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ABSTRACT: 

 

This paper discusses the development of navigation algorithms to enable seamless operation of a small-size multi-copter in an 

indoor-outdoor environment. In urban and indoor environments a GPS position capability may be unavailable not only due to 

shadowing, significant signal attenuation or multipath, but also due to intentional denial or deception. The proposed navigation 

algorithm uses data from a GPS receiver, multiple 2D laser scanners, and an Inertial Measurement Unit (IMU). This paper addresses 

the proposed multi-mode fusion algorithm and provides initial result using flight test data. This paper furthermore describes the 3DR 

hexacopter platform that has been used to collect data in an operational environment, starting in an open environment, transitioning 

to an indoor environment, traversing a building, and, finally, transitioning back to the outdoor environment. Implementation issues 

will be discussed.  

 

1. INTRODUCTION 

This paper discusses the development of navigation algorithms 

to enable seamless operation of a small-size multi-copter in an 

indoor-outdoor environment. In urban and indoor environments 

a Global Positioning System (GPS) position capability may be 

unavailable not only due to shadowing, significant signal 

attenuation or multipath, but also due to intentional denial or 

deception. The proposed navigation algorithm uses data from a 

GPS/GLONASS receiver (pseudorange and carrier-phase 

measurements), multiple 2D laser scanners (point-cloud data), 

and an Inertial Measurement Unit (IMU) (delta-v’s and delta-

theta’s). Although 2D vision cameras were also available on the 

Unmanned Aerial Vehicle (UAV) platform, algorithms using 

this data are not discussed in this paper.  

 

To enable operation of UAVs at any time in any environment, a 

precision navigation, attitude, and time capability is required 

that is robust and not solely dependent on GPS. To improve 

availability and guarantee continuity of service in GPS-

challenged environments, GPS can be integrated with an IMU 

[1] or improved by increasing its sensitivity by using external 

data sources (i.e. assisted GPS). This integration strategy is 

successful in many cases, but does not cover all possible 

scenarios. An alternative method is the topic of this paper. 

Integration or fusion of multiple sources of data may not only 

improve the accuracy of the position and attitude estimate, but 

also add integrity, continuity and availability to the solution. 

 

Alternative navigation technologies may include (a) the 

integration of inertial sensors with imagery and laser scanners 

[1], (b) beacon-based navigation (i.e. pseudolites, UWB) [3], (c) 

or navigation using signals of opportunity [3]. The integration 

strategy addressed in this paper is an example of category (a) 

and uses a combination of GPS, IMU and multiple laser 

scanners. In aerial robotics, it is required to estimate the 

platform’s pose (position and attitude) in three dimensions (3D) 

and therefore solve for 6 degrees-of-freedom (6DOF): 

             .  GPS provides measurements suited for 

estimation of the position and the IMU provide measurements 

that can be used to estimate all 6 unknowns. Two-dimensional 

(2D) laser scanners have been used extensively in robotics to 

estimate the 3 degrees-of-freedom (3DOF),        , in 2D 

navigation; for example, [5] and [6] describe methods that 

extract features such as line segments and points from the laser 

scans and use these features to estimate the position and heading 

of the robot or aid an inertial navigator. Alternatively, a large 

amount research papers have addressed laser scanner-based 

3DOF Simultaneous Localisation And Mapping (SLAM) 

methods such as the grid-based SLAM method described in [7] 

or methods that use some form of scan-matching such as the 

Iterative Closest Point (ICP) approach [8]. Rather than using a 

2D laser scanner, one could choose to use sensor that produces a 

3D point cloud such as a 3D laser scanner or even a 3D imaging 

sensors. Examples of the latter are the Swissranger, PMD or the 

Kinect. In that case, features could be extracted from the 

resulting 3D point cloud and used for 3D pose estimation. For 

example, in [9] and [10] planar features are extracted from the 

point cloud and used to obtain 6DOF estimates either with or 

without IMU. Alternatively, the translational and rotational 

motion (6DOF) of the platform can be estimated by performing 

ICP on consecutive point clouds [4].   

 

 
 

Figure 1. Observation of planar surfaces using multiple laser 

scans taken at consecutive platform positions. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W1, 2014
EuroCOW 2014, the European Calibration and Orientation Workshop, 12-14 February 2014, Castelldefels, Spain

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-W1-115-2014

115



2D laser scanners can be used for 3D pose estimation, as is done 

in the algorithm presented in this paper. The 2D sensor could be 

turned into a 3D sensor by using an additional motor to rotate 

the laser scanner or an additional rotating mirror [4]. The 

method described in [11] uses the aerial platform itself to rotate 

the 2D laser scanner (see Figure 1). The method furthermore 

assumes a structured environment and uses planar feature to 

estimate the 3D pose of the platform. Recently, SLAM methods 

have been develop that use a 2D laser scanner on a small-size 

indoor aerial platform. In [12] the authors present an approach 

that combines a 2D SLAM method with a 3D navigator based 

on an IMU. They use a 2D occupancy grid map and use a 

bilinear interpolator to achieve better scan matching 

performance. This method has been implemented in ROS as 

part of the Hector SLAM package. [13] describes another 

implementation using a modified 2D laser scanner. Like the 

previous paper, a 2D map is being generated, however, this time 

support is included for multiple floors and loop closure. ICP is 

used to perform scan matching with a grid-based map. A mirror 

is added to deflect a section of the 2D laser field-of-view (FoV) 

to obtain an altitude measurement   . The remaining 2 degrees 

of freedom       are obtained from the IMU. The authors in 

[14] utilize the same modified 2D laser scanner as used in [13] 

and similarly, compute the pitch and roll       directly from 

the IMU, reducing the problem to a 4DOF incremental motion 

estimation problem. In contrast to [12] and [13], the authors 

introduce the concept of multilevel-SLAM which uses multiple 

2D maps associated with potential level changes (i.e. tables) 

defined at discrete altitudes. The deflected laser altitude 

measurement is used in combination with the vertical velocity 

estimate are used to identify the level of each point of the point 

cloud.    

 

The method proposed in this paper builds on concepts discussed 

in [11][12][13] and [14], but extend the operational scenario to 

include the outside environment where GPS is available 

allowing the inclusion of GPS measurements [16]. Furthermore, 

the 2D laser scanner has not been modified by adding a 

deflection mirror for altitude measurements. Instead a second 

low-range 2D laser scanner has been included pointing 

downward and scanning in the platforms cross-track direction 

(yz-plane).  This installation orientation is illustrated in Figure 2 

and aims to increase the instantaneous field of view. The 

addition of a third laser scanner has also been investigated, but 

that configuration is not the focus of this paper. 

 

 
Figure 2. Installation orientations of the two 2D laser scanners. 

 

2. IMPLEMENTATION DETAILS 

To evaluate the algorithms proposed in this study, data was 

collected using a commercially available hexacopter shown 

flying through a hallway of the Stocker Center (the Ohio 

University engineering building) basement in Figure 3. The 

basic frame of this platform was purchased as a kit and then 

modified to accommodate the payload required for this 

research. The designed hexacopter has demonstrated the 

capability of flying both indoors and outdoors while collecting 

laser, GPS, inertial, barometric, and digital imagery data.    

  

 
 

Figure 3. 3DR hexacopter with sensor payload while flying in the Stocker center basement. 

 

The most crucial modifications made to the base hexacopter 

platform are the mounts of each sensor. The location of these 

sensors with respect to the platform can be seen in Figure 4. The 

GPS receiver is a NovAtel OEMSTAR 12-channel L1 receiver 

capable of making both code-phase and carrier-phase 

measurements. The IMU is an Xsens MTI sensor which makes 

3D acceleration, angular rate and magnetic heading 

measurements at an update rate of 100Hz. The camera consists 

of a PointGrey FireFly MV color camera running at 30 frames-

per-second (fps). Finally, two laser scanners are mounted on the 

platform in the configuration shown in Figure 2. The forward-

pointing laser scanner is a long-range (30m) Hokuyo UTM-

30LX and the downward pointing laser scanner is a short-range 

(4m) Hokuyo URG-04LX. The base edition of the hexacopter is 

already equipped with a basic autopilot, the APM 2.5, which 

includes a baro-altimeter. Figure 5 depicts the interconnections 

of the entire data collection system.  Using either a RS232 or a 

USB for communication, each of the sensors is connected to a 
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FitPC embedded processor, which is mounted just under the 

main sensor stack on the hexacopter. This FitPC contains an 

Intel Atom Z530 and runs the Robotic Operating System (ROS) 

on an Ubuntu operating system. For diagnostic purposes and 

communication with each of the sensors during flight, an 

802.11b wireless connection is established between the FitPC 

and a ground station. During data collections, all of the desired 

sensor data is recorded on the FitPC, stored in "rosbags", and 

then offloaded to the ground station where ROS and Matlab are 

used to analyze the data. 

  

 
Figure 4. Sensor locations on board the 3DR hexacopter. 

 

To allow for operation of this platform with the selected array 

of sensors, a weight and power consumption analysis was 

performed. The weight results are shown in Table 1. Given a 

weight of over 4kg for the combined platform and payload, the 

motors were upgraded to produce a maximum of 1.38kg of 

thrust per motor. These motors yield a possible 7.38kg of thrust 

if all 6 motors are operating at their upper limit. This excess 

amount of thrust allows the pilot to have reserved power for the 

purpose of correcting for external sources of environmental 

interference such as wind gusts during flight. For normal flight 

operations, the motors draw a combined current between 50 and 

60 amps. Separate batteries for the motors and sensor payload 

were selected; the battery connected to the motors was chosen 

to be a 4 cell, 5300mah Lithium Polymer unit allowing for at 

least 5 minutes of flight time without worrying about 

discharging it below safe levels. To power all the electronics, a 

much smaller Lithium Polymer battery was chosen which 

contained 3 cells and 2200mah. This battery can run all the 

electronics for over an hour and is directly connected to a power 

converter to output the 5 and 12 volt sources necessary to power 

the varying electronics. 

 
Figure 5. Hardware interface block diagram. 

 

To accurately fuse the sensor information gathered on this 

platform, relative lever arms have been measured. All lever 

arms were measured relative to the center of the IMU. Using the 

specified origin, a coordinate frame was designated by the x-

axis out of the nose of the platform, the y-axis out of the left 

side, and the z axis pointing upward as illustrated in Figure 2. 
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3. METHODOLOGY  

The operational scenario that is being considered is summarized 

in Figure 6. While operating in the outdoor environment with 

enough GPS availability the algorithm relies mainly on the tight 

integration of GPS and IMU with the aid of an altimeter 

(barometric and/or laser); this operational phase is referred to as 

Mode 1. Next, the UAV acquires the building it is going to 

enter and prepares for the transition to the indoor environment 

(Mode 2).  

During this transition the number of available satellite 

significantly reduces, requiring augmentation of the filter with 

additional information from the laser scanners. Finally, when 

inside the building GPS measurements are completely omitted 

from the solution, and the filters only rely on the laser-scanner, 

altimeter and IMU data (Mode 3). In addition to the 

complementary 3D pose estimator, a SLAM algorithm will be 

included specifically for the map and error estimation.

 

 
Figure 6. Operational scenario modes of the aerial platform. 

 

While operating in the outdoor environment, a tightly coupled 

GPS/INS algorithm will be used based on the algorithm 

proposed in [1]. In addition, this integration structure will 

include a baro-altimeter input. This addition will allow for 

calibration of the altimeter in the presence of GPS. The 

GPS/INS estimator uses a separate estimator for 3D position 

and dynamics, the latter solely driven by carrier-phase 

measurements. The basic architecture of the algorithm is shown 

in Figure 7. The dynamics estimator is a complementary 

Kalman filter (CKF) with error state vector:  

  

    [           
    ] (1) 

 

where     is the velocity error in the NED frame, 

      is the miss-orientation vector,  

     
  is the gyro bias vector, 

      is the specific force bias error.  

 

with corresponding continuous-time state transition matrix: 
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 (2) 

 

A clock drift term could also be added to the error state vector. 

After the CKF update step, the dynamic filter error states are fed 

back to the attitude and navigation computation blocks. The 

measurement vector is given by: 

 

           
                   (3) 

 

where     is the sequential carrier-phase difference for satellite 

‘j’ (equal to         
                  ),      

  is 

the change in user position as computed by the inertial, consists 

of the transpose of the line-of-sight vector to satellite ‘j’,   , 

   and    are two compensation terms for geometry and Doppler 

change correspondingly [17], and        is the sequential clock 

drift error. GPS sequential difference geometry including 

change in position,      is shown in Figure 8. Note that 

equation (3) can be extended to a “difference-of-difference” 

measurement by taking the difference of the sequential 

difference of satellite ‘j’ and the sequential difference of a key 

satellite ‘k’. This new difference term will remove the receiver 

clock drift error from the state vector.   

 

The measurement matrix, H, which relates the dynamics filter 

error state in (1) to equation (3) can be derived by expanding 

and evaluating the sensitivity of the inertial term in (3): 

 

   ̃   
  ∫  ̃ 

   
  

    

 [ ̃ 
       ̃ 

       ]  (4) 

 

where d is the lever arm between the IMU and the GNSS 

receiver. 
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Figure 7. Integration strategy when GPS is available. 

 

 

 
Figure 8. GPS Sequential difference geometry. 

 

 

In equation (4) the tilde ‘~’ indicates parameters affected by the 

inertial errors. Evaluation of (4) results in the following 

measurement matrix: 
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(5) 

 

where         
      ,                     ,     

       , and             is the discrete-time state 

transition matrix from time epoch      to time epoch    

derived from F. 

 

The position estimator is a KF whose state vector is given by 

       
  [   ]  and has an extremely simple form that 

includes a forcing function from the dynamics estimator.  

 

 
    
     

     
                                   

(6) 

 

The left image in Figure 9 shows the filtered GPS/INS 

trajectory superimposed on a photo of Stocker Center and 

surroundings generated using Google EarthTM. The trajectory 

starts outside next to Stocker Center (as visualized in Figure 6 

top-left) under light foliage.  

 

 
Figure 9. Filtered GPS solution. 
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The plot on the right side of Figure 9 shows the visible satellites 

during the 882 seconds of this UAV flight trajectory. The 

transitions from the outside to/from the indoor environment can 

be easily observed. During these transitions the number of 

satellites rapidly drops when approaching the building (Figure 6 

top-right), requiring integration with the INS to maintain a valid 

position as long as possible.  

During the indoor operation of the UAV, no GPS satellites are 

available and the architecture is solely based on the integration 

of the IMU with both 2D laser scanners and the baro-altimeter. 

The functional block diagram of this integration structure is 

shown in Figure 10. Basically, the method consists of three 

main estimators:  3DOF SLAM, the altitude estimator and the 

6DOF fusion algorithm. 

 

 

 
Figure 10. Integration strategy during indoor (mode 3) and transition (mode 2). 

    

In the method shown in Figure 10, the complete 6DOF state 

vector                is separated. The attitude       and 

inertial heading     of the platform are computed in the attitude 

computer and used to compute the body-to-navigation 

transformation matrix,  ̃ 
 . The tilde in  ̃ 

   indicates that this 

matrix is effected by errors in the attitude and heading values, or 

 ̃ 
         

 .  The 3DOF pose estimate   ̂  
          

and the 2D map,     (defined in only   and   directions) are 

estimated simultaneously as follows; transformation matrix  ̃ 
  

is used to convert the point cloud from the forward-pointing 

laser scanners to a frame that is aligned with the navigation 

frame but offset by the platforms translational motion. This 

point cloud (laser scan) is then matched with an occupancy grid 

resulting in a 2D pose estimate   ̂  
  and updated 2D map    . 

The method used here is similar to the one described in [7] and 

[12]. Figure 11 shows the 2D occupancy grid after the UAV has 

traversed the Stocker basement next to an official map of the 

Stocker basement.  

 

 
Figure 11. 2D indoor mapping results. 
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Figure 12 shows the trajectory consisting of all 2D pose 

estimates within this established 2D map. Note that the 3DOF 

SLAM was already activated outside since sparse features were 

available.  

 
Figure 12. UAV indoor trajectory. 

 

To obtain an estimate of the height, the downward-pointing 

laser scanner is utilized. Having a downward-pointing laser 

scanner rather than a mirror that deflects part of the forward-

looking laser scanner, not only allows for a better estimate of 

the relative altitude, but also provides a cross-track vertical scan 

of the environment resulting in additional information for a 3D 

map. Furthermore, when assuming a structured environment 

with flat surfaces, the “slices” of the structured environment can 

be used to estimate the misorientation,  , present in the 

attitude. The misorientation estimator is outside the scope of 

this paper.  

 

The three images in Figure 13, show the y- and z-coordinates of 

three consecutive scans of the downward-pointing laser scanner 

after conversion to a locally-level frame using attitude      . 
Clearly visible in Figure 13 are the basement floor and the walls 

of the hallway through which the UAV is flying. 

 
Figure 13. Altitude estimation using vertical scans. 

 

The altitude estimator takes a small subset of points around 

nadir and computes the mean of the z-component to estimate the 

altitude. Possible outliers could be detected by applying more 

advanced detection schemes that make sure that the surface that 

it is looking at is truly a floor surface (i.e. a line in the scan). 

Alternatively, a simple Kalman filter could be designed to 

further reduce the noise and detect outliers by screening the 

filter residuals. Figure 14 shows the results of the laser-based 

altitude estimator in a plot together with the altitude as provided 

by the on-board baro-altimeter. Note that the variations in the 

baro-altimeter are significantly larger than the variations in the 

laser-based estimator. Naturally, the UAV will show height 

variations in a tight indoor space due to air fluctuations induced 

by the aerial vehicle itself. 

 

 
 

Figure 14. Altitude estimation results. 

 

 
 

Figure 15. Results (left) no integration of GPS with SLAM solution; (right) integration of GPS with SLAM solution. 

 

The 2D trajectory established by the poses output by 3DOF 

SLAM method and visualized in Figure 12, must be referenced 

to a true navigation fame (North-East-Down). This can be 

accomplished when the UAV is operating in the vicinity of 

buildings with sufficient GPS satellite visibility (during Mode 

2). In that case the GPS/INS position and velocity estimator can 

be used and fused with the “3D position estimate” from the 

combined altitude estimator and 3DOF SLAM in a straight 

forward manner using a simple KF. Figure 15 shows the results 

of this integration. On the left, the GPS/INS trajectory and the 

3DOF SLAM trajectory are shown without integration. Clearly 

the reference frame is offset and rotated with respect to the 

NED frame. This can be explained by the limited availability of 
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laser-features at the start point of the UAV trajectory and the 

unknown initial heading when using the 3DOF SLAM method.  

 

4. SUMMARY AND CONCLUSIONS 

This paper describes an estimation method to determine the 3D 

pose of a UAV in a mixed indoor-outdoor environment using 

GPS, inertial and multiple laser scanner measurements. An 

UAV platform has been designed to collect data in an 

operational environment. Preliminary results show the 

successful estimation of the UAV’s 3D position, attitude and 

2D indoor map. The next step is to derive the 3D map of the 

indoor environment using both laser scanners and quantify the 

algorithms performance using an indoor truth reference map 

derived using a Riegl LMS-Z360 (see Figure 16). 

 

 
 

Figure 16. Laser truth reference map using Riegl LMS-Z360i. 

 

Furthermore, this paper has omitted the use of the on-board 

vision camera, however, an integration method has already been 

developed and its evaluation using flight data will be part of a 

future paper. Finally, the described algorithms are currently 

being implemented in ROS.  
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