial imagery (75% used for 

training and 25% for validation). We followed the NGI national 

land cover mapping nomenclature to map 6 classes: 

1. Shrubs and bushes 

2. Graminoids (herbaceous) 

3. Graminoids  

4. Standing artificial water bodies 

5. Non-perennial pans 

6. Urban 

 

The RF classification code used is in R and is freely available 

by the Center for Biodiversity & Conservation 

(http://biodiversityinformatics.amnh.org/index.php?section=R_

Scripts). The script reads an ESRI shapefile with training 

polygons and then randomly selects a user-determined number 

of samples from each land cover type. A multispectral image is 

also input. For each sample, the data values for that polygon are 

determined and these are then used to run the Random Forest 

model. After building the model the multilayer image is read 

and the land cover type is predicted for each pixel. The output 

classified image is in GeoTIFF format. 

 

The classification process was an iterative one: the RF output 

images were reviewed and the algorithm was re-run with a new 

set of training sites when that was deemed necessary. 
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Figure 2. Land cover classifications of the four Landsat scenes 

 

2.3.3 Validation. Validation was carried out for the 2009 

classification as this is the date that coincides with the aerial 

imagery. A total number of 350 random points was distributed 

across the scene with a minimum number of 50 points allocated 

to the smallest class (i.e. urban) to ensure that an adequate 

number of samples was used for the assessment of every class. 

Contingency matrices, omission and commission errors, overall 

classification accuracies and overall kappa indices (Cohen 

1960), were estimated. 

 

3. RESULTS 

The resulting RF land cover classifications for the four scenes 

are shown in Figure 2. There is a steady increase of the shrubs 

and bushes, especially in the western part of the study area. This 

increase is taking place as the graminoids are becoming less and 

less. This is also demonstrated in the graph of Figure 3, which 

shows that over the course of the 20 years of the study period: 

 there has been a steady and rapid increase in the area 

covered by shrubs and bushes from  ~58% in 1989 to 

~67% in 2009; and 

 there has also been a subsequent decrease in the area 

covered by graminoids from  ~41% to~ ~33%. 

 

 
 

Figure 3. Change in area covered by bushes and grasses 

 

The validation results in Table 2 show that the RF classifier 

yields high users and producers accuracies for all classes, 

overall accuracy (91%), as well as k-statistic figures (k=0.89).  

 
 S&B G(H) G W P U 

S&B 0.91 0.04 0.03 0.00 0.02 0.03 

G(H) 0.04 0.90 0.06 0.01 0.04 0.04 

G 0.01 0.06 0.91 0.01 0.03 0.03 

W 

 
0.00 0.00 0.00 0.97 0.02 0.00 

P 0.02 0.00 0.00 0.01 0.72 0.12 

U 0.02 0.00 0.00 0.00 0.17 0.88 

 

Correct (%) 94% 90% 92% 94% 86% 73% 

Errors of commission 

(%) 10% 11% 3% 3% 36% 10% 

Errors of omission 

(%) 6% 5% 5% 3% 4% 27% 

Table 2. Accuracy assessment for the RF classification of the 

2009 image. S&B: Shrubs and bushes; G(H): Graminoids 
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(Herbacious); G: Graminoids; W: standing artificial water 

bodies; P: Non-perennial pans; U: Urban 

The only classes that are difficult to map accurately due to their 

spectral similarities are the non-perennial pans and the urban 

areas. However, this doesn’t affect the findings of this study 

with regards to the encroachment of woody plants in areas 

covered with graminoids. 

 

4. DISCUSSION 

 

Our results corroborate the findings of previous field studies in 

the Northwest Province region (Mampholo, 2006), which show 

that bush encroachment is as alarming as permanent vegetation 

loss. The accuracy assessment performed on the 2009 results 

show high accuracy figures for all classes, with an overall 

accuracy of 89% and an overall kappa of 0.87. However, the 

accurate assessment of savannah degradation through bush 

encroachment using Earth Observation (EO) data and 

techniques remains a formidable task due to the fact that on the 

satellite data, vegetation variability in response to highly 

variable rainfall patterns might obscure the underlying 

degradation processes (Vogel and Strohbach, 2009). 

 

5. CONCLUSIONS 

Land degradation and desertification are affecting large areas of 

savannah in South Africa and bush encroachment has been 

identified as one of the causes. EO data and techniques can be 

used to monitor woody plant encroachment and here we 

suggested a methodological framework for doing so, using an 

area in the Dr Ruth Segomotsi Mompati District Municipality of 

the Northwest Province as a study case. Using multitemporal 

Landsat data and random forest classification, we found that, 

over the 20 years of the study period, woody plant 

encroachment was increasing steadily and rapidly in the 

expense of graminoids. 

 

Further work is currently underway in order to: 

 carry out extensive fieldwork to assist in the 

identification of specific types of encroaching bushes; 

 use a fuller set of Landsat data consisting of at least 

one scene per 2 years, and 

 extend the study area to cover the entire Northwest 

Province. 
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