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ABSTRACT: 

 

Rapid advancement in remote sensing open new avenues to explore the hyperspectral Hyperion imagery pre-processing techniques, 

analysis and application for land use mapping. The hyperspectral data consists of 242 bands out of which 196 calibrated/useful bands 

are available for hyperspectral applications. Atmospheric correction applied to the hyperspectral calibrated bands make the data more 

useful for its further processing/ application. Principal component (PC) analysis applied to the hyperspectral calibrated bands 

reduced the dimensionality of the data and it is found that 99% of the data is held in first 10 PCs. Feature extraction is one of the 

important application by using vegetation delineation and normalized difference vegetation index. The machine learning classifiers 

uses the technique to identify the pixels having significant difference in the spectral signature which is very useful for classification 

of an image. Supervised machine learning classifier technique has been used for classification of hyperspectral image which resulted 

in overall efficiency of 86.6703 and Kappa co-efficient of 0.7998. 

 

 

1. INTRODUCTION 

Hyperion instrument can capture 256 spectra each with 242 

spectral bands. (Barry, 2001; Beck, 2003 & Pengra, Bruce W, 

Johnston, Carol A,  Loveland, Thomas R , 2007) .  Hyperion 

covers the area perpendicular to the motion of the satellite 

(Kruse, F. A ,1996; Kruse, F. A., 2003; Kruse, FA, Boardman, 

2002). Land cover thematic mapping can be determined using 

remote sensing data to provide  important  information for 

performing temporal land cover change analysis (Kavzoglu, 

2009).Thus for thematic information extraction several previous 

studies employed multispectral imagery for land use/cover 

mapping application (Canty, in press ; Dixon, 2008; Huang, 

2002; Nemmour,2006). In hyperspectral image, imaging system 

such as Thematic Mapper,  Landsat Multi Spectral System or 

SPOT can be used for land surface cover features (Hong SY, 

2002; Huete AR, 2003). Supervised classification can be used 

for classification and is defined as the process of using samples 

of known classes to classify the remaining unknown pixels to 

these classes with in the image (Campbell, J. B. 1996). In 

supervised classification, estimates are derived from the training 

samples which include number of classes be specified in 

advance (Plaza, 2005; Plaza, 2009; Small, C. 2001). Using 

Hyperion hyperspectral imagery, accuracy of different 

classification approaches for land use mapping is rare in the 

literature (Du, P.,2010; Pignatti, S., 2009; Walsh, S. J., 2008; 

Wang, J., 2010).  

 

Since large number of bands is available in Hyperion 

hyperspectral image, therefore its pre-processing is different and 

is required before further analysis. The processed hyperspectral  

data can be used for different application after reducing the 

volume and dimensionality of the data. The processed 

hyperspectral data also enable traditional classification methods 

application on few selected bands having relevant information. 

In this paper pre-processing of Hyperion Hyperspectral 

orthoimage, application of Quick Atmospheric Correction , 

Principle Component analysis, vegetation delineation and 

normalized difference vegetation index, spectral profile of 

different classes and machine learning supervised classifier i.e 

spectral angle mapper will be used to achieve higher overall 

efficiency of classification. 

 

 

2. STUDY AREA  

The study area, is EO11500372005285110KF_1T. The 

Hyperion data are provided in GeoTIFF format. The Hyperion 

product includes a metadata file and multiple image bands. The 

product corner fields within the metadata files reflect the 

corners of the image area. 

 

3. DATA SETS  

The imagery is orthoimage and was acquired as a full long 

scene i.e 185-km tile and processing level  1 (L1_T). 

 

 

4. DATA PRE-PROCESSING   

Hyperion includes digital number to radiance transformation, 

radiance to reflectance conversion and atmospheric corrections 

/reflectance retrieval. 

 

4.1 DN To Radiance Conversion  

EO1-Hyperion hyperspectral image consists of number of 

continuous spectral bands, each pixel of which stored the 

energy as a digital number (DN).  Stacked image is used to 

convert DN into Radiance values. The digital numbers were 

stored as 16-bit signed integer. Image was converted into 

absolute radiance by using following equation. Each band of 

NIR (1 to 70) and SWIR (71 to 242) was divided by its scale 

factor i.e 40 and 80 respectively (Thenkabail PS, 2004a). 
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VNIR  , SWIR    

  40         80 

The image is stored in ENVI Standard format and then it is 

converted in BIL (Bit in Line) data format. 

 

4.2 Radiance to Reflectance Conversion  

To convert the radiance into reflectance, following formula is 

used on individual band and was stacked in further processing 

steps (ThenkabailPS,2004b): 

 
2

cos .s

L d

ESUN






                                                                  
 

Where 

ρp = Unit less planetary reflectance 

Lλ= Spectral radiance at the sensor's aperture 

d = Earth-Sun distance in Astronomical units 

ESUN = Mean solar Exo-atmospheric irradiances 

θs= Solar zenith angle in degrees 

Earth-sun distance was calculated using following equation  

          d= 1-0.01672*Cos (0.9856*(Julian Day-4))    (2)  

 

4.3 Quick Atmospheric Correction (QUAC) 

It is a scene based empirical approach used for the removal of 

atmospheric effects. It is based on the radiance values of the 

image/scene. QUAC model provides atmospheric correction of 

multispectral and hyperspectral imagery in VNIR to SWIR 

wavelength ranges. As compared to other methods, it used 

atmospheric compensation factors directly from the information 

contained within the image scene, without ancillary 

information. It has relatively faster computational speed as 

compared to other methods. QUAC provided better retrieval of 

reasonable reflectance spectra even if an image didn’t have 

proper wavelength or radiometric calibration or solar 

illumination intensity be unknown (Agrawal, 2011). Pre-

processing on the hyperspectral Hyperion orthoimage imagery 

was carried out by using the Hyperion tool.sav toolkit and was 

converted in ENVI into ENVI format files that contain 

information of bad band, wavelength, full width half maximum. 

Subsequently QUAC is applied in ENVI to provide atmospheric 

correction to hyperspectral imagery in VNIR to SWIR 

wavelength ranges. QUAC will provide better results for further 

processing. 

 

 

5. RESULTS AND DISCUSSION 

Hyperion orthoimage raw data analysis revealed that out of the 

total of 242 bands, 44 non calibrated bands have zero values 

which are set during level 1B pre-processing. Zero band values 

are bands from 1 to 7, bands from 58 to 76 and  bands from 225 

to 242.  Resultantly, 198 bands were established to be useful for 

further analysis.  

 

Bands 77 and 78 were removed having low Signal to noise 

value (Datt B, 2003). Water absorption bands 120–132, 165–

182, 185–187, 221–224, were removed (Beck, 2003). A total of 

155 calibrated bands are available for further processing since 

bands 1-7, 58-78, 80-82, 120-132,165-182,185-187,221-241 

are already removed. Thus quick atmospheric correction was 

applied on remaining 155 calibrated Hyperion imagery. Since 

imagery is Hyperion orthoimage so no further processing is 

required. 

 

5.1 Principal Component Analysis 

PCA was applied on the Atmospheric corrected data set of 155 

bands of Hyperion orthoimage. As shown in Table 1, First 10 

PCs contain more than 99 percent of the information in a data 

set of 155 bands. First (PC) contain 97.84 percent of the 

information. Second, third and fourth PCs contain 1.8 percent 

of the information. Thus it lead to the conclusion that the 

dimensionality of the data is around four. 

 

 

PC Eigenvalue Percentage 

Variability  

Cumulative 

Percentage 

1 151.6592     97.84 97.84 

2        98.99 1.7765 1.15  98.99 

3 0.6685 0.43 99.42 

4 0.1931 0.13 99.55 

5 0.1520 0.09 99.64 

6 0.0645 0.05 99.69 

7 0.0569 0.03 99.72 

8 0.0468 0.03 99.75 

9 0.0377 0.03 99.78 

10 0.0363 0.02 99.80 

 

 

Table 1. Percentage Variability, Cumulative Percentage of first 

10 Principal Component Analysis (PCA) of Hyperion 

orthoimage 

 

 

The PC1 band contains the largest percentage of data variance 

and is highly uncorrelated. PC2 band contain the second largest 

and PC3 contain the third largest data variance and is  also 

uncorrelated. PC4 to PC10 bands appear noisy as they contain 

very little variance. PC1, PC2 and PC3 can be used to produce 

more colourful colour composite images than spectral colour 

composite images because the data of PCs bands are highly 

uncorrelated.  

 

 
 

PC1 

 

 

(1) 
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Figure1.  Principal Component (PC) image display (a) PC1  

(b) PC2 (c) PC3 (d) PC4 (e) PC5 (f) PC6 (g) PC7 (h) PC8 

(i) PC9 (j) PC10 

 

5.2 NDVI (Normalized Difference Vegetation Index) and 

Vegetation Delineation   

The surface was covered with many different features which 

include rocks, vegetation cover, water body and roads. Large 

area was covered with vegetation class. It was necessary to 

mask out the vegetation areas. For this purpose NDVI was 

calculated and vegetation was delineated. Generalized formula 

for NDVI is as follows: 

 

                          NDVI = NIR-Red      (3)                     

                                       NIR+ Red                     

 

 

For calculating NDVI for Hyperion this formula was 

transformed as follows: 

 

925.404 650.6727 925.404 650.6727( ) / ( )    
       

 

Vegetation was classified into three broad categories i.e sparse, 

moderate and dense. The area under study is covered and 

divided with no vegetation, sparse, moderate and dense 

vegetation as shown in the figure 2. Colour code of the study 

area of classes versus NDVI values is shown in figure 2. Google 

earth imagery having high resolution was used to verify the 

vegetation classes as shown in the figure 3. 

 

 

 
 

 

Figure 2.  NDVI Vegetation Delineation 

 

 

Classes NDVI Colour Code 

No Vegetation -1  

Sparse Vegetation 0.12  

Moderate Vegetation 0.24  

Dense Vegetation 0.50  

 

 

Figure 3.  Classes versus NDVI values for the study area 

 

 

5.3 Spectral Profile of Water and Buildup area  

Water and build-up were also identified using the spectral 

characteristics of the features. Figure 4 and 5 shows spectral 

profile of water with radiance and reflectance respectively. 

Figure 6 and 7 shows the spectral profile of build-up area with 

radiance and reflectance respectively. 

 

 

Figure 4.  Spectral Profile of Water with radiance 

 

Figure 5.  Spectral Profile of Water With Reflectance 

 

(4) 
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Figure 6.  Spectral Profile of Build-up area with radiance 

 

Figure 7.  Spectral Profile of Builup area with reflectance 

 

5.4 Hyperion Classification 

 
A pixel based supervised classification using spectral angle 
mapper was carried out on an Hyperion orthoimage. Firstly 
classes i.e water, build-up, and soil were formulated. Secondly 
training samples of each of the above mentioned class were 
collected from the Hyperion orthoimage. Selection of the 
training samples was supported by the familiarity with the study 
area and guided by photo interpretation of the aerial imagery. 
The training samples were taken where land cover change is 
prominent. Thirdly, the spectral angle mapper classifier was 
developed and implemented in ENVI using the training samples 
collected in the preceding steps. 

 
 

 
 
Figure 8. The Acquired Hyperion Orthoimage (top image) 
and Subset of Acquired Hyperion Orthoimage (bottom 
image) covering the studied area  

 

5.5 Classification Accuracy Assessment 

 
Classification accuracy assessment was developed and 
implemented in ENVI based on the confusion matrix analysis of 
the maps produced from the implementation of the spectral 
angle mapper classification technique on the Hyperion 
orthoimage. Thus overall accuracy and Kappa coefficient were 
calculated. 

 

Overall Accuracy = (3186/3676)  86.6703%   

Kappa Coefficient = 0.7998 

Ground Truth (Pixels)   

Class  Water Buildup 

Area 

Soil Total 

Unclassified 154 1 3 158 

Water 1319 0 0 1319 

Buildup Area 0 645 260 905 

Soil 0 72 1222 1294 

Total 1473 718 1485 3676 
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Ground Truth (Percent)   

 

Class Water Buildup 

Area 

Soil Total 

Unclassified 10.45 0.14 0.20 4.30 

Water 89.55 0.00 0.00 35.88 

Buildup Area 0.00 89.83 17.51 24.62 

Soil 0.00 10.03 82.29 35.20 

Total 100.00 100.00 100.00 100.00 

 

 

 

Class Commission 

(Percent) 

Omission 

(Percent) 

Omission 

(Pixels) 

Omission 

(Pixels) 

Water 0.00 19.45 0/1319 154/1473 

Buildup 

Area 

28.73 10.17 60/905 73/718 

Soil 5.56 17.71 72/1294 263/1485 

 

     

Class Prod. 

Acc. 

(Percent) 

User Acc. 

(Percent) 

Prod. Acc. 

(Pixels) 

User Acc. 

(Pixels) 

Water 89.55 100.00 1319/1473 1319/1319 

Buildup 

Area 

89.83 71.27 645/718 645/905 

Soil 82.29 94.44 1222/1485 1222/1294 

 

 

 

6. CONCLUSION  

     Hyperion sensor is today the only ‘‘real’’ space borne 

hyperspectral sensor in orbit, acquiring spectral information of 

Earth’s surface objects in 242 spectral bands and at spatial 

resolution of 30 m. Out of 242 spectral bands, 155 calibrated 

bands are used for further processing. QUAC, quick 

atmospheric correction has been applied on 155 calibrated 

bands which have lowered the reflectance of the image in the 

blue and red region whereas it increases the value of reflectance 

in the NIR and SWIR region as compared to the apparent 

reflectance. Principal component analysis is applied to reduce 

the dimensionality and use the data as conventional bands. 

From the PCA, it is evident that first 10 PCs contributed more 

than 99 percent of the information. In this data set of 155 bands, 

97.84 % data variability was explained by the first (PC). 

Another 3 PCs contributed 1.8% variability. Thus the 

dimensionality of the data is around four. NDVI and vegetation 

delineation is used to for vegetation classes feature extraction. 

Spectral profiles are used for feature extraction of water and 

build-up areas of the study area. Spectral angle mapper 

classification, uses an n-D angle to match pixels to reference 

spectra  is a good approach for feature extraction. Accuracy 

assessment of the derived classification showed the overall 

efficiency of supervised machine learning classifier spectral 

angle mapper resulted in 86.6703 and Kappa co-efficient of 

0.7998 on  hyperspectral image. 
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