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ABSTRACT:

This paper deals with the detection of critical, i.e., poor or degenerate camera configurations, with a poor or undefined intersection
geometry between views. This is the basis for a calibrated Structure from Motion (SfM) approach employing image triplets for complex,
unordered image sets, e.g., obtained by combining terrestrial images and images from small Unmanned Aerial Systems (UAS). Poor
intersection geometry results from a small ratio between the baseline length and the depth of the scene. If there is no baseline between
views, the intersection geometry becomes undefined. Our approach can detect image pairs without or with a very weak baseline (motion
degeneracy). For the detection we have developed various metrics and evaluated them by means of extensive experiments with about
1500 image pairs. The metrics are based on properties of the reconstructed 3D points, such as the roundness of the error ellipsoid. The
detection of weak baselines is formulated as a classification problem using the metrics as features. Machine learning techniques are
applied to improve the classification. By taking into account the critical camera configurations during the iterative composition of the
image set, a complete, metric 3D reconstruction of the whole scene could be achieved also in this case. We sketch our approach for the
orientation of unordered image sets and finally demonstrate that the approach is able to produce very accurate and reliable orientations.

1 INTRODUCTION

Our basic goal is to derive 3D structure and camera projection
matrices from calibrated, but unordered image sets, where the
motion is not known a priori. This is used as a basis for dense
3D reconstruction or image interpretation, e.g., of facades (Mayer
and Reznik, 2007).

Most Structure from Motion approaches begin with the automatic
determination of point correspondences between views of the im-
age set. In the course of the reconstruction geometric constraints
arising from scene rigidity and a general camera configuration are
assumed to hold. However, problems arise if the assumed scene
structure and/or camera configurations do not conform to these
assumptions.

The first problem regards the scene geometry and occurs if the
viewed scene structure is planar (structure degeneracy). The
point correspondences are then related by a homography. Since
for the fundamental matrix F holds F = [e2]xH (where [e2]x is
the skew-symmetric matrix corresponding to the epipole e2 in the
second image and H the homography matrix), there exists a two
parameter family of solutions for the epipolar geometry. Thus,
the estimation of epipolar geometry would lead to a random solu-
tion based on the inclusion of outliers. For uncalibrated cameras
there are approaches (Chum et al., 2005, Torr et al., 1999, Polle-
feys et al., 2002b) which try to detect this case by comparing the
models based on epipolar geometry and homography. Yet, the
whole problem does not occur for calibrated cameras if the five
point algorithm (Nistér, 2004) or (Li and Hartley, 2006) is used,
what we do.

The second problem is more problematic and concerns camera
configurations. Usually, a general camera configuration with
translation and/or rotation of the camera between images is as-
sumed. In absence of translation there remains only a pure rota-
tional movement (motion degeneracy) and images are related by
the infinite homography H∞. There exists no baseline between
images and the epipolar geometry is undefined. For triangulation

based 3D reconstruction the accuracy of the reconstruction is pro-
portional to the ratio between the baseline length and the depth of
the scene. Thus, camera configurations without baseline may not
be used and those with a very short baseline should be avoided in
order to achieve a reliable and accurate reconstruction.

Critical camera configurations were analyzed in the context of
keyframe selection approaches (Pollefeys et al., 2002a, Repko
and Pollefeys, 2005, Thormählen et al., 2004, Beder and Stef-
fen, 2006). There, image pairs which are most suitable for
the estimation of the epipolar geometry and for which the tri-
angulation is particularly well-conditioned are called keyframes.
Hence, keyframes are those image pairs which comprise a suf-
ficient baseline, so that the initial estimation of the 3D struc-
ture is reliable. (Pollefeys et al., 2002a) as well as (Repko and
Pollefeys, 2005) estimate fundamental matrix and homography
for each relevant image pair. Keyframes are selected from im-
age pairs for which the fundamental matrix is found to be the
more appropriate motion model based on the Geometric Robust
Information Criterion – GRIC (Torr, 1998). Because they work
with uncalibrated images, both approaches are not able to distin-
guish between structure degeneracy and the more critical motion
degeneracy. Keyframe selection based on the result of the bundle-
adjustment of the whole image set is proposed in (Thormählen et
al., 2004). Unfortunately, the runtime of this method does not
scale well. In (Beder and Steffen, 2006) the mean of the round-
ness of the error ellipsoids of the reconstructed 3D points as de-
rived by bundle adjustment is used for keyframe selection. It is
an efficient method which works on calibrated images and thus
can be used to detect critical camera configurations.

From our point of view the problem with all these methods is that
they are designed for keyframe selection and we found them to be
unreliable for the detection of critical camera configurations. In
keyframe selection the image pair with the highest score is used
as keyframe, whereas for the detection of critical camera configu-
rations one has to define a threshold, if the described approaches
are to be used.
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We think that the detection of critical camera configurations
should be formulated as a binary classification problem. For such
a problem various algorithms exist, e.g., (Breiman, 2001, Cortes
and Vapnik, 1995). One often used approach is AdaBoost (Fre-
und and Schapire, 1995) which belongs to the ensemble classi-
fiers. It is based on the idea of creating a highly accurate pre-
diction rule by combining many relatively weak and inaccurate
rules.

In this paper we present an analysis of various metrics to deter-
mine no or a very weak baseline between views. We employ Ma-
chine Learning techniques and a classification algorithm based
on AdaBoost which can detect critical camera configurations very
reliably. By taking into account the critical camera configurations
during the iterative composition of the image set from triplets, a
complete, metric 3D reconstruction of the whole scene could be
achieved. We shortly present our approach for the orientation of
unordered image sets, in which the detection of critical camera
configuration will be integrated, and demonstrate that it is able
to produce accurate and reliable orientations for complex image
sets.

The paper is organized as follows: In Section 2 we define several
metrics which are to be analyzed concerning their suitability for
the classification of critical camera configurations. An extensive
evaluation of the metrics is presented in Section 3. In Section 4
our orientation framework for unordered image sets is described
and results are presented. Finally, in Section 5 conclusions are
given and future work is discussed.

2 ERROR METRICS

In this section we define several metrics, which will be analyzed
concerning their suitability as features for classification in the re-
mainder of the paper.

(Beder and Steffen, 2006) proposed an algorithm to determine the
best initial image pair for a calibrated multi-view reconstruction
based on the error ellipsoids of the reconstructed 3D points. The
quality of a reconstructed 3D point is estimated by the roundness
R of the error ellipsoid which is defined as

R =

√
λ3

λ1
(1)

where C is the covariance matrix and λ1 ≥ λ2 ≥ λ3 are eigen-
values of C. R lies between 0 and 1 and only depends on the
relative geometry of the two cameras and the feature positions.
If the two camera centers are identical and the feature positions
were correct, the roundness would be equal to zero. For keyframe
selection (Beder and Steffen, 2006) compute the mean roundness
Rmean for all reconstructed points for an image pair. From a
statistical viewpoint the mean is more sensitive to noise and thus
less robust than the median. Hence, we compute also the median
roundness Rmed over all reconstructed points.

Motivated by the roundness R we have developed several other
metrics based on the form of the error ellipsoid which take not
only two, but all axes of the ellipsoid into account. We will show
in Section 3 that this is more discriminative for the detection of
critical camera configurations.

An error ellipsoid is defined by

(x− p)TC−1(x− p) = 1

where C is the symmetric covariance matrix, p the reconstructed
point and x a point on the ellipsoid. The eigenvectors of C define

the directions of the semi-axes and the eigenvalues λ1 ≥ λ2 ≥
λ3 the squares of the lengths of semi-axes a, b, c, i.e.:

a =
√
λ1 b =

√
λ2 c =

√
λ3 (2)

The volume V of the error ellipsoid is given by the formula

V =
4

3
πabc =

4

3
π
√
λ1λ2λ3 =

4

3
π
√
det(C) (3)

and can be computed from the semi-axes or directly from the
covariance matrix.

The computation of the surface area O is more complicated and
comprises incomplete elliptic integrals. Instead, we employ an
approximation (Michon, 2004) for the surface area

O ≈ 4π

(
apbp + apcp + bpcp

3

)1/p

(4)

where a, b, c are semi-axes as in (2) and p is a constant. The
choice of p = 8/5 = 1.6 is optimal for nearly spherical ellip-
soids which leads to a maximum relative error of 1.178% (Mi-
chon, 2004).

A further metric is the sphericity S (Wadell, 1935) of the ellipsoid
which measures of how spherical the ellipsoid is. It is defined as
the ratio of the surface area of a sphere with the same volume as
the ellipsoid to the surface area of the ellipsoid:

S =
π

1
3 (6V )

2
3

O
=

4π 3
√
λ1λ2λ3

O
(5)

The last metric based on the error ellipsoid is an alternative
roundness measure K similar to R and S. We define it as the
quotient of the ellipsoid volume V and the volume VK of the
minimum circumscribed sphere:

K =
V

VK
=

4
3
πabc
4
3
πr3

=
abc

r3
=

abc

max(a, b, c)3
=

√
λ2λ3

λ1
(6)

The radius r of the minimum circumscribed sphere is given by
the largest semi-axis max(a, b, c) of the error ellipsoid.

Additionally, we have defined the depth of the reconstructed 3D
points D as a metric which is independent of the error ellipsoid.
The depth is proportional to the baseline and our assumption is
that for motion degeneracy it should differ for general scenes sig-
nificantly from the depth with no degeneracy.

In summary we have defined the following metrics:

• Metrics based on the shape of error ellipsoid:
– Roundness R
– Volume V
– Sphericity S
– alternative Roundness K

• Depth D of the reconstructed 3D point

All metrics are computed for each reconstructed 3D point and the
median is used as global metric. Rmean as proposed in (Beder
and Steffen, 2006) is employed for comparison.

3 DETECTION OF CRITICAL CAMERA
CONFIGURATIONS

In our experiments concerning the classification of critical cam-
era configurations we use about 1500 image pairs as ground truth

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W1, 2014
EuroCOW 2014, the European Calibration and Orientation Workshop, 12-14 February 2014, Castelldefels, Spain

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-W1-73-2014

74



data. The images were taken with handheld cameras and cameras
mounted on small Unmanned Aerial System (UAS). The ground
truth data consists of about 30% known degenerate pairs which
were taken using handheld cameras.

For evaluating binary classifiers common measures are the re-
ceiver operating characteristic (ROC) and the corresponding area
under the ROC curve as well as precision and recall. For imbal-
anced datasets, as in our case, precision and recall give a more
informative picture of an algorithm’s performance (Davis and
Goadrich, 2006). Hence, we use them primarily for our exper-
iments instead of ROC. Precision and recall are defined as

precision =
TP

TP + FP

recall =
TP

TP + FN

where TP , FP and FN are the number of true positives, false
positives and false negatives. In order to obtain only one evalu-
ation measure, we use F-score which is the β-harmonic mean of
precision and recall:

Fβ = (1 + β2) · precision · recall
β2 · precision+ recall

The most common choice for β is 1, which leads to:

F = F1 = 2
precision · recall
precision+ recall

(7)

To obtain more statistically reliable results, all our evaluations∗

were performed using stratified cross validation with 10 folds.
I.e., the data was randomly partitioned into ten subsets of equal
size, the classifier trained on nine subsets and validated on the
remaining subset. The whole evaluation process was repeated 10
times and the mean is used as the final evaluation score.

In Section 3.1 we evaluate the metrics defined in Section 2 con-
cerning their suitability as classification features. Then, in Sec-
tion 3.2, we determine the best feature subset which leads to the
optimal classification based on AdaBoost.

3.1 Feature Comparison

In Section 2 we have defined several metrics which are to be used
as classification features. We compare their suitability as features
using information gain, a measure which is often used in decision
trees to find best splits. Information gain IG is given by

IG(class,metric) = H(class)−H(class|metric)

where H denotes the (information) entropy. Features with higher
information gain tend to be more suitable for class separation than
features with lower information gain. The average information
gain per feature is shown in Fig. 1. It can be seen, that the fea-
tures Vmed andDmed perform clearly best and also comprise rel-
atively small variations between folds. The featuresRmed, Smed,
Rmean and Kmed behave more or less similarly. Yet, Smed
seems to be slightly more stable between folds than the other and
Rmean turns out to be inferior in comparison with Rmed.

Based on the information gain we trained a simple decision
stump, i.e., selected an appropriate threshold, and evaluated its
performance and thus the suitability of a single feature for classi-
fication. The results are given in Tab. 1. Again, the best features
turn out to be Vmed and Dmed, whereas the worst is still Rmean.
∗Evaluations were performed using the Weka software package

(www.cs.waikato.ac.nz/ml/weka).

Figure 1: Average information gain per metric using stratified
cross validation with 10 folds. The standard deviations between
folds are represented as vertical red bars.

The features Rmed, Smed and Kmed show no big difference and
behave very similarly.

Feature F-score Area under ROC curve
Vmed 0.9940 0.991
Dmed 0.9915 0.988
Kmed 0.9777 0.967
Rmed 0.9792 0.969
Rmean 0.9738 0.957
Smed 0.9787 0.963

Table 1: Average feature performance based on classification us-
ing a single threshold and stratified cross validation with 10 folds

Next, we compared features Rmed, Smed and Kmed which are
roundness measures and have shown a similar behavior above.
As presented in Fig. 2, the features are correlated pairwise, not
linearly but rather quadratically, and there exists also a non-linear
correlation between all three features. This proposition is con-
firmed by the correlation coefficients between feature pairs given
in Tab. 2. The second column of Tab. 2 contains the values of the
Pearson correlation coefficient which is used to detect a linear
relationship. The Spearman’s rank correlation coefficient in the
third column can be used to detect a monotonic relationship, i.e.,
can be employed to detect also a non-linear relationship. Due to
the correlation one can deduce, that it should be sufficient to use
only one of the features for the classification. Because of its sim-
plicity and modeling of the whole ellipsoid shape, K seems to be
the appropriate choice. One could use S instead of K, but S is
much more costly to compute and is also only an approximation
of the ellipsoid surface area whereas K is an exact measure.

Features Pearson Spearman
Rmed, Smed 0.95 0.99
Rmed, Kmed 0.84 0.96
Smed, Kmed 0.77 0.95

Table 2: Correlation between roundness-based features

3.2 Feature Selection and Classification

From the results in Section 3.1 one can see that some metrics are
more suitable for use as classification features than others. How-
ever, the results in Section 3.1 only hold if a single feature is used
for classification. To find the best feature subset for a specific
classifier, we performed an exhaustive search using F-score from
equation (7) as evaluation measure and AdaBoost (Freund and
Schapire, 1995) as the classification algorithm.

We use AdaBoost with 10, 30, 50, 80, 100, 150 and 200 trees
(decision stumps, thresholds) and all non empty sets of the feature
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Figure 2: Correlation between roundness-based features. The
feature values were normalized to [0; 1]. Blue points come from
non-degenerate and red points from degenerate pairs. The ma-
genta line is used to show the location of the linear relationship.

set’s power set. As we found, that the performance of the feature
subsets is not very sensitive to the number of trees, we use the
mean over the tree scores for the evaluation. The average scores
for all subsets are shown in Fig. 3 and a summary for the relevant
subsets is given in Tab. 3. As can be seen in Fig. 3, the best feature
subsets are located at the beginning of the right half (marked by
a box). For these subsets F-Score as well as the area under ROC
curve have the highest values. The combination of Vmed and
Dmed clearly gives the best result. This result can be further
improved by involving one of the roundness-based features, for
which Kmed seems to be slightly better than Rmed and Smed.
Note, that the good performance comes primarily from Vmed and
is only slightly improved by a combination with other features.

Finally, the classifier is trained on the whole data set and can then
be employed for the detection of critical camera configurations
for new image pairs.

Figure 3: Average F-Scores (blue) and areas under ROC curve
(magenta) for all feature subsets. The best range is highlighted
by a box.

Feature Subset F-score Area under ROC curve
VmedDmedKmed 0.9947 0.9978
VmedDmedRmed 0.9944 0.9977
VmedDmedSmed 0.9943 0.9977
VmedDmed 0.9939 0.9976
Vmed 0.9936 0.9972
Dmed 0.9903 0.9974

Table 3: Evaluation results for feature subsets

4 ORIENTATION OF UNORDERED IMAGE SETS

The detection of critical camera configurations is a prerequisite
for a full automation of the orientation of unordered image sets.
Only if critical camera configurations can be robustly detected, a
reliable orientation avoiding scaling errors due to wrong lengths
for corresponding baselines is possible. Thus, we plan to inte-
grate the classifier described in the previous section in our ap-
proach for orientation described below in the near future.

Our approach for the orientation of possibly very large baseline
image sets builds on (Bartelsen et al., 2012, Mayer et al., 2012).
After detecting scale invariant feature transform – SIFT (Lowe,
2004) points, cross-correlation and affine least squares matching
are used to obtain highly precise relative point positions as well
as covariance information for them. This information is input to
the random sample consensus – RANSAC (Fischler and Bolles,
1981), five point algorithm (Nistér, 2004) and robust bundle ad-
justment based determination of the relative orientation of image
pairs and triplets.

In our previous work (Bartelsen et al., 2012, Mayer et al., 2012),
the triplets are combined by means of tracking based on least
squares matching with robust bundle adjustment necessary after
the addition of few or even only one triplet. As this leads to a very
high computational complexity, we have recently introduced a hi-
erarchical procedure which employs unique identifiers for every
point in every image. This is the basis for the determination of
all points in all images, a 3D point can be seen in. The merging
of image sets to ever larger sets can thus be computed in paral-
lel and, therefore, efficiently. As in our preliminary work we use
least squares matching and bundle adjustment to obtain a highly
precise orientation, but the new procedure is considerably faster.

To deal with unordered image sets, we use the approach presented
in (Bartelsen et al., 2012). The GPU implementation (Wu, 2007)
of SIFT is employed to detect points and determine correspon-
dences by pairwise matching. As result we obtain the matching
graph which consists of images as nodes and edges connecting
similar images. The weight of an edge is given by the number of
correspondences between the connected images. Promising im-
age pairs are obtained by construction of the maximum spanning
tree of the matching graph. These image pairs are then used to
derive and link image triplets. The latter are input for the orien-
tation approach described above.

Our state concerning unordered image sets is still preliminary:
Many image pairs, which can be oriented by our robust match-
ing approach, are not found due to the limited capability of the
employed fast matching method (Wu, 2007).

The result of our orientation framework for a set of 340 images is
shown in Fig. 4. The images were acquired by handheld cameras
from the ground and a camera mounted on a micro Unmanned
Aerial System (UAS). A high quality dense 3D reconstruction of
a part of the scene using the approach of (Kuhn et al., 2013) is
given in Fig. 5.

5 CONCLUSIONS AND FUTURE WORK

In this paper we have presented various error metrics and have
analyzed their suitability using AdaBoost and cross validation as
features for the classification of image pairs concerning critical
camera configurations especially concerning motion degeneracy
(no or very weak baseline). A combination of the volume, the
distance and an alternative roundness measure for the ellipsoids
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Figure 4: Orientation of 340 images taken from the ground and an Unmanned Aerial System (UAS) – pyramids represent cameras and
links between cameras symbolize the existence of at least ten common points

Figure 5: Dense 3D reconstruction of a small part of the scene
shown in Fig. 4

corresponding to the covariance matrices of the 3D points ob-
tained by means of bundle adjustment were found to be particu-
larly suitable, leading to a classification error of less than 1%.

In addition, we have sketched our approach for the orientation
of unordered image sets which is able to produce very accurate
and reliable orientations. This approach assumes that the image
set does not contain image pairs arising from critical camera con-
figurations. Thus, it will fail or yield a poor orientation if the
image set contains such pairs. Therefore, we intend to integrate
the above detection of pairs with a critical camera configuration
into our orientation approach and use only non-degenerate pairs
for the derivation of image triplets and image sets. By this means
our framework should be able to produce very accurate and reli-

able orientations also for image sets comprising pairs with critical
camera configurations.

In the future we intend to evaluate other classification algorithms
and compare their performance with AdaBoost. Especially prob-
ability estimates instead of binary class membership provided,
e.g., by Random Forests (Breiman, 2001), could be helpful. Also
a classification into three classes, i.e., degenerate, non-degenerate
and uncertain, could be useful. Uncertain image pairs could then
be analyzed using more time-consuming techniques if they are
found necessary for the connectivity of the image set or discarded
otherwise.
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