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ABSTRACT:

Human Tracking in Computer Vision is a very active up-going research area. Previous works analyze this topic by applying algorithms
and features extraction in 2D, while 3D tracking is quite an unexplored filed, especially concerning multi–camera systems. Our
approach discussed in this paper is focused on the detection and tracking of human postures using multiple RGB–D data together with
stereo cameras. We use low–cost devices, such as Microsoft Kinect and a people counter, based on a stereo system. The novelty of
our technique concerns the synchronization of multiple devices and the determination of their exterior and relative orientation in space,
based on a common world coordinate system. Furthermore, this is used for applying Bundle Adjustment to obtain a unique 3D scene,
which is then used as a starting point for the detection and tracking of humans and extract significant metrics from the datasets acquired.
In this article, the approaches are described for the determination of the exterior and absolute orientation. Subsequently, it is shown
how a common point cloud is formed. Finally, some results for object detection and tracking, based on 3D point clouds, are presented.

1 INTRODUCTION

1.1 Motivation

Video monitoring is an important part in ensuring safety and se-
curity of public transportation systems. Automation using image
and signal processing methods allows improving the efficiency
and reliability of such systems. Current developments of video
surveillance systems allow automatic detection and tracking of
people. The analysis of movement patterns may enable to im-
prove the safety in public transport systems. This development
is part of a project that involves the conception and implemen-
tation of a real-time tracking system. A brief overview can be
found in (Jürgensohn, 2013). This work refers to the observation
of the behaviour of people in waggons of local public transporta-
tion (U-Bahn or S-Bahn). The aim is the recognition of atypical
or dangerous situations from the derived trajectories. A possible
approach to the situation description can be found for example in
(Reulke et al., 2008).

Indoor object recognition provides a number of challenges:

• Few cameras and thus a large field of view for a camera

• Occlusions by passengers as well as seats and handrails in
the wagon

• Drastic changes in brightness within the scene e.g. windows
and shaded regions and between the recorded images (tun-
nel, sunny areas)

• Areas in which image processing provides erroneous results
(windows, TV monitors)

This results in a specific approach regarding the cameras and
image processing (occlusion–free) monitoring of the passenger
compartment:

∗Corresponding author

• Full 3D capture of the observed space by point clouds (ad-
vantages lie here in the background estimation, dealing with
the shadow of and with guards)

• Use of multi–camera systems to avoid occlusions conditions.
Derivation of 3D information by stereo cameras and RGB–
D systems with large field of view, fast matching and 3D
point cloud handling

• Determination of the 3D background

• Detection of separate objects (that stand out from the 3D
background)

• Mathematical description of 3D objects by distinctive 3D
points and 3D structures (e.g. boxes and ellipsoids)

• Derivation of relevant attributes from the individual camera
views

• Tracking and fusion of the different views on an abstract
representation of the occupancy of the passenger compart-
ment

• Situation analysis from the trajectories

Calibration or interior or exterior orientation determination of
all cameras, enables the system to process the input video from
different views depending on the camera position and the scene
characteristics. In addition to the synchronization of all systems
and the orientation determination is an important prerequisite. In
complex observation situations there exists extended occlusions,
shadows and / or rejections, so that an appropriate calibration is
required in order to achieve a highly developed people segmen-
tation as well as a tracking algorithm. In the majority of cases,
once the system has been installed in a certain scene, it is difficult
to obtain the calibration information of the scene.

In this paper, an automatic method to calibrate the scene for de-
tecting and tracking people systems is presented, based on mea-
surements of video sequences captured from a stationary camera.
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1.2 Related Work

The investigations in (Hegger et al., 2013) is related to human-
robot-interaction. The detection of peoples in domestic and un-
constrained environments is crucial for a service robot. People
detection is based on data from a RGB-D camera. They introduce
a 3D feature descriptor based on Local Surface Normals (LSN).
(Luber et al., 2011) investigates people tracking in robot develop-
ment. They present a 3D people detection and tracking approach
using RGB-D data by combining a multi-cue person detector with
an on-line detector that learns individual target models. The work
of (Spinello et al., 2011) is related to (Luber et al., 2011). Here
the focus is here the bottom-up detector, which learns a layered
person model from a bank of specialized classifiers for differ-
ent height levels of people that collectively vote into a continu-
ous space. (Song and Xiao, 2013) construct a unified benchmark
dataset of 100 RGB–D videos with high diversity, propose differ-
ent kinds of RGB–D tracking algorithms using 2D or 3D model,
and present a quantitative comparison of various algorithms with
RGB or RGB–D input.

2 APPROACH

We introduce a multi–camera system using low–cost sensors like
stereo cameras and Microsoft Kinect devices for detecting and
tracking people in a 3D point cloud. The complete pipeline, start-
ing from the acquisition of the point clouds, the extraction of the
moving human bodies and their registration / fusion in a georef-
erenced system is explained in the form of pseudo code in Algo-
rithm 1.

At first, raw point clouds had to be acquired simultaneously from
all sensors. Then, using RGB images captured by the Kinect sen-
sors or equivalent gray scale 8 bit images from the stereo cameras,
we were able to retrieve their exterior orientation (position and di-
rection) with respect to a local chessboard coordinate system. By
empirically defining some ground control points in the final geo-
reference or parent coordinate system and computing their coor-
dinates from spatial resection in the chessboard system, we were
able to transform all from their local system, to the chessboard
system and finally in the georeference system.
The rest of the algorithmic pipeline contains a number of steps
which are important for extracting the moving foreground object.
It is well known that point clouds, depending on their density and
scene complexity are meant to be very difficult and time consum-
ing to process. Algorithms developed for organized point clouds
produced for example by stereo cameras, Kinect sensor or TOF
cameras are meant to work much better then unorganized clouds
(e.g. produced by a range sensor or laser scanner). In every case,
it is important to undertake some preprocessing steps for remov-
ing un-useful information and therefore reducing the amount of
3D points for processing. As a result, algorithms developed for
extracting moving objects will have to process on fewer points.
We start by removing all unnecessary 3D values and trimming
the rest of the point cloud in the depth direction reducing then the
FOV of the sensor. We continue with the detection of moving ob-
jects in the scene, by comparing the octree structures of an empty
static background and the current point cloud using a bitwise log-
ical approach. If moving objects exist, then the foreground points
are projected on a 2D plane for checking and maintaining these
points that are grouped within a large contour and removing the
ones that are not.
All 3D points corresponding to these large contours are said to
be moving objects and not noise. Moreover, applying all the
aforementioned procedures in the rest of the point clouds corre-
sponding to the same time stamp, two sequential transformations

clouds can be applied. The first one transforms the foreground
point cloud from its local coordinate system defined by the sen-
sor to the chessboard coordinate system and the second one from
the chessboard system to the world coordinate system defined by
another set of infrared cameras (georeference system). In the up-
coming sections, a more extended description of the processing
pipeline will be made.

Algorithm 1 Extraction and fusion of foregrounds with synchro-
nized cameras
Require: Point cloud from each sensor

1: Apply Bundle Adjustment to retrieve the projection camera
matrices of the sensors with respect to the chessboard coor-
dinate system.

2: Derive the 3D similarity transformation parameters between
the chessboard system and the ARTracker system (georefer-
ence system) using common target points.

3: for all points of the clouds acquired simultaneously do
4: Remove NaN values
5: Trim point cloud
6: Extract moving foreground (Humans)
7: if foregrounds exist then
8: Project foreground to a 2D plane
9: Extract closed contours (blobs)

10: if size of blob larger then a predefined threshold then
11: Retain 3D points corresponding to these blobs
12: Downsample foregrounds
13: Transform to chessboard coordinate system
14: Transform to Global Coordinate System (ARTracker)
15: end if
16: end if
17: end for
18: return Fused foreground point clouds

2.1 Sensor Synchronization

Acquiring data from many devices simultaneously is not a trivial
task, because of hardware latency. Microsoft Kinect sensors use
a USB connection and require a dedicated bus due to the high rate
of information generated from both depth and RGB cameras: this
means that only one device per USB bus can be connected. The
use of multiple buses introduces a small hardware latency, which
in our hardware configuration corresponds to roughly 16 ms. As
a result, acquired data tend to get influenced and could also con-
tain potentially unusable information, due to the time mismatch.
To get rid of this latency and retrieve images simultaneously, we
use a multithread approach and a timer larger than the hardware
latency time, to trigger the acquisition of each image from Kinect.
Once the acquisition of a frame is completed from all the devices
driven by threads, a new signal is triggered and the acquisition
continues. In the case of people counter devices (stereo cam-
eras), we encountered the same problem: these stereo cameras
are connected through Firewire to multiple Firewire cards and the
hardware latency is in the range of 32ms. The usage of a timer
decreases the potential maximum framerate available, preserving
data consistency: for Kinect we obtain a frame rate of 19fps using
four devices and for the stereo cameras we achieve a rate of ap-
proximately 14fps using 6 devices simultaneously. The data rate
generated from both MS Kinect and stereo cameras is around 1
MByte / frame per device, forcing us to use an SSD drive to speed
up the storage performance time.

2.2 Bundle Adjustment

Bundle is defined as a bundle of arrays that span in 3D space
starting from the cameras, going through the image points and
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intersecting in space. The problem that occurs from the intersec-
tion of rays in space is that they dont meet at an optimal point
(best intersection of the corresponding rays). Thus, bundle ad-
justment deals with the re arrangement of the camera positions
and 3D points, to achieve having an optimal intersection of the
rays in 3D space. In practice, that is interpret by trying to min-
imize the distance between the measured points on the images
and the ones that are back projected from the rearrangement of
the cameras and reconstructed points (Figure 1 from (Hartley and
Zisserman, 2004)). This is mathematically expressed as:

min
P̂i,X̂j

m∑
i=1

n∑
j=1

∥∥xij , P̂iX̂j

∥∥2, x̂ij = P̂iX̂j (1)

where xij is the image point j on image i, is the 3x4 projection
camera matrix (explained at a later point) corresponding to the
ith image and X̂j is the corresponding 3D point.

Figure 1: The reprojection error

A very well known algorithm for solving non linear equations is
the Levenberg Marquard algorithm that uses a damping approach
for converging promptly from any initial value given. Though
the mathematics around bundle adjustment are quite frastrasted
for first site readers especially without any prior knowledge in
the mathematical model, we will try and simplify the formulation
and adapt it to our current camera setup.
Due to the different amount of cameras per type (eg. Microsoft
Kinect, stereo cameras, etc.) we will define a more generic for-
mulation that is easily adaptable to any group of cameras. Let
f(p) be a function that relates a parameter vector p, with an es-
timated measurement vector x̂ = f(p), x̂ ∈ <2. The estimated
measurement vector contains the corrected image points defined
from the optimization of the bundle of arrays and f(p) is a func-
tion that has as arguments of p the parameters of the cameras and
the 3D points. Therefore p is of the form:

p = [P1, P2, ..., Pn, X1, X2, ..., Xm] (2)

where n is the number of cameras, m the number of 3D points,
Xi the 3D homogeneous points and Pi is the 3x4 projection cam-
era matrix defined as:

Pi =

[
p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

]
⇒ Pi = KR [I| − C]

(3)

As seen from Eq. 3, the projection camera matrix can be decom-
posed in four sub–matrices:

K =

[
fx 0 x0
0 fy y0
0 0 1

]
, R =

[
r11 r12 r13
r21 r22 r23
r31 r32 r33

]
, C =

[
X0

Y0

Z0

]
(4)

I is a 3× 3 identity matrix.

The first matrix on the left of Eq. 4 is called calibration matrix
and it contains the internal (in photogrammetric terminology) or
intrinsic (in computer vision terminology) parameters of the cam-
era, where fx, fy are the principal distances of the sensor and x0,
y0 is the position of the principal point from the projection center
to the sensor. Matrix R is a 3x3 rotation matrix which describes
the orientation of each of the axes X, Y and Z of the camera with
respect to a global coordinate system and vector C contains the
position of the camera in space with respect to a global coordi-
nate system. An initial parameter vector p0 and measurement
vector x (observed image points) are required for finding a vec-
tor that best satisfies the functional relation, meaning finding the
values of this vector that will locally minimize the objective func-
tion. A stopping criterion used, is that the error between the ob-
served and calculated values has to be minimised (Eq. 1). At
this point, the only difference between the initial parameter vec-
tor used for Kinect sensors and for stereo cameras is limited to
the fact that the calibration matrix K is fixed for Kinect and for
the stereo cameras not. Therefore after bundle adjustment, the
calibration matrices for all Kinects will remain unchanged but
for stereo cameras it will be refined. Bundle adjustment will be
done based on a chessboard coordinate system as seen in Figure
2. Artificial 3D ground control points will be generated along
the chessboard corners based on the size of the pattern, its rows
and columns. As a result these 3D points will be used in the ini-
tial parameter vector. For the measurement vector, points where
manually clicked due to occlusion problems in some of the cor-
ners (glassy effect). Keep in mind that every chessboard corner a
unique ID has been assigned and therefore in the clicking process
every clicked point will have to be to be given the ID it refers too
in 3D space. This is crucial for the triangulation step later on in
the bundle adjustment process. Mismatched IDs will fail inter-
secting corresponding rays in space coming from corresponding
homologous points on the image and so bundle adjustment will
be terminated unsuccessfully. Finally, after having all the data re-
quired, the augmented normal equation is solved in a non linear
manner until Eq. 5 is satisfied:

(
JTJ + µI

)
δP = Jεp (5)

where I an identity matrix, µ · I is known as damping, µ is the
damping term, J is the Jacobian matrix defined as J = ∂f(p)

f(p)
, δp

is the corrected measurement vector and εp is the error between
the observed and calculated measurement vectors x− x̂. For fur-
ther understanding of the bundle adjustment approach the reader
should refer to (Agarwal et al., 2010).

2.3 Removal of NaN values and Point Cloud Trimming

Removing NaN (Not a Number) values is an important prepro-
cessing step on the point cloud. Depending on the sensor used,
NaN values can be automatically detected (eg. Kinect) in the date
and be set to zero and in some others (eg. point clouds produced
by disparity map coming from stereo cameras) will be retained as
a normal data entry. Therefore by eliminating them, the amount
of points in the data set is significantly reduced and so only mean-
ingful points are kept. The trimming of the point cloud is the
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Figure 2: Chessboard pattern seen from four Kinects

second preprocessing step, where un-useful points in the back-
ground, not part of the active FOV, can be removed. Therefore
we trim the point cloud in the Z (depth) direction of the sensor
using a predefined threshold set manually by the user. We con-
sidered trimming points which are not (in depth) part of the FOV.

2.4 Object Detection

For detecting moving objects (in this case human), a static or
adaptive in time background is needed for comparing the cur-
rent frame with it. Thus, any kind of changes in the background
which are not known in the current frame can be considered as
foreground. This is how in principal 2D foreground estimation
works. In 3D, a different kind of procedure is needed because of
the way point clouds behave in time. We used a method intro-
duced by Kammerl, et al. in (Kammerl et al., n.d.), who tried to
model the spatial relation of 3D points with their adjacent points
using an octree representation. An octree is a tree based data
structure in which each internal/leaf node has exactly eight chil-
dren. Each node in the octree subdivides the space it represents
into eight octans. In the case of object detection it can be used by
detecting spatial changes between the octrees of the background
and current cloud. Spatial changes in the leaf node of the tree
(sparsity of points, amount of neighbours etc.) can give us an
indication of spatial changes. Depending on the predefined size
of the leaf node, detection sensitivity rate and processing time
can vary. Large leaf nodes are faster to process but dont provide
detailed information on the foreground and therefore only very
significant spatial changes are detected. On the contrary, very
small leaf sizes can capture detailed spatial changes but the com-
putation time is extremely costly. In all cases, based on the FOV
and amount of detection required, leaf size can be adapted manu-
ally by the user. For more information refer to the authors paper
(Kammerl et al., n.d.).

2.5 Projection on a 2D Plane

Detecting moving objects in the point cloud does not mean that
noisy regions (also detected as foregrounds), far away or close to
the moving objects cannot be present. This is a typical problem
seen in 2D foreground estimation but in 3D, depending on the
sensor used, noise might have a different generation form. Plac-
ing multiple Kinect sensors looking at each other will create a
conflict of their infrared beams and so the generated point clouds
will be extremely noisy. Therefore we orient the sensors towards
the ground of the scene in order to reduce having these kinds of
problems. On the contrary, noise present in point clouds gener-
ated from stereo cameras, is a result of bad rectification, point

matching and disparity map computation. Homogeneous areas
(eg. walls) tend be very noisy in the generated point cloud and
thats a result of bad point matching. We approach the problem by
projecting all foreground points on a 2D plane using the calibra-
tion information of our cameras:

x = fx
X

Z
+ x0 y = fy

Y

Z
+ y0 (6)

where x, y are the image coordinates, fx, fy represent the focal
length of the camera in pixels in the x and y dimensions respec-
tively, x0, y0 is the principal point of the sensor and X , Y , Z
are the coordinates in 3D space. Subsequently, having this binary
image, connected components analysis was applied for extract-
ing all 2D contours. Areas which are larger than a predefined
threshold are retained and the rest are removed. In this way, what
is considered as a moving object and not moving noise is more
controlled.

2.6 Down-sampling Foreground

Deducing meaningful geometrical information from an articu-
lated moving object does not require all points of the object to
be present. Therefore, the foregrounds was down-sampled using
a voxel based grid filter. By definition, voxel grid filter breaks
down the 3D scene in 3D voxels (3D boxes in space). Within
each voxel, a mean point is computed taking into account all
points within the box. As a result, a down-sampled point cloud is
created which can retain its underlying geometry quite accurately
(if a good voxel size is given). The amount of down-sampling
is a crucial issue. Very large voxels may completely remove the
geometry that wish to maintain. There were two other things:
at which point in the algorithm should be applied the downs-
ampling and in which amount. For the first part, we decided to
apply it after extracting the foreground object in order to avoid
downsampling the full point cloud. Therefore in this way we sig-
nificantly speeded up the complete algorithmic process. Also,
another reason is that connected component analysis cannot be
applied on projected points which are not dense enough on the
binary image. Concerning the second part, downsampling rate
is important in case you wish to make use of your foreground
objects for extracting meaningful geometry from them or if you
want to apply ICP algorithm to stitch your foregrounds.

2.7 Fusion of Foregrounds

As was mentioned in the algorithm pipeline, all foregrounds have
to be fused in a common coordinate system. The first coordinate
system is the chessboard coordinate system which is used as an
origin for retrieving the exterior orientation of the cameras with
respect to one of its corners, as was mentioned earlier on in the
bundle adjustment section 2.2. Second transformation is from the
chessboard coordinate system to a georeferenced system defined
by the ARTracker (for more technical characteristics on the sys-
tem, reader should refer to section 3.2). We consider the chess-
board and ARTracker coordinate systems to be orthogonal, that
means their axes are mutually perpendicular to each other. As a
result, the 3D transformation that has to be applied on the derived
foregrounds is a similarity transformation with 7 DOF (3 rota-
tions, 3 translations and one global scaling). For transforming a
3D point (in Eucledean space) the following formula should be
applied:

[
X ′

Y ′

Z′

]
= [λR|T ]

[
X
Y
Z

]
(7)
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where X , Y , Z and X ′, Y ′, Z′ are the initial and transformed
3D Euclidean coordinates respectively, λ is a scalar value repre-
senting global scaling, R is a 3D rotation matrix and T is a 3D
translation vector. For computing the transformation parameters,
more than 3 common points are required in principal. That is be-
cause there are 7 unknowns (3 rotations, 3 translations and one
global scaling). Lets start by defining a vector F containing all
foregrounds Ci from all cameras at time t:

Ft = [C1, . . . , CN ] , Ci ∈ <3 (8)

where N is the total number of cameras. Using the rotation and
translation parameters extracted directly from the projection cam-
era matrix of each Kinect or Hella stereo cameras we were able
to build a 3× 4 transformation matrix that will transform the in-
dividual foregrounds to the chessboard coordinate system:

XChessi = Ti · Cii = 1, . . . , N (9)

where T i is a 3×4 transformation matrix of the current camera i,
Ci is a data set containing the current foreground points of cam-
era i and XChessi are the transformed points in the chessboard
coordinate system. Finally, the transformation from the chess-
board system to the georeference system is expressed by:

XARi = H ·XChessi i = 1, . . . , N (10)

where H is a 3D similarity transformation, XChessi are the 3D
points in the chessboard coordinate system and XARi are the
transformed 3D points. For estimating the quality of the 3D sim-
ilarity transformation the following formulation was used:

err =

N∑
i=1

‖XTriangi −XGCPi‖
2 (11)

where err is the square distance error between all points in the
two datasets expressed in meters, XTriang represents the 3D
points transformed from the chessboard system to the ARTracker
system and XGCP are the GCPs defined in the ARTracker sys-
tem.

3 EXPERIMENTAL RESULTS

3.1 Camera Setup

Our experimental setup consists of four Microsoft Kinect sen-
sors, six stereo cameras and four infrared cameras. All cameras
are mounted on a constructed aluminium platform as seen in Fig-
ure 3. Light orange colour is used for visualizing the position of
the Kinect sensors, green for the stereo cameras and yellow for
the position of the ARTracker infrared cameras. Kinect sensors
and stereo cameras are placed in approximately 2.3m high and
the infrared sensors around 2.5m, directly at the most highest cor-
ners of the construction. Due to intersection of the infrared light
emitted from the Kinects, the sensors where not looking directly
to eachother but were tilted towards the ground. With this way
we tried to avoid introducing unnecessary noise in the generated
point cloud.

Figure 3: Camera setup

3.2 Cameras Characteristics and Hardware

Kinect sensors looks like a horizontal elongated bar connected on
a base with a motorized pivot and consist of an infrared emitter,
RGB camera sensor, depth sensor and a multi microphone sys-
tem. The emitter emits infrared light towards the 3D scene and
the depth sensor receives the infrared beams reflected back from
the objects, which is then used to generate the depth image. The
resolution of the RGB and depth images is 640× 480 pixels and
so the generated point cloud has an organized form of 307200
points. Their practical depth working limit without introducing
artifacts is within the range of 1.2 and 3.5 meters. For the stereo
cameras provided by Hella Aglaia Mobile Vision GmbH, each
device contains two cameras with a baseline of 8cm. The sensor
has 769 × 448 pixel, produces 12 bit gray scale images and has
a repetition rate of approximately 10 Hz. The ARTracker are op-
tical tracking cameras and work with passive or active markers
which look like in Figure 5. They contain an integrated pattern
recognition unit which is used for detecting and tracking these
markers in time. Working distance using passive markers is up to
4.5 m depending also from the size of the markers and the frame
rate reaches up to 60 fps. All devices used can be visualized in
Figure 4. On the upper left image we show the ARTrack infrared
camera, upper right the Hella stereo camera and in the bottom the
Microsoft Kinect sensor.

Figure 4: All camera devices used

Concerning hardware performance, two Desktop PCs where used,
one for the stereo cameras and one for the Kinects. Both comput-
ers contain the same hardware parts: Intel Core i7 3770 pro-
cessor, 16GB RAM and NVidia GTX660 graphics card. Keep
in mind that as was mentioned in section 2.1, when data have to
be acquired simultaneously from all cameras the computer per-
formance drops significantly and thus the acquisition speed rate
becomes much slower.
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Figure 5: Target balls used for tracking

3.3 Bundle Adjustment and 3D Similarity Transformation

Using the chessboard as a reference system for all Kinect and
Hella cameras we empirically defined one of the chessboard cor-
ners to be the origin of the 3D coordinate system. By manually
clicking at the corners of the visible chessboard we were able to
define the observation vectors needed to solve the bundle adjust-
ment as described in section 2.2. In Figure 6 and 7 you can visual-
ize the corrected points (green color) of the observed chessboard
corners coming from all four Kinect sensors and Hella cameras
after refining their projection camera matrices.
Several corner detectors are available from open source libraries
(eg. OpenCV) for automatically detecting and refining with sub-
pixel accuracy the detected corners. In our case, these algorithms
would fail: occluded pattern in some of the images, glassy effect
and also bad perspective viewing angles are one of the main prob-
lems we had to deal with. The RMS error for the Kinect sensors
was in the range of approxinately quarter of a pixel (∼0.25 pix)
where as for Hella cameras in the range of a sub pixel (∼0.5 pix).
It is known that the result of the bundle adjustment is significantly
affected by the quality (accuracy) of the measurement points. As
seen from table 2 there exist an RMS value for camera 3 which
is in the range of ∼2.4 pix. This is because of the bad viewing
direction of the pattern which does not help to generate a good
measurement vector for the current image.

Kinect sensors reprojection error (pix)
Camera ID 0 1 2 3
RMS 0.26 0.26 0.28 0.26

Table 1: Kinect bundle adjustment results

Hella cameras reprojection error (pix)
Camera ID 0 1 2 3 4 5
RMS 0.55 0.23 0.33 2.41 0.60 0.36

Table 2: Hella bundle adjustment results

Figure 6: Corrected chessboard points after applying bundle ad-
justment to all four Kinect sensors

Figure 7: Corrected chessboard points after applying bundle ad-
justment to all six stereo cameras

Next step involves finding the similarity transformation param-
eters (three rotations, three translations and a global scaling) for
transforming the foreground point clouds from the chessboard co-
ordinate system to the ARTracker georeferenced coordinate sys-
tem. For this purpose, as mentioned in section 2.7, common tar-
get points are needed in both systems. We followed the procedure
of placing four tripods in the middle of the common FOV of all
cameras (Kinect and Hella stereo cameras) in different heights
and placing the tracking balls on top of a horizontal platform. In
Figure 8 you can visualize/recognise the common targets with a
red dot.

Figure 8: Common target points as seen from all four Kinect sen-
sors

The 3D coordinates of these target points where derived by click-
ing on them throughout all the images and applying linear trian-
gulation. For Hella cameras we only used the left image from
each stereo pair because if not, the spatial resection would be
weak due to the small baseline between the sensors of the same
device. The transformation parameters for the Kinect are shown
in table 3:
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Kinect Sensor Hella Cameras
X0 (m) 0.990 0.950
Y0 (m) 2.510 2.670
Z0 (m) 0.003 0.09
Omega (deg) -179.500 177.360
Phi (deg) 0.600 -2.300
Kappa (deg) -92.160 -92.790
Global Scaling 1.000 1.030

Table 3: Similarity transformation parameters for Kinect Sensors
and Hella Cameras

One thing which is interesting in the above results is the mirroring
effect in the omega angle between the two systems. Omega angle
is a rotation around the X axis which after some testing does not
create a problem to the sequence of the transformation (Z - Y
- X and finally translation). In either cases, a rotation of plus
minus 180 degrees brings the system in the same orientation and
position as the georeferencing one.

3.4 Object Detection

This experimental part contains results from human detection in a
point cloud. In Figure 9 there is a result from a fused foreground
of a human figure acquired from all four Kinect devices.

Figure 9: Fused point clouds from all Kinect sensors

In Figure 10 you can visualize a stitched point cloud with the
people in the scene being quite in one piece without any kind of
duplications. Keep in mind that this point cloud is not stitched
using ICP (Iterative Closest Point) algorithm but only using the
sequence of transformations mentioned in steps 13 and 15 of al-
gorithm 1. This shows that the resultant point cloud is strongly
dependent from the accuracy of the projection camera matrices
coming from the bundle adjustment and subsequently from the
accuracy of the triangulated coordinates of the targets and not
necessarily from a good initial transformation matrix required for
ICP. In this way we show that the run time performance of our
approach is much faster than doing the fusion using ICP. There
might be a possibility that ICP might be needed if the RMS error
of cameras coming from bundle adjustment is not very good. Fur-
thermore, we show that camera synchronization is very important
for stitching the same figures coming from different point of view.
Especially in human tracking, where the movement has an artic-
ulated form, non exact synchronization of the sensors by some
ms would create an error propagation which after some frames
might be converted into seconds. This will automatically show
(most probably) small differences in the articulated movement of
the human and will start producing foreground point clouds with
the amount of propagation translated in motion difference.

Figure 10: Stitched point cloud coming from all four Kinect sen-
sors

Finally, in Figure 11we show a fused point cloud coming from all
six Hella stereo cameras. Again, as you can see from the person
in the scene, his body is into one piece without any repetitions.

Figure 11: Fused point clouds coming from Hella stereo cameras

4 CONCLUSIONS AND DISCUSSIONS

We developed a multi synchronized camera system for isolating
foreground moving humans from every camera and then fusing
them in one point cloud without the use of ICP. We showed that
good projection camera matrices coming from bundle adjustment
in combination with the 3D similarity transformation of the pro-
duced point clouds in a geo referencing system can significantly
boost the performance time with more or less the same accuracy
as ICP. We introduced a complete pipeline starting from the ac-
quisition of data until the transformation of the foregrounds in a
georeference system. Nevertheless, some improvements can be
made for enhancing the foreground and being able to deduce reli-
able geometrical information which can provide us some knowl-
edge concerning the movement of the human (eg. normal or ab-
normal behaviour). This can be done by developing an algorithm
that fuses the information coming from all cameras and refining
the foreground. The purpose for this is to be able not only to re-
fine the foreground point cloud but also maintain the consistency
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of individual objects which should be treated as independent en-
tities while they are tracked. A lot of work is been done on multi
camera systems in 2D and so we believe that equivalent 3D ap-
proached should be investigated. Finally, we could consider ac-
celerating our algorithms by reducing their time complexity using
GPU programming.
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