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ABSTRACT: 
 

Spatio-temporal neighbourhood (STN) selection is an important part of the model building procedure in spatio-temporal forecasting. 

The STN can be defined as the set of observations at neighbouring locations and times that are relevant for forecasting the future 

values of a series at a particular location at a particular time. Correct specification of the STN can enable forecasting models to 

capture spatio-temporal dependence, greatly improving predictive performance. In recent years, deficiencies have been revealed in 

models with globally fixed STN structures, which arise from the problems of heterogeneity, nonstationarity and nonlinearity in 

spatio-temporal processes. Using the example of a large dataset of travel times collected on London’s road network, this study 

examines the effect of various STN selection methods drawn from the variable selection literature, varying from simple 

forward/backward subset selection to simultaneous shrinkage and selection operators. The results indicate that STN selection 

methods based on  penalisation are effective. In particular, the maximum concave penalty (MCP) method selects parsimonious 

models that produce good forecasting performance. 

 

 

                                                                 
*  Corresponding author.  This is useful to know for communication  

with the appropriate person in cases with more than one author. 

1. INTRODUCTION 

1.1 Space-time forecasting 

Recent decades have seen an unprecedented rise in the 

collection, storage and analysis of data pertaining to a diverse 

range of processes, many of which are measured in geographic 

space at discrete time intervals, and can be referred to as space-

time series. Often, such series describe natural or human 

phenomena that we would like to be able to predict, in order to 

manage our response. Often, physical models of these processes 

can be constructed. For example, series of traffic flows are often 

modelled using theory from fluid or gas dynamics 

(Hoogendoorn and Bovy, 2001). However, sometimes 

insufficient data are available to calibrate such models and 

researchers must turn to data driven techniques as an 

alternative. In this context, the term data driven is taken to mean 

those approaches that do not make any assumptions about the 

physical process generating the data (although they may make 

distributional assumptions). They attempt to model how future 

values of the series evolve from its current values. 

 

Broadly, data driven approaches to space-time forecasting can 

be separated into two categories: 1) parametric, and 2) non-

parametric. Parametric models assume that the data follow a 

particular parametric distribution, and that the future values of 

the process can be modelled as a (usually linear) combination of 

its past values. Examples of parametric space-time forecasting 

models include the space-time autoregressive integrated moving 

average (STARIMA) modelling framework ((Pfeifer and 

Deutsch, 1980); (Kamarianakis and Prastacos, 2005), state-

space models ((Stathopoulos and Karlaftis, 2003), Bayesian 

networks (Sun et al., 2005) to name but a few.  

 

Nonparametric approaches typically don’t make explicit 

distributional assumptions and try to learn the relevant 

characteristics of the data directly through exposure to 

examples. The most commonly used nonparametric method is 

the artificial neural network (ANN), which has been used 

widely in traffic forecasting (Van Lint et al., 2005), 

(Vlahogianni et al., 2005). Other commonly used methods 

include various forms of nonparametric regression (Smith et al., 

2002); (Clark, 2003) and kernel methods (Chun-Hsin Wu et al., 

2004); (Castro-Neto et al., 2009)). Each approach has its 

strengths and weaknesses, and (Karlaftis and Vlahogianni, 

2011) provide a good overview, but the task is the same: to 

create a model that can effectively describe the spatio-temporal 

evolution of the process.  

 

Crucial to building an effective space-time forecasting model is 

determining the most relevant information to input to the model. 

This is a case of defining the spatio-temporal neighbourhood 

(STN), which is the neighbourhood of spatial and temporal 

information that is required to forecast some quantity at a given 

location and time. From the perspective of statistical modelling, 

this is a problem of variable selection. Variable selection is an 

active research area, particularly in the machine learning 

community. The method that has been traditionally applied to 

problems with few variables is subset selection (forward or 

backward). However, subset selection is computationally 

infeasible in high dimensional data (Fan and Lv, 2010).  

 

In spatio-temporal modelling, researchers use autocorrelation 

functions to quantify the relationship between measurement 

locations, and use the results to calibrate statistical models 

(Cheng et al., 2012); (Cheng et al., 2014). Typically it is 

assumed that spatio-temporal autocorrelation decays with 

distance in space and time, and becomes negligible at a certain 
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spatial and temporal separation. Most space-time models, such 

as space-time Kriging models, assume that this relationship is 

stationary and isotropic (Kyriakidis and Journel, 1999). 

 

Sometimes, however, the precise form of the spatio-temporal 

relationship between measurement locations is unclear, either 

due to the nonstationarity and heterogeneity of the space-time 

process or uncertainty in the data collection process. In this 

case, it is necessary to take a different approach. One approach 

is to use variable selection methods to select the independent 

variables based on the strength of statistical relationship with 

the dependent variable. This approach has been taken recently 

in the context of spatial modelling (Wheeler, 2009), and spatio-

temporal modelling.  

 

(Gao et al., 2011) used the graphical least absolute shrinkage 

and selection operator (GLASSO) to define the spatio-temporal 

neighbourhood in the context of traffic flow forecasting. The 

method estimates a sparse graph by shrinking the elements of 

the inverse covariance matrix towards zero. Nonzero elements 

can be viewed as conditionally independent and remain in the 

model. In a related approach, (Kamarianakis et al., 2012) used 

the least absolute shrinkage and selection operator (LASSO) to 

estimate a time varying threshold regression model, tailored to 

different traffic states. The aforementioned approaches do not 

make assumptions about the nature of the spatio-temporal 

relationship between locations, instead learning it from the data. 

 

In this paper, four methods of STN selection, drawn from the 

variable selection literature, are compared in the context of 

forecasting travel times on London’s roads. The structure of the 

paper is as follows. In section 2, the four STN selection 

methods are described, which are: 1) Forward backward 

selection; 2) LASSO; 3) smoothly clipped absolute deviation 

(SCAD); and 4) maximum concave penalty (MCP). Following 

this, in section 3, the case study data are introduced. In section 

4, an exploratory spatio-temporal data analysis is carried out to 

motivate the use of variable selection. In section 5, the details of 

the implementation are described. The results are presented in 

section 5, before some conclusions and directions for future 

research are offered in section 6.  

 

2. METHODOLOGY 

2.1 STN Selection algorithms 

In this section, the four variable selection methods used for 

STN selection are introduced. 

 

2.2 Forward/backward selection 

Forward and backward selection are traditional methods for 

variable selection in regression models. They involve adding or 

removing variables from a larger set one by one, testing the 

effect on some evaluation criterion, such as the adjusted R-

square, Akaike information criterion (AIC) or Bayesian 

information criterion (BIC). In this case, the AIC is used, and 

both forward and backward selection are tested. The AIC and 

BIC are described in, for example, (Fan and Lv, 2010). 

 

2.3 Lasso 

The least absolute shrinkage and selection operator (LASSO) is 

a simultaneous variable selection and regression technique that 

minimizes the sum of squared errors (SSE) subject to the sum of 

the absolute values of the regression coefficients being less than 

a constant (Tibshirani, 1996). This constraint causes some of 

the coefficients of the model to shrink to zero, thus eliminating 

them from the model. It is similar in motivation to the well-

known ridge regression, which places a constraint on the 

squared values of the coefficients, but doesn’t shrink any to 

zero. LASSO minimises the SSE: 

 

 

 (1) 

 

Where  is a penalty function and  is a tuning parameter, 

 and  are the  observation of the independent variable 

and the  independent variables, respectively, , 

,  is the number of observations,  is the number 

of variables,  is the  parameter and  is the absolute 

value of . Using the least angle regression (LAR) approach to 

fit the LASSO model enables the full set of solutions (the 

LASSO path) to be computed efficiently, making LASSO very 

fast computationally (Efron et al., 2004). By shrinking 

coefficients to zero, LASSO adds interpretability to the 

coefficients of the model, which is particularly important in 

high dimensional data. In the spatio-temporal setting, it can help 

to reveal spatio-temporal dependency relationships. 

 

2.4 SCAD 

Smoothly clipped absolute deviation (SCAD) is another 

approach to simultaneous variable selection and regression with 

the same motivation as LASSO (Fan and Li, 2001). Like 

LASSO, SCAD minimises the SSE subject to a constraint on 

the absolute values of the coefficients, minimizing Equation 2: 

 

  

 

 (2) 

 

 

Where: 

 

 

 (3) 

 

Differentiating with respect to : 

 

 

 (4) 

 

The notation is the same as Equation 1, where  is an additional 

parameter. The difference between LASSO and SCAD is that 

SCAD produces parameter estimates that are as efficient as if 

the true model were known, which is referred to as the oracle 

property (Wang et al., 2007). Unlike the LASSO, it is not 

possible to compute the full path of all possible values in the 

same time as the OLS estimate, so the parameters must be 

tuned. 
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2.5 MCP 

The third method is the maximum concave penalty (MCP), 

which is also a simultaneous model selection and regression 

technique (Zhang, 2010). MCP provides convexity of the 

penalised cost according to thresholds for variable selection and 

unbiasedness. It therefore avoids some of the bias associated 

with the LASSO technique. Like LASSO, the solutions for the 

MCP can be calculated efficiently for all possible values of the 

penalty, giving a path of solutions from the non-penalized least 

squares solution to infinite penalty. MCP again minimises 

Equation 2, where: 

 

 

 (5) 

 

Differentiating with respect to : 

 

 

 (6) 

 

 

Figure 1 shows the shape of the penalty functions of each of the 

three algorithms (reproduced from (Breheny and Huang, 2011). 

Both the SCAD and the MCP gradually decrease the penalty as 

the size of the coefficient increases towards , at which point 

no penalty is applied. The effect of this is that small coefficients 

are shrunk towards zero while large coefficients are not shrunk. 

 

 
Figure 1. Shape of first derivate of the penalty functions (  for 

the LASSO (horizontal line, top), SCAD (dashed line) and 

MCP. 

 

3. DATA DESCRIPTION 

The data are link based unit travel times (UTT, seconds/metre), 

collected using automatic number plate recognition (ANPR) 

technology, as part of Transport for London’s (TfL’s) London 

Congestion Analysis Project (LCAP). ANPR cameras are 

installed on the road network, usually at intersections, and read 

the number plates of vehicles as they pass. The cameras operate 

in pairs ; at time  a vehicle passes camera  and the 

time is recorded. It then traverses the link and passes camera  

at time , and the time is recorded again. The individual travel 

time (ITT) is calculated as . ITTs are aggregated at 5 

minute intervals to give the UTT observations presented here.  

 

This study focuses on those links located within London’s 

Congestion Charging Zone (CCZ), which is shown in Figure 2. 

In total, there are 80 links for which good quality data (deemed 

as a missing rate <75%) are available within the CCZ.   

 
Figure 2. The location of the test links within the CCZ 

 

Some characteristics of the study area should be noted that 

warrant the use of variable selection: 

 

1. The spatial coverage of the network is sparse, 

and not fully coincident with the physical road 

network. 

2. Links can overlap, meaning that some links 

carry the same vehicles at the same time along part of 

their length. 

3. The level of missing data is often high, meaning 

that spatial information is required in forecasts. 

 

4. EXPLORATORY SPATIO-TEMPORAL DATA 
ANALSYSIS 

In order to ascertain what type of STN is likely to be required in 

a space-time model, it is advisable to carry out exploratory 

spatio-temporal data analysis (ESTDA). ESTDA involves 

examining the spatio-temporal characteristics of the data 

through data analysis and visualisation techniques. In this case, 

we use the cross-correlation function (CCF) to examine the 

pair-wise cross correlations (CCs) between each of the links in 

the test network. The CCF is an extension of the Pearson 

coefficient to bivariate time series. Given two time series  and 

, the CCF  at lag  is given as: 

 

 

 (7) 

 

Where  and  are the standard deviations, 

, and  and  the means, of series  and 

 respectively. The CCF is a global measure of correlation that 

measures the average relationship between two variables and 

therefore cannot provide any information on the time varying 

relationship. The aim of the CCF analysis is twofold: 1) to 

determine whether significant CC exists between UTTs 

observed at different locations, and; 2) to determine whether the 

level of correlation decays smoothly with distance. The second 

point is important in determining which model to use. Prior to 

the analysis, a first order difference is applied to the data to 

ensure temporal stationarity. This avoids time of day effects 

causing spurious correlations to be observed. 
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Figure 3. Cross-correlations ranked by network distance from 

the midpoint of each link.  

 

Figure 3 shows the CCF between each link and its 100 nearest 

neighbours, ranked by network distance from midpoint to 

midpoint. A general distance decay relationship can be 

observed, although the decay is not linear. This is due to the 

sparse coverage of the sensor network and the difficulty in 

defining a proximity measure between sensor locations. 

Superficially, this result indicates heterogeneity in the spatial 

relationship between links and their neighbours, implying that a 

global model describing the relationship between locations will 

be insufficient (e.g. a STARIMA model) and a spatially local 

approach is required. Additionally, it can be assumed that the 

nearest neighbours in terms of network distance are not 

necessarily the best predictors. This motivates the use of the 

variable selection methods that are outlined here. 

 

5. IMPLEMENTATION 

5.1 STN Selection 

The neighbourhood selection techniques are tested under the 

assumption that data from the link to be forecast are missing. 

There are two reasons for this: 1) Due to the spatial sparsity of 

the network, the level of temporal autocorrelation present in the 

data is much higher than the level of spatial autocorrelation, 

meaning that univariate techniques tend to perform very well. It 

should be noted that this would not necessarily be the case in 

other applications; 2) Removing the effect of serially 

autocorrelated data from the forecasts enables the spatio-

temporal contribution of the model to be examined more 

clearly. For each method, a maximum spatial and temporal 

extent for the STN is defined, from which the optimal STN is 

selected. In this case, the maximum spatial order is set to 

, and the maximum temporal order is set to . This 

means that, for each link, the model will be comprised of a 

maximum of  variables. For the purposes of this 

study, the assumption is made that spatio-temporal 

autocorrelation will be negligible outside this range.  

 

5.2 Model Training 

To train the models, the data are divided into a training set and 

a testing set. The training set comprises the first 80 days (14400 

points) of the data, and the testing set comprises the next 37 

days (6660 points). As the LASSO, MCP and SCAD models 

require the training of hyperparameters,  fold cross-

validation is used within the training set.  -fold cross 

validation involves dividing the training data into  subsets, or 

folds. Each fold is left out of the model in turn and is forecast 

using the remaining  folds. The selected model is the one 

that minimises an error criterion across the folds. In this case 

the root mean squared error (RMSE) is used, which is defined 

as follows:  

 

 (8) 

 

Where  and  are the observed and forecast values, 

respectively. The selected model is the one that produces the 

lowest RMSE. 

 

6. RESULTS 

Table 1 shows the number and percentage of links for which 

each method performed best. It can be seen that the  

regularised models perform better in almost all cases. Of the 

LASSO, MCP and SCAD, the LASSO performs best, with the 

lowest RMSE in 45% of cases. However, the SCAD and MCP 

also perform well. It can be surmised from this result that the 

performance of the three  regularised methods is comparable, 

and the choice between the three can be taken qualitatively. 

 

Table 1. Count and percentage of best performing models 

 

Model LM F/B LASSO MCP SCAD 

Count 1 0 36 16 27 

% 1.25    0 45 20 33.75 

 

The LASSO, as well as exhibiting the best performance, has the 

clear advantage in terms of ease of implementation because 

LARS can be used. However, in space-time analysis, 

interpretability of the model parameters is also a concern. By 

examining the parameters of the model, one can begin to 

investigate the nature of the dependency relationships being 

modelled. In general, having fewer parameters makes the model 

more interpretable. Table 2 shows the average number of 

nonzero coefficients of each of the   regularised models.  

 

Table 2. Average number of nonzero coefficients of the  

regularized models 

 

Model LASSO MCP SCAD 

Avg. coefs. >0 27.9 15.4 19.6 

 

The MCP generally results in a more parsimonious model with 

fewer coefficients. The LASSO tends to leave significantly 

more nonzero coefficients, while SCAD is somewhere in 

between. SCAD and the MCP choose fewer nonzero 

coefficients because they place lower penalty on larger 

coefficients, which are shrunk at a lower rate than smaller 

coefficients. This means that the dominant variables retain more 

of their influence on the model. Aside from the principle of 

parsimony, the selection of fewer variables adds explanatory 

power to the models. 
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7. CONCLUSIONS 

In this study, a number of STN selection methods have been 

evaluated in the context of forecasting travel times under the 

assumption of missing data. In agreement with previous studies, 

it has been found that  regularised methods perform well, due 

to their ability to simultaneously shrink and select variables. Of 

the three methods tested here, the LASSO exhibits the best 

performance, supporting the findings of (Kamarianakis et al., 

2012), but is generally comparable with the MCP and SCAD. 

Due to the increased model parsimony offered by the MCP 

method, it is recommended that MCP is used where explanatory 

power is required in the model. The advantage of this would 

become more marked when dealing with data of much higher 

dimensionality, for example, if additional variables such as 

weather, traffic flows from loop detectors, and multimodal 

traffic information were incorporated. In future work, the MCP 

will be applied to time varying model structures. 

 

It should be noted that the models tested here do not explicitly 

account for spatio-temporal autocorrelation in the way that 

models such as STARIMA do. The heterogeneity of the data in 

question renders the global structure of the STARIMA model 

insufficient in this case, but there has been research recently 

into regularised models that can deal with spatial heterogeneity. 

For example, the geographically weighted lasso (GWL) model 

of (Wheeler, 2009) places an  penalty on the coefficients of a 

geographically weighted regression (GWR) model. GWR has 

recently been extended to the space-time domain (see, for 

example, (Huang et al., 2010)(Wu et al., 2014)), but the 

problem of variable selection has not yet been addressed in this 

context.  

 

Finally, the analysis presented here focusses on the class of 

linear regression models. However, variable selection is also of 

major concern in the class of nonlinear machine learning 

algorithms that have been frequently applied to traffic 

forecasting. In previous research, the authors investigated the 

use of the GLASSO for time varying STN selection (Haworth 

and Cheng, 2014), and (Gao et al., 2011) used the same 

approach to train a neural network model. More research is 

needed into how to carry out variable selection in high 

dimensional nonlinear space-time models. 

 

ACKNOWLEDGEMENTS 

This paper is part of the EPSRC funded STANDARD (Spatio-

Temporal Analysis of Network Data and Route Dynamics) 

project (EP/G023212/1). The author’s would like to 

acknowledge the support of the Road Network Perfomance & 

Research (RNPR) team. 

 

REFERENCES 

Breheny, P., Huang, J., 2011. Coordinate descent algorithms for 

nonconvex penalized regression, with applications to biological 

feature selection. Ann. Appl. Stat. 5, 232–253. doi:10.1214/10-

AOAS388 

Castro-Neto, M., Jeong, Y.S., Jeong, M.K., Han, L.D., 2009. 

Online-SVR for short-term traffic flow prediction under typical 

and atypical traffic conditions. Expert Syst. Appl. 36, 6164–

6173. 

Cheng, T., Haworth, J., Wang, J., 2012. Spatio-temporal 

autocorrelation of road network data. J. Geogr. Syst. 14, 389–

413. doi:10.1007/s10109-011-0149-5 

Cheng, T., Wang, J., Haworth, J., Heydecker, B., Chow, A., 

2014. A Dynamic Spatial Weight Matrix and Localized Space–

Time Autoregressive Integrated Moving Average for Network 

Modeling. Geogr. Anal. 46, 75–97. doi:10.1111/gean.12026 

Chun-Hsin Wu, Jan-Ming Ho, Lee, D.T., 2004. Travel-time 

prediction with support vector regression. Intell. Transp. Syst. 

IEEE Trans. On 5, 276–281. doi:10.1109/TITS.2004.837813 

Clark, S., 2003. Traffic Prediction Using Multivariate 

Nonparametric Regression. J. Transp. Eng. 129, 161–168. 

doi:10.1061/(ASCE)0733-947X(2003)129:2(161) 

Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., 2004. Least 

angle regression. Ann. Stat. 32, 407–499. 

Fan, J., Li, R., 2001. Variable selection via nonconcave 

penalized likelihood and its oracle properties. J. Am. Stat. 

Assoc. 96, 1348–1360. 

Fan, J., Lv, J., 2010. A Selective Overview of Variable 

Selection in High Dimensional Feature Space. Stat. Sin. 20, 

101–148. 

Gao, Y., Sun, S., Shi, D., 2011. Network-scale traffic modeling 

and forecasting with graphical lasso. Adv. Neural Networks–

ISNN 2011 151–158. 

Haworth, J., Cheng, T., 2014. Graphical LASSO for local 

spatio-temporal neighbourhood selection, in: Proceedings the 

GIS Research UK 22nd Annual Conference. Presented at the 

GISRUK 2014, University of Glasgow, Glasgow, Scotland, pp. 

425–433. 

Hoogendoorn, S.P., Bovy, P.H.L., 2001. State-of-the-art of 

vehicular traffic flow modelling. Proc. Inst. Mech. Eng. Part J. 

Syst. Control Eng. 215, 283–303. 

doi:10.1177/095965180121500402 

Huang, B., Wu, B., Barry, M., 2010. Geographically and 

temporally weighted regression for modeling spatio-temporal 

variation in house prices. Int. J. Geogr. Inf. Sci. 24, 383–401. 

doi:10.1080/13658810802672469 

Kamarianakis, Y., Prastacos, P., 2005. Space-time modeling of 

traffic flow. Comput. Geosci. 31, 119–133. 

Kamarianakis, Y., Shen, W., Wynter, L., 2012. Real-time road 

traffic forecasting using regime-switching space-time models 

and adaptive LASSO. Appl. Stoch. Models Bus. Ind. 28, 297–

315. doi:10.1002/asmb.1937 

Karlaftis, M.G., Vlahogianni, E.I., 2011. Statistical methods 

versus neural networks in transportation research: Differences, 

similarities and some insights. Transp. Res. Part C Emerg. 

Technol. 19, 387–399. doi:10.1016/j.trc.2010.10.004 

Kyriakidis, P.C., Journel, A.G., 1999. Geostatistical space–time 

models: a review. Math. Geol. 31, 651–684. 

Pfeifer, P.E., Deutsch, S.J., 1980. A Three-Stage Iterative 

Procedure for Space-Time Modelling. TECHNOMETRICS 22, 

35–47. 

Smith, B.L., Williams, B.M., Keith Oswald, R., 2002. 

Comparison of parametric and nonparametric models for traffic 

flow forecasting. Transp. Res. Part C Emerg. Technol. 10, 303–

321. doi:10.1016/S0968-090X(02)00009-8 

Stathopoulos, A., Karlaftis, M.G., 2003. A multivariate state 

space approach for urban traffic flow modeling and prediction. 

Transp. Res. Part C Emerg. Technol. 11, 121–135. 

doi:10.1016/S0968-090X(03)00004-4 

Sun, S., Zhang, C., Zhang, Y., 2005. Traffic flow forecasting 

using a spatio-temporal bayesian network predictor. Artif. 

Neural Netw. Form. Models Their Appl.-ICANN 2005 273–

278. 

Tibshirani, R., 1996. Regression Shrinkage and Selection via 

the Lasso. J. R. Stat. Soc. Ser. B Methodol. 58, 267–288. 

doi:10.2307/2346178 

Van Lint, J.W.C., Hoogendoorn, S.P., Van Zuylen, H.J., 2005. 

Accurate freeway travel time prediction with state-space neural 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-2, 2014
ISPRS Technical Commission II Symposium, 6 – 8 October 2014, Toronto, Canada

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-2-7-2014

 
11



 

networks under missing data. Transp. Res. Part C Emerg. 

Technol. 13, 347–369. 

Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C., 2005. 

Optimized and meta-optimized neural networks for short-term 

traffic flow prediction: A genetic approach. Transp. Res. Part C 

Emerg. Technol. 13, 211–234. doi:10.1016/j.trc.2005.04.007 

Wang, H., Li, R., Tsai, C.-L., 2007. Tuning parameter selectors 

for the smoothly clipped absolute deviation method. Biometrika 

94, 553–568. doi:10.1093/biomet/asm053 

Wheeler, D.C., 2009. Simultaneous coefficient penalization and 

model selection in geographically weighted regression: the 

geographically weighted lasso. Environ. Plan. A 41, 722 – 742. 

doi:10.1068/a40256 

Wu, B., Li, R., Huang, B., 2014. A geographically and 

temporally weighted autoregressive model with application to 

housing prices. Int. J. Geogr. Inf. Sci. 28, 1186–1204. 

doi:10.1080/13658816.2013.878463 

Zhang, C.-H., 2010. Nearly unbiased variable selection under 

minimax concave penalty. Ann. Stat. 38, 894–942. 

doi:10.1214/09-AOS729 

8.  

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-2, 2014
ISPRS Technical Commission II Symposium, 6 – 8 October 2014, Toronto, Canada

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-2-7-2014

 
12




