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ABSTRACT:  

 

There are a considerable number of mixed pixels in remotely sensed images. Different sub-pixel analyses have been recently 

developed correspondingly. A well-known method is linear spectral unmixing which obtains an abundance of each endmember in a 

given pixel. This model assumes that each pixel is a linear combination of all endmembers in a scene. This assumption is not correct 

since each pixel can only be a composition of some surrounding endmembers. Even though, a fully mathematical technique is used 

for spectral analysis, the output of the model may not represent the physical nature of the objects over the pixel under test. In this 

regard, this paper proposes a Local Linear Spectral Unmixing which is based on neighbor pixels classes. Having classified the 

image, using a supervised classifier, it is scanned through a window of an appropriate size. For each pixel at the center of the 

window, the endmember matrix is formed only based on the majority classes existed in the window. Then the amount of each  one is 

calculated. The LLSU method was evaluated on an AVIRIS data set collected from an agricultural area of northern Indiana. The 

results of the proposed method demonstrate a significant improvement in comparison with the LSU results. Moreover, due to the 

dimension reduction of the endmember matrix in this method, the computation time of the LLSU speeds up by three to eight times 

compared to the conventional Linear Spectral Unmixing method. As a result, the proposed method is efficient over the spectral 

unmixing tasks.  

 

1. INTRODUCTION 

One of  the most common techniques for extracting information 

from hyperspectral images is classification which replaces the 

value of pixels in primary images with the label of classes to 

generate thematic maps. There are different techniques for 

classifying these images from which maximum likelihood 

classification (MLC) is one of the most important and 

commonly used techniques (Li, 2007). ML hard classification is 

assigning each pixel to only one specific class according to its 

spectral characteristics (Richards, 1993a). However, satellite 

multi/ hyperspectral images are generally composed of mixed 

pixels, so that there might be several categories (corresponding 

with several classes) in one pixel (Keshava, 2002a)- (Keshava, 

2005b), (Harsanyi, 1994a), (Velez-Reyes, 2003), (Shaw, 2002). 

Versus unmixing method like LSU allows the assignment of 

one pixel to multiple classes. LSU model is a technique to 

estimate proportion of each class in every pixel. Hence it will 

bring us more additional information (Keshava, 2002a), 

(Harsanyi, 1994a), (Velez-Reyes, 2003), (Shaw, 2002), (Smith, 

1994), (Schowengerdt, 1997), (Adams, 1986). First assumption 

of this model is that every pixel is a linear combination of all 

spectra (classes) in a hyperspectral scene. This model can be 

written as: 
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where   c = the number of endmembers 

 w  = error term 

 
ia = the proportion of endmember i in pixel X 

 
is = the ith endmember  

So S  is the endmember matrix and A is the abundance 

vector. The proportion of this model has to satisfy two 

constraints in the following equations (Nascimento, 

2005a), (Manolaskis, 2003a), (Zare, 2010a), (Chang, 

2000a), (Heinz, 2001a), (Huck, 2010a): 
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It is noticeable that the probability of having all classes of the 

scene in one pixel is almost equal to zero, and every mixed 

pixel probably is a combination of surrounding spectra. In other 

words, assuming all classes gathered in one pixel is not based 

on reality. This is rooted in the fact that a mathematical model 

is used to estimate classes in a physical surface, and making 

such assumption may lead to huge errors in the results. By 

taking surrounding pixels’ spectra into account and the output 

of another classifier, we can improve the results of LSU for 

identifying probable classes in a pixel.  

 

There are different solutions to improve conventional LSU 

techniques using spectral information in surrounding pixels. 

These solutions apply supervised and unsupervised methods to 

estimate endmember’s spectra. For instance, sub-pixel mapping 

algorithm proposed by Yong Ge et al. (Yong, 2009a), partitions 

an image into 3×3 blocks and estimates proportion of each 

endmember in a mixed pixel and neighbor pixel using soft 

classification. This technique is used to prepare sub-information 
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for spatial distribution of the classes in mixed pixels. Senya 

Kiyasu et al. (Kiyasu, 2006), offered an adaptive sub-pixel 

estimation technique that applies the same solution to partition 

the surface of the image into 5×5 blocks, and then estimates the 

number of classes and spectrum for each block through an 

unsupervised method. Wataru Murakami et al. (Murakami, 

2007), also applied a semi-supervised method to estimate the 

proportion of each class in a pixel of a remotely sensed image. 

In these methods, first, a small amount of training data will be 

prepared to be used in order to identify pure pixels in the image. 

Afterward, spectrum of endmembers for each mixed pixel will 

be estimated using neighbour pure pixels through an adaptive 

method. Then, each endmember’s proportion in a mixed pixel 

will be estimated based on the endmembers’ spectrum. The 

method used in this context is a Local Linear Spectral 

Unmixing (LLSU) technique which uses the label of neighbour 

pixels generated by MLC and a window with odd dimensions to 

unmix the central pixel. For further illustration, refer to the data 

shown in Figure 1. This figure depicts a part of hyperspectral 

data set in a window including three categories (endmembers) 

A, B, and C. in which the central pixel (under-test pixel)  was 

generated from two endmembers: A and B. In this model, 

endmember matrix is only composed of three columns 

(corresponding to the three classes) and the pixel spectral 

analysis is only based on these three classes. The LLSU 

representation was able to appropriately partition the central 

pixel into two regions and find proportion of each endmember 

accurately. 

 

In the following, Section II presents the local linear spectral 

unmixing model. Experiment and results are shown in Section 

III. Conclusions and a discussion on future work are given in 

Section IV. 

  

 
Figure 1. A schematic image of a part of hyperspectral data set in a 5×5 

window including three classes 

 

2. DEVELOPING SPECTRAL UNMIXING 

MODEL 

 

Since most of the pixels in hyperspectral data are mixed, just 

the methods are successful that deal with these images 

according to their nature. For this reason, we decided to use 

unmixing methods instead of other conventional classifiers (e.g. 

MLC, SVM, and SVDD) for hard classification. On the other 

hand, the conventional unmixing methods like LSU suffer from 

aforementioned problems (i.e. neglecting of modeling the real 

imaging situation and encompassing all endmembers in a given 

pixel in its unmixing model). To provide an efficient method, 

we propose to use not only LSU for hard classification but also 

a remedy for the shortcoming of this method through utilizing 

LSU locally. Hence, we proposed a method focusing on 

endmember matrix determination that presents a real situation 

of the imaging scene for a given pixel by its surrounding 

endmembers. The scheme of the proposed method is shown in 

Figure 2. , includes the following steps: 

Atmospheric correction: in this stage, to improve accuracy, 

atmospheric correction is performed on the achieved radiance 

image to produce reflectance data cube.  

Dimension reduction: the informative bands are selected based 

on the wavelet transform to produce relevant bands for making 

use of MLC and to test the effect of dimension reduction on the 

spectral unmixing results.  

Supervised classification: in this stage, to obtain the label of 

each pixel, the supervised classification using MLC was done 

on those bands that accomplished by SBFS method.   

Local endmember selection: in this stage, for a given pixel, a 

window is determined with the size of N then the majority 

classes are accounted in that window.  

LLSU: in this stage, LSU is performed based on the 

endmember matrix obtained for a given pixel in the third stage.  

Hardening process: in this stage, the fraction maps obtained 

from the previous stage is converted to the hard classified 

image through the winner takes all method.  

 

 

3. EXPERIMENTAL RESULTS 

 

To assess the performance of the proposed method an AVIRIS 

Indiana Pine (Online), hyperspectral data set with the size of 

145 × 145 pixels is considered. This data set has 220 spectral 

bands in the range of 0.4-2.5 nm with a spatial resolution of 

20m and has 16 classes. It contains approximately two-thirds 

agricultural land and one-third forest and other elements. 20 

water absorption channels (numbered 104–108, 150–163, and 

220) were removed from the original image. In addition, 15 

noisy channels, numbered 1–3, 103, 109-112, 148-149, 164-

165, and 217-219 as observed from visual inspection [21], were 

also removed, resulting in a total of 185 channels. The Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS) Indian Pines 

hyperspectral data set and its ground truth map are also shown 

in Figure 3. Since some of the classes are too small to retain 

enough disjoint samples for training and testing, three classes, 

Alphalpha, Grass/pasture-mowed and Oats (numbered 1,7, and 

9 respectively) were leaved, retaining thirteen classes for the 

experiments including Corn-notill, Corn-min, Corn, 

Grass/Pasture, Grass/Trees, Hay-windrowed, Soybeans-no till, 
Soybeans-min, Soybeans-clean, Wheat, Woods, Bldg-grass-

green-drives and Stone-steel-towers (numbered 2-6, 8, and 10-

16 respectively). To illustrate the performance of the algorithm 

from all accessible samples 30% of samples are used as training 

data and the remaining 70% are used as test data. 
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Figure 3.   (a) The AVIRIS Indian Pine data set. (b) Ground truth of the 

AVIRIS Indian Pine data set. 

 

 

 

Figure. 2.   The end-to-end Local Linear Spectral Unmixing algorithm (LLSU) 

 

 

3.1 Dimension Reduction 

Among available methods for dimension reduction that are 

described in the literature (Fukunaga, 1990), (Green, 1988a), 

(Ifarraguerri, 2002a), (Hsu, 2000), this study uses automatic 

wavelet transform because it preserves the distinction between 

spectral signatures and those computed in an automatic fashion. 

This is due to the intrinsic properties of Wavelet Transform that 

preserve high and low frequency feature therefore preserving 

peaks and valleys found in typical spectra; hence it can be 

useful for our purpose. Here wavelet transform is applied in 

three level of decomposition. First, features are reduced from 

185 to 193, at the second level from 93 to 47 and at the third 

level from 47 to 24 channels. 

 

3.2 Experiment 1: Conventional hard classification and 

unmixing method  

The goal of this experiment is Performing MLC to achieve the 

label of each pixel (or a thematic map), studying the effect of 

the dimension reduction on the LSU results, and comparing 

with the LLSU. MLC applied on the reduced dimension data set 

with 24 bands (from wavelet transform at third level of 

decomposition). Overall Accuracy (OA) term is used to 

accuracy assessment. The obtained result is presented in the 

first row of Table 1. Moreover, the LSU is performed in full 

dimension and reduced data using NCLS and FCLS algorithms 

(Chang, 2000a), (Heinz, 2001a). Since the soft ground truth 

data was not available for this data set, after decomposition for 

both global and local LSU, fraction maps were transferred to a 

hard map. So that, the class with the maximum abundance of 

each pixel will be considered as a wining class and the whole 

pixel will be labeled with this. Results of this test are shown in 

the second row of Table 1. As demonstrated in Table 1. the best 

OA is equal to %75.37, which occurs when noisy and water 

absorption channels are removed from the data set.  

3.3 Experiment 2: Performing LLSU algorithm 

3.3.1 Case 1: In this experiment, LLSU is carried out using 

two windows of 5×5 and 7×7 sizes in the original feature space 

and reduced dimension achieved by wavelet transform. In this 

case, the best OA occurred where the 185 bands and window of 

sizes 5×5 are used. Compared to the LSU, the obtained result 

through the LLSU demonstrates 6% improvement in terms of 

OA. In contrast, the MLC has the OA of about 2% more than 

the LLSU. To overcome the shortcoming of the proposed 

method we motivated to tackle it using majority classes inside 

the windows on the thematic map.    

 

3.3.2 Case 2: In this case to improve OA, endmembers with 

less than 3 pixels in each window are omitted. This means that 

only classes with high abundance will remain for determining 

endmember matrix. Then, all steps mentioned in case 1 will be 

repeated. The results of this experiment for case 1 and 2 called 

LLSU (1) and LLSU (2) are shown in Table 1. respectively. In 

this case, the highest accuracy achieved when the window with 

the size of 5 × 5 and 185 bands are used. The OA is equal to 

86.40%, which shows up to 11.03% improvement compared to 

the conventional LSU method. Furthermore, compared to MLC 

this superiority is demonstrated by almost 3% improvement. 

 
 

Overall Accuracy   

Sample 

Size 

 

Indiana Pine 

Image data 
24 

bands 
47 

bands 
93 

bands 
185 

bands 

83.52 - - - 145×145 MLC 

M
eth

o
d

 

70.47 74.50 75.04 75.37 145×145 LSU 

80.20 77.52 77.73 81.46 5×5 L-LSU 

(1) 79.03 79.32 79.53 79.55 7×7 

84.79 85.60 85.41 86.40 5×5 L-LSU 

(2) 
81.96 83.27 82.87 82.11 7×7 
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Table 1. Results of MLC, LSU and LLSU methods in case 1 and 2 

4. CONCLUSION AND FUTURE WORK  

 

A method to improve the LSU based on the surrounding 

information was presented in this study. First, the maximum 

likelihood algorithm was used to assign labels to classes. Using 

the information provided by the algorithm for each small 

window, the proportion of each class will be determined for 

each pixel. The obtained results showed that dimension 

reduction by the wavelet transform did not lead to the 

improvement of spectral unmixing results. Therefore, wavelet 

transform is not a proper method to reduce dimensions for 

improving the LSU results. In fact, presence of all bands, for 

conducting spectral unmixing, led to positive results. Of course, 

noisy bands need to be removed in the preprocessing stage. In 

addition, limiting endmember matrix to the neighbour 

endmembers of each pixel resulted in an improvement. It is 

noticeable that, conducting local linear spectral unmixing 

process, speed up the calculation. Since soft ground truth data 

for this data set was not available, it is not possible to make 

definite conclusion about the improving estimation of the 

fraction maps. However, increasing the OA after transforming 

soft classification results to hard one implies that the 

improvement in the estimation of the sub-pixel may be 

occurred. Although the proposed method is performed in many 

steps which increase the total time of the calculations, the 

significant improvement (11% over the LSU method and 3% 

over maximum likelihood classification) is remarkable. 

 

Comparison between the accuracy of this method and the other 

methods mentioned in part 1, is the issue of the future study. 

Also, it can be the possibility to achieve better results by other 

methods for selecting features. Hence, the effect assessment of 

the band selection through supervised method on LLSU will 

study in future.  
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