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ABSTRACT: 
 

Geometric accuracy of the remote sensing rectified image is usually evaluated by the root-mean-square errors (RMSEs) of the 

ground control points (GCPs) and check points (CPs).  These discrete geometric accuracy index data represent only on a local 

quality of the image with statistical methods. In addition, the traditional methods only evaluate the difference between the rectified 

image and reference image, ignoring the degree of the original image distortion.  A new method of geometric quality evaluation of 

remote sensing image based on the information entropy is proposed in this paper. The information entropy, the amount of 

information and the uncertainty interval of the image before and after rectification are deduced according to the information theory.   

Four kind of rectification model and seven situations of GCP distribution are applied on the remotely sensed imagery in the 

experiments. The effective factors of the geometrical accuracy are analysed and the geometric qualities of the image are evaluated in 

various situations. Results show that the proposed method can be used to evaluate the rectification model, the distribution model of 

GCPs and the uncertainty of the remotely sensed imagery, and is an effective and objective assessment method. 

 

 

1. INTRODUCTION 

Geometric rectification is an important part of remote sensing 

information processing, directly related to the accuracy and 

usefulness of the information. It is the basis of remote sensing 

image processing and applications.  A variety of complex 

factors influence the geometric distortion during the imagery 

being captured and corrected. The external orientation errors 

that change for each sensor come from the available ephemeris 

(usually sensor position, velocity and attitude at fixed intervals) 

used to generate the approximate parameters of the rigorous 

sensor model (Okamoto, 1988, Glasbey, et al, 1998, Toutin, 

2003, Poli, 2004). The internal orientation errors are due to 

principal point displacement, focal length variation, radial 

symmetric and decentering lens distortion, scale variation in 

CCD line direction and the CCD line rotation in the focal plane 

(Poli, 2004，Li & Wu, 2013). The other factors could cause 

more or less effects, such as, the unevenness of atmospheric 

conditions, the movement of the Earth, the selection of the 

Earth model, the undulating surface, etc. Most of the capturing 

distortions are corrected during the system geometric 

rectification. In addition, the accuracies of the corrected images 

are different based on different georeferencing control data, 

specially related to the number, distribution and accuracy of 

ground control points (GCPs), and DEM in different scale 

(Cressie, 1991, Jiao et al, 2008, Wang&Ge, 2011). Furthermore, 

the geometric accuracy is also affected by the method of 

geometric model optimization and parameter solving (Long, et 

al, 2014a, Jiao, et al, 2013). Geometric rectification models of 

remote sensing images, such as the rigorous physical model, 

rational function model (RFM), polynomial model, etc., 

normally are very complicated. The factors that affect on the 

model’s accuracy are not only the selection of mathematical 

function, but also the optimization of the parameters, which is 

related to the accuracies of the observation data and solving 

method.  

Traditional position accuracy assessment is evaluated by the 

root-mean-square errors (RMSEs) of the ground control points 

(GCPs) and check points (CPs) (Paul, et al, 1997, Liu et al, 

2004). However, these discrete geometric accuracy index data 

represent only on a local quality of the image with statistical 

methods. Moreover, the error indicators of the traditional 

method are related to the confidence level which is selected 

subjectively, this may result to the different assessment standard.  

A new method of geometric quality evaluation of remote 

sensing image based on the information entropy is proposed in 

this paper. The information entropy, the amount of information 

and the uncertainty interval of the image before and after 

rectification are deduced according to the information theory.  

The method is used for assessment of the rectification model, 

the distribution model of GCPs, and the uncertainty of the 

remotely sensed imagery. 

 

 

2. QUALITY ASSESSMENT OF GEOMETRIC 
CORRECTION BASED ON INFORMATION ENTROPY 

2.1 Information Entropy and It’s Properties 

Thermodynamic entropy is a measure of disorderly, unbalanced, 

and other disordered state of uncertainty. In information theory, 

entropy is a measure of the uncertainty in a random variable 

(Ihara, 1993), and in this context, the term usually refers to the 

Shannon entropy. The concept of entropy is introduced to 

describe the spatial data uncertainty recently, particularly in GIS 

(Fan, et al, 2001, Li, et al, 2002a, Shi, et al, 2005). 
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According to the Shannon’s theory (Shannon, 1948) for a 

random variable xi the information entropy, a measure of 

uncertainty and denoted by H(X), is defined as 
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where p(xi) is the probability density function of outcome xi. 

The corresponding formula for a continuous random variable 

with probability density function p(x) is defined as 
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The following properties of entropy were given and proved by 

(Shannon, 1948). 

(1) If x is limited to a certain volume v in its space, then H(x) is 

maximum and equal to lnv when p(x) is constant 1/v in the 

volume. 

(2) With any two variables x, y we have 

 H(x, y) H(x)+H(y)   

with equality if (and only if) x and y are independent. 

(3) Let p(x) be a one-dimensional distribution whose standard 

deviation is  , the form of p(x) giving a maximum 

entropy subject to the condition that   is fixed at normal 

distribution. 
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The maximum entropy is given by 

 ( ) ln( 2 ) H X e   (4) 

Obviously, the entropy for normal distribution is 

independent of the mathematical expectation, and only 

related to the standard deviation  . 

 

2.2 Measuring Uncertainty with Entropy 

Measuring the amount of information 

Although there are many uncertainties in measuring the position 

of a point, one can determine x in a large interval [x1, x2] 

preliminary. If the observation data xn is affected by random 

errors, suppose the random error is  , then the true value x 

must be in the interval [ -D, +D] . From the information 

theory point of view, the significance of the measuring 

uncertainty is to reduce the uncertainty range from x2—x1 to 2  .   

Thereby measuring the amount of information is obtained 

 ( ) ( )  nI H x H x x   (5) 

where H(x) is the priori entropy of before observation, and 

H(x|xn) is the posteriori entropy of after observation. 

Before observation x is in the interval [A, B] (A £B), then the 

entropy is 
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 If the random error is normally distributed, then after the 

measurement of n times, the resulting entropy is as following 

2 2

2 2

( ) ( )

2 2

2 2

2

1 1
( ) ln

2 2

ln 2

 

 

 

 

 
 


 




x x

nH x x e e dx

e

  (7) 

The amount of information is 

 2( ) ( ) ln( ) ln 2     nI H x H x x B A e   (8) 

For the same event, the greater the amount of information 

obtained the smaller the uncertainty radius of the random vector 

x is after measurement. 

Uncertainty Interval 

The uncertainty interval can be described as (Sun, 1994) 

 
 |1

2

nH x x
e    (9) 

It can be seen from eq. (9) that  has the same dimension with 

the observation data xn. 

In order to establish the relations between the uncertainty 

interval and standard deviation, the entropy coefficient k is 

introduced. 

 /k   (10) 

For normal distribution k is calculated from eq. (7) and eq. (9) 

 1 2 2.066
2

 k e   (11) 

Then  

 =2.066   k   (12) 

 can be used as the indicator for accuracy assessment. The 

uncertainty interval for normal distribution is [-2.066  , 

2.066 ]. 

As described above, the uncertainty interval is the basic range 

of random variable appearing. It can be used to determine the 

error range. If the true value of the parameter lies outside the 

range, it can be account as the gross error. The uncertainty 

interval is more accurate and objective compared with the 

confidence interval as the measurement of accuracy assessment. 

 

2.3 Quality Assessment of Geometric Correction with 
Entropy 

Remote sensing geometric rectification is to establish the 

mathematic model between the ground surface and the image, in 

order to make each pixel in the image correspond to each object 

in the surface.  The rectification model is the most important 

determinant of the image positional accuracy.  It represents the 
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relationship between the three dimensional ground coordinates 

and the two dimensional image coordinates. Traditional 

position accuracy assessment is evaluated by the root-mean-

square errors (RMSEs) of the ground control points (GCPs) and 

check points (CPs), which only represents the errors between 

the rectified image and reference data ignoring the degree of the 

original image distortion. A method of quality assessment of 

geometric correction based on the information entropy is 

proposed in this paper. Figure 1 shows the basic meaning of the 

quality assessment 

Figure 1. Quality assessment of geometric correction 

The amount of information is described as eq. (13) 

 ( , ) ( , , )  n nI H X Y H X Y X Y   (13) 

where (X,Y) is the coordinate of the imagery in X and Y 

direction, H(X, Y) is the priori entropy of the original image, 

H(X,Y|Xn,Yn) is the posteriori entropy representing the errors 

between the rectified image and reference data. 

It can be proved that X and Y are independent variables. 

According to the additive characteristic of entropy, eq. (13) can 

be rewritten as 

  ( ) ( ) ( ) ( )     n nI H X H Y H X X H Y Y   (14) 

where H(X) and H(Y) are calculated by the difference of tie 

points between the original image and reference data in the 

same map coordinate system, H(X|Xn) and H(Y|Yn) are 

calculated by the difference of tie points between the rectified 

image and reference data in the same coordinate system.  

Suppose the difference intervals for x and y coordinates are (A, 

B) and (C, D) respectively, the priori entropy can be calculated 

by eq. (15).  The probability density of the random error usually 

are normally distributed, the posteriori entropy can be deduced 

as eq. (16) from eq. (7) and (8).  
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The uncertainty intervals are 

 =2.066 , =2.066      x x x y y yk k   (17) 

The posteriori entropies and uncertainty intervals (eq. (16) and 

(17)) also can be used in other distribution situations. Since the 

maximal entropy is obtained in the condition of normal 

distribution according to the entropy property, the indicators for 

measuring the uncertainties are conservative but reasonable one 

(Li, et al, 2002b).  Compared to traditional standard deviation 

and confidence the indicators based on entropy are objective 

and apply more broadly.  

 

 

3. EXPERIEMENTS 

A scene of Landat-5 TM L2 image (spatial resolution is 30 m) 

in Aksu district, Xinjiang province of China was used in the 

experiments. This image was acquired in July 2009 and the 

elevation range is from 600 m to 4000 m, including some high 

mountains. Another scene of Landsat-5 TM L4 image (ortho 

product) in the same place captured in August 2007 was used as 

the reference image. Total of 393 tie points from the two images 

were found by the automatic matching module of 

RSAutoCorrSys software, and 200 well-distributed tie points 

are selected from the automatically matched tie points. 

 

3.1 Spatial Distribution of GCPs 

In order to analyse the effect of spatial distribution of GCPs to 

the rectification accuracy, seven situations (a-g) of GCP and CP 

distribution were designed (as shown in Figure 2). For each 

situation, GCPs and CPs were selected from the 200 tie points 

according to the rules in Figure 2. Particularly, in situation g, 

100 GCPs were selected and the rest 100 tie points were used as 

CPs. The numbers of the GCP and CP in the seven situations 

are shown in Table 1. 

 
Figure 2. Seven situations of GCP and CP distribution. For 

situation a-f, GCPs are in the shadow regions while the CPs are 

in white regions. For situation g, both GCPs and CPs are in the 

shadow region. 

Table 1. Numbers of GCP and CP in seven situations 

Situations a b c d e f g 

GCP 104 96 51 149 69 131 100 

CP 96 104 149 51 131 69 100 

Three different imaging models, including rigorous physical 

model, polynomial model (degree 2), rational function model 

(degree 3), are applied to perform the geometric rectification. 

Additionally, for RFM, two different approaches (ridge 

estimation and LS1 (Long, et al., 2014b)) are applied to 

calculate the RPCs. Figure 3~Figure 6 show the residual vectors 

of GCPs and CPs by using the four approaches, respectively, 
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and for each approach, seven situations of GCP and CP distribution were tested. 

 

 

Figure 3. Residual vectors of rigorous physical model 

 

Figure 4. Residual vectors of polynomial model 

 

Figure 5. Residual vectors of rational function model (ridge estimation) 
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Figure 6. Residual vectors of rational function model (LS1) 

 

From Figure 3~6, one can intuitively see that the results are 

quite different for different approaches, and the quantitative 

assessment of the geometric correction will be shown in the 

next subsection. 

Concretely, the following points can be draw according to 

Figure 3~6: 

 For polynomial model (degree 2), it less fits the imaging 

model as the elevation fluctuates widely in the range of 

the image, thus the residuals of GCPs and CPs are both 

large. In contrast, the rational polynomial function model 

(degree 3) over fits the imaging model when ridge 

estimation is used to calculate the RPCs, and the residuals 

of CPs may be extremely great in the situations that GCPs 

are not well distributed. However, by applying l1-norm 

regularized least squares, sparse RPCs which are less 

likely correlated can be obtained, and the residuals of both 

GCPs and CPs are comparable to those of rigorous sensor 

model. 

 Generally, interpolation has better performance than 

extrapolation. For all of the four approaches, the results in 

situation f are comparable to those in situation g, thus 

both situation f and g can be considered as well 

distributed situations. 

 RFM (ridge estimation) has good performance when the 

GCPs are well distributed (situation f and g). RFM is a 

high-degree mathematical model that is lack of physical 

meanings, and its parameters completely depend on the 

observation data. When the GCPs are not well distributed, 

RFM can fit the GCPs quite well (actually over-fit), but 

can be oscillatory between exact-fit values (e.g. at CPs). 

Consequently, only when the GCPs are well distributed, 

the accuracy of CPs can be guaranteed. 

 

3.2 Quality Assessment of Geometric Correction 

Firstly, to evaluate the quality of geometric correction using 

different approaches in seven situations, the amount of 

information acquired during the process of geometric correction 

are calculated according to eq.(14), as shown in Table 2. H(X|Xn) 

and H(Y|Yn) denote the resulting entropy in X direction and Y 

direction after geometric correction, and I denotes the total 

amount of information acquired during the process of geometric 

correction. Note H(X) and H(Y), the entropies before geometric 

correction, are calculated by the difference of tie points between 

the original image and reference data in the same map 

coordinate system, they are constant for different approaches 

and situations, and H(X)= 6.62, H(Y)=4.59.  

Secondly, to assess the uncertainty of the corrected images 

using different approaches in different seven situations, the 

uncertainty intervals are calculated according to eq. (17), as 

shown in Table 3. 

Thirdly, root mean square errors (RMSEs) are also calculated 

for each case (as shown in Table 4.), and it is a conventional 

approach to assess the quality of geometric correction. 

 

 

Table 2. The entropy after geometric correction and the amount of information of four approaches in seven situations (Unit: Hart) 

  
a b c d e f g 

Rigorous 

Sensor 

model 

H(X|Xn) 4.48 5.43 5.35 4.41 4.63 4.41 4.41 

H(Y|Yn) 3.44 3.94 3.98 3.33 3.53 3.33 3.34 

I 3.28 1.83 1.88 3.48 3.05 3.47 3.46 

Polynomial 

H(X|Xn) 4.05 3.8 5.26 3.83 3.98 3.69 3.69 

H(Y|Yn) 5.47 5.53 6.46 5.42 5.55 5.32 5.33 

I 1.69 1.87 -0.51 1.96 1.69 2.2 2.19 

RFM (ridge 

estimation) 

H(X|Xn) 6.3 6.69 8.49 4.98 6.3 3.58 3.77 

H(Y|Yn) 5.41 4.93 8.89 3.04 5.94 2.74 2.93 

I -0.49 -0.41 -6.17 3.19 -1.03 4.89 4.51 

RFM  

(LS1) 

H(X|Xn) 4.09 3.91 4.84 4.36 3.78 3.64 3.69 

H(Y|Yn) 3.7 2.98 4.03 2.85 3 2.78 2.81 
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I 3.43 4.32 2.34 4 4.42 4.79 4.71 
 

Table 3. The uncertainty intervals before and after geometric correction using four approaches in seven situations (Unit: meter) 

  a b c d e f g 

Before rectification 
 x  375.42 375.42 375.42 375.42 375.42 375.42 375.42 

 y  49.18 49.18 49.18 49.18 49.18 49.18 49.18 

Rigorous 

sensor model 

 x  44.27 114.52 105.4 40.93 51.12 41.07 41.15 

 y  15.63 25.8 26.65 13.92 17.12 13.94 14.08 

Polynomial 
 x  28.65 22.39 96.67 23.02 26.71 19.98 20.06 

 y  119.22 126.65 318.92 112.72 127.99 101.92 103.34 

RFM 

(ridge estimation) 

 x  271.74 401.27 2437.24 72.66 272.5 17.98 21.58 

 y  111.32 69.08 3637.64 10.43 189.36 7.76 9.39 

RFM 

(LS1) 

 x  29.81 25.07 63.43 39.07 22.01 19.02 20.08 

 y  20.15 9.82 28 8.67 10.07 8.04 8.27 

 

Table 4. The root mean square errors (RMSE) before and after geometric correction using four approaches in seven situations (Unit: 

meter) 

  a b c d e f g 

Before rectification 
X RMSEs 1535.71 1535.71 1535.71 1535.71 1535.71 1535.71 1535.71 

Y RMSEs 249.68 249.68 249.68 249.68 249.68 249.68 249.68 

Rigorous 

sensor model 

X RMSEs 23.05 69.22 61.91 19.83 28.35 20.18 19.92 

Y RMSEs 7.68 15.04 13.81 6.74 8.75 6.77 6.82 

Polynomial 
X RMSEs 16.59 11.22 53.2 11.39 13.15 9.69 9.72 

Y RMSEs 57.76 65.82 170.33 55.62 62.56 49.37 50.09 

RFM 

(ridge estimation) 

X RMSEs 144.72 225.77 1232.56 36.7 132.44 8.71 10.45 

Y RMSEs 56.57 34.73 2006.22 5.19 92.34 3.8 4.56 

RFM 

(LS1) 

X RMSEs 15.98 12.84 36.42 19.87 10.71 9.22 9.72 

Y RMSEs 11.91 5.01 16.77 4.23 4.88 3.92 4.01 

 

Actually, the data in Table 2 and Table 3 are closely related, 

and the RMSEs in Table 4 are also consistent with the results in 

Table 2 and Table 3, but they assess the quality of geometric 

correction from different aspects: 

a) The amount of information shows that how much 

information is obtained by performing geometric correction, 

which makes the image less uncertain in geometry; 

b) The uncertainty intervals show the geometric uncertainty of 

the image before and after geometric correction; 

c) The RMSEs show the geometric bias of the image before 

and after geometric correction. 

 

By observing the data in Table 2~4, one can quantitatively 

assess the quality of geometric correction in seven different 

situations of GCP and CP distribution, and the results can be 

summarized as following: 

 From Table 2, it can be seen that geometric correction 

using RFM (LS1) obtained the greatest amount of 

information for all the seven situations, and Table 3 and 

Table 4 also show the coincident results. 

 For most situations, the acquired amount of information I 

should be greater than 0. However, for some situations in 

polynomial approach and RFM (ridge estimation) 

approach, the amount of information is negative. This is 

because the estimated models are instable at CPs when the 

GCPs are not well distributed, and the geometric 

information of the image becomes more disordered. 

 According to Table 3, we can see that the uncertainty 

intervals of the image in geometry are around 375.42 

meters at X and 49.18 meters at Y before geometric 

correction. Geometric correction generally shrinks the 

uncertainty intervals except for some situations in 

polynomial approach and RFM (ridge estimation) 

approach.  

 According to Table 4, the geometric bias of the image is 

around 1535.71 meters at X and 249.68 meters at Y before 

geometric correction, and the bias can be reduced to less 

than 10 meters if the geometric correction is well 

performed. 

 According to Table 2~4, it can be obviously seen that the 

geometric quality of the image is better in X direction than 

that in Y direction.  

 

3.3 Analysis 

With the help of the proposed assessment method based on 

information entropy, it is possible for us to quantitatively 

evaluate the quality of different approaches of geometric 

correction as well as different situations of GCP distribution. 

 

Quality of different geometric correction models: 
By observing the data in Table 2~4 comprehensively, it can be 

found that RFM (LS1) perform better than the others, following 

by rigorous sensor model. The polynomial model (degree 2) 

cannot exactly fit the imaging model but it outperforms RFM 

(ridge estimation) when the GCPs are poorly distributed. 
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However, when the GCPs are well distributed, the geometric 

quality of RFM (ridge estimation) is comparable to that of 

rigorous sensor model and RFM (LS1). It can be summarized as: 

RFM (LS1) > rigorous sensor model > polynomial (degree 2) & 

RFM (ridge estimation). 

 

Quality of different distribution of GCPs: 
According to the results of seven situations of GCP distribution 

in Table 2~4, both situation f and situation g can be considered 

as well distribution, and their results are comparable, which are 

better than those of the other situations. Following situation f 

and g, situation d and situation e yield good and similar results. 

In situation c, the geometric quality is the worst. It can be 

summarized as: f & g > d & e > a & b > c 

 

Assessment methods: 
Both of the methods with entropy and statistics can be used to 

assess the quality of geometric correction. They are from 

different aspects and can complement each other. The amount 

of information is used to evaluate the information obtained 

during the process of geometric correction, and the uncertainty 

interval is used to evaluate the geometric uncertainty of the 

image, and the root mean square error gives discrete and 

average geometric bias errors. From Table 3~4 we can see that 

all the methods provide coincident results. 

 

 

4. CONCLUTIONS 

In this paper, a new method for geometric quality evaluation of 

remote sensing image based on information entropy is proposed. 

The amount of information is used to evaluate the information 

obtained during the process of geometric correction, and the 

uncertainty interval is used to evaluate the geometric 

uncertainty of the image. Seven different situations of GCPs 

distribution are designed, and four different approaches of 

geometric correction, including rigorous sensor model, 

polynomial model (degree 2), RFM using ridge estimation and 

RFM using l1-norm regularized least squares, are applied to 

perform geometric correction. With the help of the proposed 

method for geometric quality evaluation, it can be seen that the 

approach of RFM using l1-norm regularized least squares 

outperforms other approaches, following by rigorous sensor 

model. The quality of different situations of GCP distribution 

can also be evaluated by the proposed approach. Moreover, the 

conventional approach (root mean square errors) also provides 

coincident results, which verifies the proposed method. 

However, the RMSEs only show the average geometric errors 

of the image while the new evaluation method shows the 

geometric uncertainty, a new aspect of geometric quality of the 

image. 

 

 

ACKNOWLEDGEMENTS 

The research has been supported by the grants from the 

National Natural Science Foundation of China (61271013) 

and 135 Strategy Planning of Institute of Remote Sensing 

and Digital Earth, Chinese Academy of Sciences. 
 

 

REFERENCES 

Cressie, N. , 1991. Statistics for Spatial Data. John Wiley, New 

York. 

Fan, A., Guo, D., 2001. The uncertainty band model of error 

entropy. Acta Geodaetica of Cartographica Sinica, 30(1), 

pp.48-53. 

Glasbey, C A, Mardia, K V, 1998.  A review of image- warping 

methods. Journal of Applied Statistics, 25(2), pp. 155-171. 

Ihara, S., 1993. Information theory for continuous systems. 

World Scientific. p. 2. ISBN 978-981-02-0985-8. 

Jiao, W., Cheng, B., Zhu, W., Liu, W., He, G., Wang, W., 

Zhang, X., 2008. Accuracy analysis of remote sensing image 

rectification, In Proceeding of SPIE - Remote  Sensing of the 

Environment: 16th National Symposium on Remote Sensing of 

China, edited by Qingxi Tong, Vol. 7123, 712308. 

Jiao, W., Long, T., Chen, L., 2013. Improving the geometric 

correction accuracy of HJ-1 satellite imagery based on the 

rational function model solved by ISVD approach. In 

Proceedings of the 34th ACRS 2013, SC02-879-885, 20-24 

October, Bali, Indonesia. 

Li, D., Gong J., Xie G., Du D., 2002a. Application of entropy 

theory in determining indexes of point’s positional uncertainty. 

Journal of Institute of Surveying and Mapping, 19(4), pp.243-

246. 

Li, D., Gong J., Zou, S., Du D., 2002b. Entropy uncertainty of 

unknown distribution error, Surveying and Mapping Bulletin, 

vol.12, pp.5-7.  

Li, X., Wu Z., 2013. Analysis of linear CCD sensor calibration 

parameter model. Electronic Design Engineering, 21(20), 

pp.70-72. 

Liu C., Shi W., Zhu S., 2004. Spatial visualization of image 

rectification accuracy based on spatial interpolation. Journal of 

Remote Sensing, 8(2), pp.143-149. 

Long, T., Jiao, W., He, G., 2014a. Nested regression based 

optimal selection (NRBOS) of rational polynomial coefficients. 

Photogrammetric Engineering & Remote Sensing, Vol. 80, No. 

3, March 2014 

Long, T., Jiao, W., He, G., 2014b. RPCs Estimation via l1-norm 

regularized Least Squares (LS1). Manuscript submitted for 

publication. 

Okamoto, A., 1988. Orientation theory of CCD line-scanner 

images, International Archives of Photogrammetry and Remote 

Sensing, 27(B3): 609-617. 

 

Paul, W., Ghilani, R., Charles, D., 1997. Adjustment 

Computations: Statistic and Least Squares in Surveying and 

GIS. John Wiley & Sons, New York. 

Poli, D., 2004. Orientation of satellite and airborne imagery 

from multi-line pushbroom sensor with a rigorous sensor model.  

In: International Archives of Photogrammetry and Remote 

Sensing, 35(B1), pp.130-135. 

Shannon, C., 1948.  A mathematical theory of communication, 

Bell System Technical Journal, Vol. 27, 623–656. 

Shi, Y., Shi, W., Jin, F., 2005. Entropy and its state of arts on 

research of spatial data uncertainty. Computer Engineering, 

31(24), pp.36-43. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-2, 2014
ISPRS Technical Commission II Symposium, 6 – 8 October 2014, Toronto, Canada

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-2-63-2014

 
69



 

Sun, H. (1994). Entropy and the uncertainty interval. Jounal of 

Wuhan Technical University of Surveying and Mapping, 19(1), 

pp.63-70. 

Toutin, T., 2003. Review paper: geometric processing of remote 

sensing images: models, algorithms and methods. International 

Journal of Remote Sensing, 25(10), pp.1-20. 

Wang, J., Ge, Y., 2011. Simulation analysis of GCP residuals in 

the remote sensing image registration. Remote Sensing 

Technology and Application, 26(2), pp.226-232. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-2, 2014
ISPRS Technical Commission II Symposium, 6 – 8 October 2014, Toronto, Canada

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-2-63-2014

 
70




