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ABSTRACT:

In this investigation, we address the task of airborne LiDAR point cloud labelling for urban areas by presenting a contextual classifica-
tion methodology based on a Conditional Random Field (CRF). A two-stage CRF is set up: in a first step, a point-based CRF is applied.
The resulting labellings are then used to generate a segmentation of the classified points using a Conditional Euclidean Clustering
algorithm. This algorithm combines neighbouring points with the same object label into one segment. The second step comprises the
classification of these segments, again with a CRF. As the number of the segments is much smaller than the number of points, it is
computationally feasible to integrate long range interactions into this framework. Additionally, two different types of interactions are
introduced: one for the local neighbourhood and another one operating on a coarser scale.

This paper presents the entire processing chain. We show preliminary results achieved using the Vaihingen LiDAR dataset from the
ISPRS Benchmark on Urban Classification and 3D Reconstruction, which consists of three test areas characterised by different and
challenging conditions. The utilised classification features are described, and the advantages and remaining problems of our approach
are discussed. We also compare our results to those generated by a point-based classification and show that a slight improvement is

obtained with this first implementation.

1. INTRODUCTION

The classification of airborne LiDAR point clouds is challenging
for urban areas due to the large amount of different objects lo-
cated close to each other. However, particularly in these regions
an accurate classification result is desirable since it is often an im-
portant step for object detection and reconstruction, for example
for the generation of a three-dimensional city model.

In the last years, classification techniques incorporating contex-
tual knowledge such as Markov Random Fields (MRF) and Con-
ditional Random Fields (CRF) have become more and more pop-
ular for point cloud labelling, (e.g. Anguelov et al., 2005; Shapo-
valov et al., 2010). In these kinds of probabilistic approaches
the random variables to be labelled are represented as nodes of a
graph, which are connected by edges modelling the interactions.
Spatial dependencies between the object classes can be trained to
improve the results because some object classes are more likely
to occur next to each other than others; for instance, it is more
probable that cars are situated on a street than on grassland. How-
ever, most applications in the related work do not exploit the full
potential of graphical models: up to now, they mainly make use
of relatively simple models for the interactions such as the Potts
model and the contrast-sensitive Potts model (Boykov and Jolly,
2001). Both models favour neighbouring points to have the same
object class by penalising label changes. Relations between dif-
ferent types of objects are not trained in these cases, which tends
to lead to an over-smoothing effect (Schindler, 2012). Small ob-
jects, such as cars, might be eliminated for this reason. Niemeyer
et al. (2011) showed that the use of a more complex multi-class
model for the joint probability of all class labels at neighbouring
sites, rather than a binary model for the probability of the two la-
bels being equal, leads to better results in terms of completeness
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and correctness values. This gain in accuracy however comes at
an expense of higher computational effort and a larger amount of
fully labelled reference data being required during training.

The work of Shapovalov et al. (2010) has its focus on the classi-
fication of airborne LiDAR points discerning five object classes,
namely ground, building, tree, low vegetation, and car. The au-
thors applied a non-associative Markov Network, which is able
to model all class relations instead of only preferring the same
labels for both nodes linked by an edge. First, the data are over-
segmented, then a segment-based CRF classification is performed.
Whereas this aspect helps to cope with noise and computational
complexity, the result heavily depends on the segmentation. Small
objects of sub-segment size cannot be detected, and important ob-
ject details might be lost, which is, of course, a drawback of all
segment-based algorithms. The authors show that using a seg-
mented point cloud leads to a loss of 1 %-3 % in overall accuracy
in their experiments due to segmentation errors and due to the
fact that classes having few samples such as cars might be merged
with the background. Whereas this does not seem to be much, it
may become relevant if the classes of interest are the ones most
affected by these problems. Both, the point-based as well as the
segment-based classification, have advantages and disadvantages.
While using segments leads to less computational costs, a point-
wise classification avoids the segmentation errors.

A particular limitation of graphical models, not only for point
cloud classification, is the scale of the context. In most state-of-
the-art work, CRF only consider local context between directly
neighbouring points or segments, respectively. Considering long
range context in a pairwise CRF operating on points would usu-
ally correspond to many more edges in the graphical model mak-
ing inference intractable. There is again a difference between the
point and segment-based classifications since the latter is able to
model context in a larger scale whereas the former is usually lim-
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ited to local context which might lead to some remaining errors
due to ambiguities of local point cloud information.

Shapovalov et al. (2013) classified point clouds of indoor scenes,
building a graphical model on point cloud segments. They con-
sider long range dependencies by so-called structural links, also
based on spatial directions such as the vertical, the direction to
the sensor or the direction to the nearest wall. In an indoor sce-
nario, walls can be detected using heuristics (Shapovalov et al.,
2013). However, such approaches do not carry over to airborne
data easily. CRF were also used by Lim and Suter (2007) for the
point-wise classification of terrestrial LiDAR data. The authors
coped with the computational complexity by adaptive point re-
duction. In further work they first segmented the points and then
classified the resulting superpixels. The authors also considered
both a local and a regional neighbourhood. Introducing multiple
scales into a CRF represented by long range links between super-
pixels improved the classification accuracy by 5 % to 10 % (Lim
and Suter, 2009). This result shows the importance of consider-
ing larger regions instead of only a very local neighbourhood of
each 3D point for a correct classification. An alternative to long
range edges, which might lead to a huge computational burden
if points are to be classified individually, is the computation of
multi-scale features, enabling a better classification of points with
locally similar features. Although belonging to different objects,
the variation of the regional neighbourhood can support the dis-
crimination between the object types, and hence lead to a correct
labelling.

A further option to incorporate more regional context into the
classification process are CRF with higher order potentials. Na-
jafi et al. (2014) set up a non-associative variant of this approach
for point clouds. They first performed a segmentation and then
applied the CRF to the segments. Overlapping segments in 2D
were considered by a higher order potential. The authors addi-
tionally modelled the object class relation in the vertical direc-
tion with a pattern based potential. This is useful for terrestrial
scans, but in the airborne case the derived features for the vertical
are not very expressive due to missing point data for example on
facades. Although higher order potentials are becoming more and
more important, it is still difficult to apply them to point clouds
(in particular for point-based classification) due to the extensive
computational costs. Inference for such models is a challeng-
ing task and up to now only very few nodes can be combined to
form a higher order clique for non-associative interaction models
which currently restricts the expressive power of this framework.
In the case of Najafi et al. (2014) only up to six segments were
combined to one higher order clique to deal with this problem.
Xiong et al. (2011) showed how point-based and region-based
classification of LiDAR data can interact in a pairwise CRF. They
proposed a hierarchical sequence of relatively simple classifiers
applied to segments and points. Starting either with an indepen-
dent classification of points or segments, in subsequent steps the
output of the previous step is used to define context features that
help to improve the classification results. In each classification
stage, the results of the previous stage are taken as input, and,
unlike with a single CREF, it is not guaranteed that a global op-
timum is reached (Boykov and Jolly, 2001; Kumar and Hebert,
2006). Luo and Sohn (2014) applied two asymmetric (pairwise)
CREF for short range and long range interactions separately on
terrestrial scan line profiles and evaluated the experiment on a
terrestrial laser point cloud. The final label for each laser point is
determined by finding the maximum product of both CRF poste-
riors. While the short range CRF has a smoothing effect on the
point labels, a CRF for long range interaction models the struc-
ture of the scene. It was found that the introduction of the long
ranges context was able to eliminate some misclassification er-

rors such as trees on buildings or buildings on the top of trees. In
our application of classifying airborne LiDAR data (Niemeyer et
al., 2014), we observed similar confusion problems in the results
of a CRF operating on points only locally.

The aim of this paper is to present and investigate a new two-stage
CRF framework, which was inspired by the approaches of Luo
and Sohn (2014), Xiong et al. (2011), and Albert et al. (2014).
The latter work described a two-step method for the land use and
land cover classification based on another kind of data, namely
aerial images. Both of our CRFs for the point cloud classifica-
tion make use of the complex, asymmetric interaction model, and
hence learn all joint probabilities of the classes. The first classi-
fication step operates on individual points, referred to as CRFp,
in order to avoid the smoothing effects of a segmentation. Based
on these results a segmentation is performed taking into account
the actual class labels. The results represent the input for the sec-
ond CRF-based classification (C'RFs), in which the nodes in the
graph correspond to segments. The intention of this framework is
to incorporate local as well as long range context. Wrongly clas-
sified points of C RF'p can then be correctly labelled by using this
additional information. Therefore, two interaction potentials are
trained in CRFs: one for the local neighbourhood and another
one for more regional context. We distinguish between the eight
classes natural soil, road, gable roof, flat roof, cars, low vegeta-
tion, trees, and facades &fences and present preliminary results.

2. CONDITIONAL RANDOM FIELDS

We start with a brief overview of the CRF, which belong to the
family of undirected graphical models. The underlying graph
G(n,e) consists of nodes n and edges e. We assign class la-
bels y; to each node n; € n based on observed data x. The vector
y € 2 contains the labels y; for all nodes, and hence has the same
number of elements as n. The amount of object classes to distin-
guish is indicated by c. The graph edges e;; are used to model
the relations between pairs of adjacent nodes n; and n;, and thus
enable representing contextual relations. For that purpose, edges
link each node n; to adjacent nodes (n; € INV;). The actual defini-
tions of the graphs we use in our method is explained later. They
are different for CRFp and CRFs.

CREF are discriminative classifiers that model the posterior distri-
bution p(y|x) directly (Kumar and Hebert, 2006):

plyx) = ﬁ (H ¢i(x,y) - [ ] %f)ij(xyyz‘:y;‘)) Y

i€En i,j€e

The two terms ¢; (X, y;) and 5 (X, y;, y;) in Eq. 1 are called the
unary and pairwise potentials, respectively. e is the set of edges
for the adjacent nodes n; and n;. The partition function Z(x) acts
as normalisation constant, turning potentials into probabilities.

In the unary potentials, the data are represented by node feature
vectors hi(x). For each node n; such a vector is determined tak-
ing into account not only the data x; observed at that point, but
also at the points in a certain neighbourhood. The particular defi-
nition of the node features used in our experiments are described
in Sections 3.1 and 3.3. Using these node feature vectors h;(x),
the unary potential ¢;(x, y;), linking the data to the class labels,
determines the most probable label of the c classes for a single
node given its feature vector. ¢ is modelled to be proportional to
the probability for y; given the data:

#i (%, y:) o< p(yilhi(x)). )
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This is a very general formulation which allows to use any dis-
criminative classifier with a probabilistic output for the unary po-
tential (Kumar and Hebert, 2006). In this work, we chose a Ran-
dom Forest (RF) classifier (Breiman, 2001) for the computation
of the unary potential.

An RF is a bootstrap ensemble classifier based on decision-trees.
It consists of a number 7" of trees grown in a training step. For the
generation, each internal node of any tree corresponds to a test to
find the best feature as well as the corresponding threshold to split
the data into two parts. In order to classify an unknown sample
from the dataset, each tree casts a vote for the most likely class
based on its features which are presented to the trees. Further
details can be found in Hinsch (2014). Dividing the sum of all
votes for a class by the total number of trees defines a probability
measure which is used to model the potential. The maximum
number of samples used for training, the maximum depth, the
minimum number of samples for a split, and the number of trees
in the forest are the main parameters that have to be adapted'.

The second term )55 (x, y;,y;) in Eq. 1 represents the pairwise
potential and incorporates the contextual relations explicitly in
the classification process. It models the dependencies of a node
n; from its adjacent node n; by comparing both node labels and
considering the observed data x. In the pairwise potentials, the
data are represented by interaction feature vectors g1, ;(x) which
are computed for each edge e;;. In contrast to simple models
such as the Potts model and the contrast-sensitive Potts model,
a training of all local relations between the object classes does
not only lead to a smoothing effect but is also able to learn that
certain class relations may be more likely than others given the
data (Niemeyer et al., 2014). In this case the potential is modelled
to be proportional to the joint posterior probability of two node
labels y; and y; given p,;(x):

Vi (%, Yi, ¥5) < p(Yi, Yslps5(X))- 3)

This information is used to improve the quality of classification,
with the drawback of having to determine more parameters. We
apply an RF classifier to obtain the probabilities for the interac-
tions in a similar way as to the unary potentials. The only differ-
ence is that now c? classes are trained and distinguished for the
pairwise potential because each object class relation is considered
to be a single class.

In the context of graphical models, inference is the task of de-
termining the optimal label configuration based on maximising
p(y|x) for given parameters. For large graphs with cycles exact
inference is computationally intractable and approximate meth-
ods have to be applied. We use the max-sum version of the stan-
dard message passing algorithm Loopy Belief Propagation (LBP)
(Frey and MacKay, 1998). Independent RF classifiers have to be
trained for the unary and pairwise potentials. In order to learn
the interactions of object classes, a fully labelled reference point
cloud is needed.

3. FRAMEWORK

In computer vision and remote sensing, it was shown that typical
structures of man-made objects can be used as contextual knowl-
edge to improve classification results (Lim and Suter, 2009; Luo
and Sohn, 2014). For instance, objects are often regularly dis-
tributed and have a certain relative arrangement. This informa-
tion can be used to further increase the detection rate of these

1OpenCV Reference - Random Trees, http:/docs.opencv.org/
modules/ml/doc/random) _trees.html (accessed 15/01/2015).

objects. In our previous approach (Niemeyer et al., 2014), these
structures could not be modelled due to the computational com-
plexity, because too many interactions would have been neces-
sary. In order to avoid this computational intractability, we first
apply the point-based classification (C'RF'p) and introduce a sec-
ond CRF based on segments (C'RF’s), which is applied after the
first stage. For the second CRF a segmentation is necessary. The
final label for the segment is then assigned to each point belong-
ing to this segment. The basic idea and main motivation of this
framework is that some remaining classification errors of CRFp
might be eliminated by utilising more regional context informa-
tion between segments instead of points. For example, the typical
surrounding of trees might be modelled in this case in order to de-
tect and correct roof points which were wrongly classified as tree
canopy. This kind of error appeared a few times in Niemeyer
et al. (2014) due to the features of those points. Locally the pla-
narity of the points is high, because the LiDAR data was obtained
in summertime under leaf-on conditions. Nearly all of the laser
pulses are reflected from the canopy and do not penetrate the tree
far enough to recognise points within the trees. This appearance
is similar to that of building roofs and the points are often classi-
fied as building. This problem is difficult to solve incorporating
only a local, point-wise neighbourhood. The second stage C RF's
operating on segments, and, hence, on a larger region, might learn
that a small building segment (obtained from C'RF’p) surrounded
only by tree segments is likely to be labelled as tree instead. Of
course this assumption requires a good segmentation, because the
segments are the entities for C RF's and the basis for new fea-
tures.

By applying this sequential approach, context can potentially be
introduced in two ways. On the one hand, contextual features
may represent the local and the regional neighbourhood. For in-
stance, a histogram of the number of segments per object class
in a predefined neighbourhood might support a correct classifi-
cation of a segment in CRFs. The distance to other segments
of a certain object type, such as the distance of a building to the
closest street, can also be taken into account as a contextual fea-
ture. Up to now, these kinds of features have not been imple-
mented. The features we use are explained in Sections 3.1 and
3.3. On the other hand, larger scale context is additionally intro-
duced by the interactions of the two graphical models. While lo-
cal interactions are mainly modelled by the point-based CRFp,
the segment-based C'RFs is able to represent long range interac-
tions of regional level.

In the following subsections the three components C RFp, seg-
mentation, and C RFs are described in more detail.

3.1 Point-Based Classification C RFp

In the case of the point-based classification, each point repre-
sents a node of the graph and is linked by edges to its k nearest
neighbours in 2D. This corresponds to a cylindrical neighbour-
hood which was identified to be more expressive than a spherical
neighbourhood (Niemeyer et al., 2011).

After constructing the graph, a node feature vector h;(x) consist-
ing of 36 elements is extracted for each node n;. The features,
which have been shown to lead to good results (Chehata et al.,
2009; Niemeyer et al., 2014), are:

1. intensity;

2. ratio of echo number per point and number of echoes in the
waveform (a point cloud with multiple echoes is used, see
Section 4.1);

3. height above DTM;
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4. approximated plane (points in a spherical neighbourhood of
1 m radius are considered): standard deviation and sum of
the absolute residuals, direction and variance of normal vec-
tor;

5. variance of point elevations in a cylinder and in a sphere of
1 m radius;

6. ratio of point density in a cylinder and a sphere of 1 m ra-
dius;

7. eigenvalue-based features in a sphere of 1 m radius: three
eigenvalues (A1, A2, A3), omnivariance, planarity, anisotropy,
sphericity, eigenentropy, scatter (Chehata et al., 2009);

8. point density in a sphere of 1 m radius;

9. principal curvatures k1 and £2, mean and Gaussian curva-
ture in a sphere of 1 m radius;

10. variation of intensity, omnivariance, planarity, anisotropy,
sphericity, point density, number of returns, k1, k2, mean
curvature, and Gaussian curvature in a sphere of 1 m radius.

The DTM for the feature height above DTM is generated using
robust filtering (Kraus and Pfeifer, 1998) as implemented in the
commercial software package SCOP++>. To derive the interac-
tion feature vector ,;;(x), we concatenate the original feature
vectors h; (x) and h; (x) of both nodes to one vector described by
70 elements. All features of nodes and interactions are scaled to
the range [0,1].

3.2 Segmentation

Based on the results of the point-based classification, segments
are extracted in the next step. For this task, a Conditional Eu-
clidean Clustering (Rusu, 2009) is applied as implemented in the
Point Cloud Library (Rusu and Cousins, 2011). It is a variant of
a region growing algorithm connecting points which are close to
each other and meet additional conditions. In our case the points
are allowed to have a distance of dy,q and must have the same la-
bel from the point-based classification to be assigned to the same
segment. There is no minimum size for the segments in order
to consider each point. This leads to a segmented point cloud
with the advantage of having a prior for the semantic meaning
for each entity, potentially enabling the extraction of more mean-
ingful features for a following segment-based classification.

The prior information about the class labels makes it possible to
process the classes differently and introduce more model-based
knowledge. On the one hand, for example, classes consisting of
planes can be segmented by a RANSAC plane detection model.
Large segments detected by the Conditional Euclidean Clustering
step can be split up then, enabling a more accurate extraction of
the features such as the normal vectors and planarity. In our study,
this is performed for gable roofs which are comprised of two roof
planes in most cases. On the other hand, it is also possible to
merge small segments which might represent one larger plane.
We combine the segments of facades which are not detected as
a connected segment in the first clustering due to a lower point
density in these areas.

3.3 Segment-Based Classification C RFs

The segments generated in the way described in Section 3.2 are
the main entities for C'R F's and represent the nodes in this second
graphical model. It is advantageous not to apply only one single
model for the interactions but to introduce a distance-dependent
interaction model as reported by Luo and Sohn (2014). We intro-
duce two types of edges, namely edges for close range (e.r) and

2http://www.trimble.com/imaging/inpho.aspx ?tab=Geo-Modeling_
Module

edges for long range interactions (e;). The indices i and j in the
interaction potential of Eq. 1 indicate that the type of interaction
potential may vary with the relation to certain edges. Correspond-
ingly the interaction potential of C'RF's consists of the two terms
1er for close range and 1)y, for long range interactions, respec-
tively. The model is described by

[Ie: II va- I] o). @

1

plylx) = m ‘ p p
1EN 1,J€ecr ,J€er,
The parameters of the potentials are the same as in Eq. 1. Both
interaction potentials are designed by RF classifiers in this study
and have to be trained separately. The motivation for the separa-
tion is that two different interaction types should be considered
in CRFs. On the one hand, we want to model expressive local
edges in order to obtain a good result. They have a high influence
on the output. For this classifier, two segments are linked by an
edge if points of one segment lie within a sphere of a radius 7.
On the other hand also the geometric arrangements in a coarser
scale should be considered as it was reported to introduce helpful
information, (e.g. He et al., 2004; Lim and Suter, 2009; Gould
et al., 2008). The aim of the second interaction potential v, is
to model these relations. In this case, a larger neighbourhood is
obviously considered. Long range interactions for the graph are
introduced by linking segments that are outside of r., but having
points within a radius of 7;.. Potentially they can be extended to
cover the entire scene if good contextual long range features are
available.

The availability of segments enables us to extract a new set of
features for nodes and interactions. Computing the mean values
and standard deviations of all point features within a certain seg-
ment is one option. In particular the heights and their variations
are important. Taking into account the eigenvalues as well as the
normal vectors is useful to separate free segments from roofs, for
example. Furthermore, more expressive segment-based features
such as the number of points or the maximum difference in point
elevation within one segment can be used. We construct the fol-
lowing feature vector with 20 elements for nodes:

Ju—

. means of point-based eigenvalues (A1,mean — A3,mean);

. mean and standard deviation of point-based normal direc-
tions;

. mean of point-based residuals of an approximated plane;

. number of points in segment;

. mean and standard deviation of point-based intensity values;

. mean and standard deviation of point-based height above
DTM;

. maximum difference in elevation in one segment;

. means of the resulting point-based C' RF'p class beliefs per
segment.

(o) NV, T SN OS) N

[c BN

The interaction feature vector is again based on the concatenation
of the two adjacent node feature vectors. However, the beliefs
are not taken into account for the interactions, which results in an
interaction feature vector consisting of 24 elements.

4. EXPERIMENTS
4.1 Test site
The performance of our method is evaluated on the LiDAR bench-

mark data set of Vaihingen, Germany (Cramer, 2010) from the
"ISPRS Test Project on Urban Classification and 3D Building
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Reconstruction’ (Rottensteiner et al., 2014). The data set was
acquired in August 2008 by a Leica ALS50 system with a mean
flying height of 500 m above ground and a 45° field of view. The
average strip overlap is 30 % and the point density in the test ar-
eas is approximately 8 points/m?. Multiple echoes and intensities
were recorded. However, only very few points (2.3 %) are mul-
tiple returns, as the acquisition was in summertime under leaf-on
conditions. Hence, the vertical point distribution within trees is
such that most points describe only the canopy.

Figure 1. Test sites of scene Vaihingen. ’Inner City’ (Area 1,
left), "High-Riser’ (Area 2, middle) and ’Residential’ (Area 3,
right) (Rottensteiner et al., 2014)

For this study, three test sites with different scenes are considered
(Fig. 1). Area 1 is situated in the centre of the city of Vaihingen.
Dense, complex buildings and some trees characterise this test
site. Area 2 consists of a few high-rising residential buildings
surrounded by trees. In contrast, Area 3 is a purely residential
neighbourhood with small, detached houses.

We manually labelled the point cloud of the three test areas to
enable an evaluation of the 3D classification results. The com-
bined point cloud consists of 780,879 points. Additionally, fully
labelled training data are required to learn the joint probabilities
of the classes. Here, we have two training sets 7'1 and 72 lo-
cated directly in the East of test areas 1 and 3, respectively, with
94,405 points in total. One set, 7'1, is used to train the point-
based C'RF'p and classify the three test areas as well as the other
training set 7'2. The latter is then segmented based on the classi-
fication result in a similar way as the test areas. The difference is
that points are only combined to one segment if 1) they have the
same classification label and 2) the reference label of the training
data does not change. Afterwards, the label of the reference is
assigned to this segment, preventing ambiguity.

4.2 Parameters

The following section describes the parameters used in this study.

For the construction of the graph in C RFp, each point is linked
to its k = 4 nearest neighbours in 2D, which is a good trade-off
between accuracy and computational time. In case of the CRFs,
the linking of segments is a bit more complex due to the two in-
teraction potentials. We use a kd-tree searching for neighbouring
points within a sphere and having a different segment ID than
the currently investigated point. We found r., = 1m to be a
good value because only direct neighbours are to be considered
for ¢.,. In the training step, it is learned that certain class re-
lations do not appear in this local neighbourhood. For example,
there is no link between a car segment and a gable roof segment,
whereas a car is likely to be situated close to a road or another
car segment. Long range edges are constructed for segments that
have a distance of more than r., and less than r;,- = 20 m, and
that consist of at least 10 points, making the edges more robust
and expressive. In order to make the obtained potentials of rela-
tions to objects located further away comparable to those of the

local neighbourhood, a distance-dependent weight is introduced.
Starting at r., with 100 % it linearly decreases in relation to the
distance down to 30 % at r;,.. These values have been found em-
pirically; they might of course also be learned in the future.

All potentials used in this study are modelled with RF classifiers.
As RF optimize the overall error rate, a class with many samples
might lead to a bias in the training step. Thus, the training set
is balanced by randomly selecting the same number of samples
for each class (Chen et al., 2004). In case of the C RF'p, two RF
classifiers have to be learned on the training data for the unary and
pairwise potentials. The first one distinguishes eight classes and
the latter classifies 64 different object class relations. We use 100
trees with 10,000 training samples for each class, and a maximum
depth of 25 in both cases. For C' RFs, we train three independent
RF classifiers (one for the unary potential ¢, one for ., and one
for 1)i,, respectively). We use 400 trees with a maximum depth
of 25 in each case. For the unary potential classifier, 5,000 sam-
ples are used per class, whereas both pairwise potential classifiers
11 and ¢y, are generated on 2,000 samples to train the 64 class
relations. The maximum depth is 25 and the minimal number of
samples to perform a split is 2 for each RF. Moreover, the number
of the random feature subset is set to the square root of all input
features, following Gislason et al. (2006).

In the segmentation process, a threshold parameter for the dis-
tance in the Euclidean Clustering algorithm is needed. Points are
connected to one segment if dmaee < 1m. The used distance
threshold for the RANSAC plane detection to separate the gable
roof segments is 0.2 m.

4.3 Preliminary Evaluation

In order to obtain a first qualitative evaluation of our framework,
we classified the three test sites with both CRFs as described in
Section 3. The final confusion matrix for the point labels after the
second, segment-based C'RF’s is shown in Tab. 1. Completeness,
correctness as well as quality values per class are also reported.
Rutzinger et al. (2009) defined the quality as

1
Completeness ! + Correctness > — 1"

Quality = (5

The overall accuracy (OA) for the three areas is 80.5 %, which
is a reasonable result for the challenging areas and the separation
of eight different object classes. The influence of the amount of
classes c on the OA is discussed in Section 4.4. It is easy to see
that the accuracies in terms of completeness and correctness for
the object classes vary significantly.

Best classification results were obtained for gable roof and road
with high completeness (> 90 %) and correctness (> 87 %) val-
ues, resulting in high quality values. Natural soil, buildings with
flat roofs as well as trees are more challenging and achieve qual-
ity values of 66-68 %. Most classification errors appear for low
vegetation, cars and facades. These classes, which are not so
prominent in the data set, have lower quality values between 26-
40 %. Since these classes are not represented by many points
in the point cloud, a few misclassifications have a strong influ-
ence on the completeness and correctness values. In Niemeyer et
al. (2014) it was shown for a point-based CRF that these small
classes particularly benefit from the context, and were improved
compared to a common, non-contextual classifier. However, it is
still challenging to detect them reliably.

Table 1 additionally provides a comparison to the point-based
classification C RF'p. The difference is shown in brackets for
the accuracy values. Positive values correspond to a better result

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-W2-141-2015 145



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W2, 2015
PIA15+HRIGI15 — Joint ISPRS conference 2015, 25-27 March 2015, Munich, Germany

Reference\Class H Natural Soil [ Road [ Gable Roof [ Low Veg. [ Car [ Flat Roof [ Facade [ Tree “ Correctness
Natural Soil 18.6 2.3 0.0 1.0 0.0 0.4 0.2 0.1 822 (4.2)
Road 33 24.1 0.0 0.1 0.1 0.0 0.0 0.0 87.3 (-0.2)
Gable Roof 0.0 0.0 13.7 0.1 0.0 0.8 0.1 0.8 89.2 (0.4)
Low Veg. 0.7 0.1 0.0 2.6 0.1 0.1 0.3 0.4 61.0 (-0.3)
Car 0.1 0.0 0.0 0.1 0.4 0.1 0.0 0.0 54.7 (0.0)
Flat Roof 0.0 0.0 0.1 0.2 0.0 5.5 0.0 0.4 87.7 (0.0)
Facade 0.3 0.1 0.3 1.1 0.0 0.5 1.7 1.3 32.4(0.8)
Tree 0.3 0.1 0.4 2.5 0.0 0.2 0.5 13.8 77.9 (0.1)
Completeness 80.0 90.4 94.0 34.8 59.5 73.0 60.1 82.1 Overall Accuracy:

0.2) (3.0) (-0.3) 0.4) (1.0) (1.0) (-0.5) (0.6) 80.5

(1.0)

Quality 68.2 79.9 84.4 28.4 39.9 66.2 26.6 66.6

@3.D (2.4) .1 0.2) 0.5) (0.8) 0.5) | 0.4

Table 1. Confusion matrix of C RFs for the three test sites in [%]. The comparison to C RFp is shown in brackets. Values in green

correspond to a better result of CRF’s.

of CRFs. Only four of the 16 values were decreased slightly
by the segments (correctness of road and low vegetation as well
as completeness of gable roof and facade, respectively). Two
more values stayed unchanged and the other ten values were im-
proved. Especially the quality values of natural soil and road
were increased by 3.1 % and 2.4 %. This result shows that both
ground classes benefit by the segment classification. The positive
influence of the two-stage approach slightly increases the OA by
1.0 % and hence improved the results of C RFp.

4.4 Discussion

A point-wise comparison of CRFs and C'RFp is shown in Fig.
2. Points being classified correctly only after the segment-wise
approach are highlighted in green, red indicates points that are
only correct for the point-wise case. For the three test areas 1.5 %
of the points are corrected by CRFs. Many of these points are
located close to buildings, most of them belong to the class natu-
ral soil. The vicinity to the building makes a correct classification
using point-wise C'RF'p difficult since only local context is con-
sidered. These ground points located next to buildings can show
slightly different features (such as the eigenvalue based features
and those based on the approximated plane) due to the presence
of the vertical facade points leading to a three-dimensional point
distribution. The same effect appears for natural soil points in ar-
eas with low vegetation. The coarser scale of C' RF’s helps to im-
prove these problems in some cases because a more stable mean
value for the segment is considered instead. One more example
is shown in Fig. 3. Here, some free points were wrongly as-
signed to the class gable roof in CRFp, but C RFs was able to
correct this mistake. In only 0.3 % of all points C RF'p is better
than CRFs. In this case the distribution of the classes is more
homogeneous and comprises mainly natural soil (40 %), low veg-
etation and facade (19 % each) as well as gable roof (12 %).

A relatively large amount of points (=20 %) was not classified
correctly in both variants. The misclassifications appear for all
reference classes, but this effect particularly arises for natural
soil, road, and trees. Moreover, the less frequent class facades
is often mixed up with zrees. One main reason is that the fea-
tures might not be discriminative enough in order to distinguish
certain classes reliably. For example a large amount of confu-
sion errors is observed between natural soil and road with 3.3 %
and 2.3 % (Tab. 1). The most important feature to separate these
classes is the intensity. However, even in the original data, it is
sometimes difficult for a human operator to find the exact class
boundaries because the intensity values are very similar. An ex-
ample is given in Fig. 4 showing an intensity coloured subset of
a point cloud as well as the corresponding orthophoto. Although
the parking spaces are sealed surfaces and thus belong to the class
road, the intensity values are clearly different and better point

(b) Area 2

correct classification of CRFs only \
correct classification of CRFponly |

(c) Area3

Figure 2. Point-wise comparison of the results obtained by
CRFS and CRFP.

to the class natural soil. A solution might be to combine both
classes and introduce only one class ground instead. This signif-
icantly increases the OA from 80.3 % to 86.8 %. Furthermore, a
separation of gable roof and flat roof might be too detailed to be
detected correctly based on the data. Additionally merging these
classes improves the OA to 87.8 %. Moreover, it is hard to decide
whether a point belongs to low vegetation or a tree. The most im-
portant feature is the elevation of the points, but there is no clear
definition of the classes. As a consequence a combination of both
classes eliminates lots of errors and further improve the OA to
90.2 %. We see that the number of classes has a significant influ-
ence on the OA. With only 5 classes ground, roof, vegetation, car
and facade the OA increases by nearly 10 %.
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(@) CRFp (b) CRFg

Figure 3. Example of a correction by CRFs. In 3(a) some tree
points (green) are wrongly labelled as gable roof (red) in CRFp.
In the segment-based case in 3(b) this problem is partly corrected.

Intensity

Figure 4. Echo intensity of road and natural soil. The parking
spaces are highlighted in the orthophoto.

The relatively simple segmentation algorithm performs reason-
ably well when also applying the two post-processing steps for
the classes gable roof and facade. It has turned out that a post-
processing for all segments of the class gable roof is useful. In
many cases both parts of a building are detected as one single
segment. In order to obtain expressive features for each segment,
these large segment is divided into several parts by a RANSAC
plane detection algorithm. After this step each plane of a build-
ing is represented as a separate segment, which mainly influences
the calculation of the normal vector and the planarity for each
segment. The quality of the facade segments also benefit from
the additional RANSAC post-processing by merging the points
with a lower point density. However, there are still some aspects
concerning the segmentation that can improve the overall perfor-
mance in the future. There are currently too many small seg-
ments, making it difficult to derive features such as the size of the
area, segment normal vector etc. Another example are trees be-
cause sometimes only one segment was detected for several trees
located closely next to each other. This problem also influences
the calculation of the normal vectors per segment. An option to
cope with this problem is to apply a single tree detection based
on a canopy height model. As fagade points tend to be classified
as tree, the generation of larger facade segments is more chal-
lenging. Here the segmentation with the Conditional Euclidean
Clustering in its current state is not sophisticated enough because
only points with the same label are connected to one segment.
Thus, the final label of C'RF'p is a too restricting feature to sep-
arate the classes. One solution is to use the beliefs (or the mar-
gin between the most and the second likely class) instead to set
up a softer decision in the case of two classes being comparably
likely. Moreover, other features such as the elevation difference

can also be considered in the clustering step. We intend to ap-
ply the mentioned aspects in future work in order to improve the
segmentation.

The features used in this study are able to improve the results by
a 1 % increase in OA. However, most of the segment-based fea-
tures are simply a mean value and the standard deviation of the
corresponding point features up to know. Many more features
can be introduced for segments such as area, volume, point den-
sity, compactness, etc. A good indicator to eliminate for instance
the remaining misclassifications of gable roof assigned to tree is
to investigate the height differences at the boundary of two seg-
ments. For future work, it is also planned to introduce additional
contextual features which can be computed based on prior knowl-
edge about the segment class from the segmentation. Some op-
tions are histograms about the class distribution of neighbouring
segments, which might support the classification process. One
can think of fixing the road points of C RFp and derive a model
to describe the road. In particular the points located in the middle
of a road are detected very reliably in CRFp. A road represents
the network structure and characterises an urban area. Each ob-
ject can than be analysed in relation to the closest street and fea-
tures such as object orientation and distance to the street can be
introduced. Some kind of learned relative location prior (Gould
et al., 2008) would be interesting to integrate in this connection.
However, the implementation for a point cloud in the airborne
case is more challenging than for terrestrial images because of a
missing reference direction in the scene. This has to be defined
in advance to enable learning of the objects’ arrangement. It can
be an option to apply a kind of local relative location prior with
respect to each road segment and investigate the orientation and
distribution from objects in relation to the road. Additionally, also
the structure of the graph can be improved by setting long range
interactions only parallel to the street, for example. To conclude,
the spatial alignment between segments and objects, respectively,
should be utilised as a feature.

Nevertheless, we already achieved an improvement of the ac-
curacy by the segment-based classification. We think that this
framework provides a good potential and after investigating some
of the mentioned issues we expect a further improvement.

5.  CONCLUSION AND OUTLOOK

In this study, we have presented a two-stage contextual classifi-
cation framework for LiDAR point clouds which is able to take
into account different scales of a scene to model context infor-
mation. The first step is a point-based Conditional Random Field
(CRF) operating in a local neighbourhood. Based on these results
segments are constructed and serve as input for the second CRF
classifying the segments. More regional context information can
be incorporated by considering the segments. Two different in-
teraction potentials are trained for local and regional scales.

We evaluated the approach and obtained preliminary results which
slightly improve a single, point-based CRF in overall accuracy.
However, at the current state of the development, the full potential
of the framework is not yet exploited. Two main aspects, which
will be improved in future work, are the segmentation algorithm
and the selection of features for the nodes and the interactions.
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