
ROBUST SPARSE MATCHING AND MOTION ESTIMATION USING  
GENETIC ALGORITHMS 

 
 

M. Shahbazi a, * , G. Sohn b, J. Théau a, P. Ménard c  

 
a Dept. of Applied Geomatics, Université de Sherbrooke, Boul. de l'Université, Sherbrooke, Québec, Canada - (mozhdeh.shahbazi, 

jerome.theau)@usherbrooke.ca 
b Dept. of Geomatics Engineering, York University, Keele Street, Toronto, Ontario, Canada- gsohn@yorku.ca 

c Centre de géomatique du Québec, Saguenay, Québec, Canada- pmenard@cgq.qc.ca 
 

Commission III, WG III/4 
 
 

KEY WORDS: Genetic Algorithm, Structure from Motion, Epipolar Geometry, Image Matching, Outlier Detection 
 
 
ABSTRACT: 
 
In this paper, we propose a robust technique using genetic algorithm for detecting inliers and estimating accurate motion parameters 
from putative correspondences containing any percentage of outliers. The proposed technique aims to increase computational 
efficiency and modelling accuracy in comparison with the state-of-the-art via the following contributions: i) guided generation of 
initial populations for both avoiding degenerate solutions and increasing the rate of useful hypotheses, ii) replacing random search 
with evolutionary search, iii) possibility of evaluating the individuals of every population by parallel computation, iv) being 
performable on images with unknown internal orientation parameters, iv) estimating the motion model via detecting a minimum, 
however more than enough, set of inliers, v) ensuring the robustness of the motion model against outliers, degeneracy and poor-
perspective camera models, vi) making no assumptions about the probability distribution of inliers and/or outliers residuals from the 
estimated motion model, vii) detecting all the inliers by setting the threshold on their residuals adaptively with regard to the 
uncertainty of the estimated motion model and the position of the matches. The proposed method was evaluated both on synthetic 
data and real images. The results were compared with the most popular techniques from the state-of-the-art, including RANSAC, 
MSAC, MLESAC, Least Trimmed Squares and Least Median of Squares. Experimental results proved that the proposed approach 
perform better than others in terms of accuracy of motion estimation, accuracy of inlier detection and the computational efficiency. 
 
 

                                                                 
*  Corresponding author 
 

1. INTRODUCTION 

Sparse image matching is the main stage in many computer 
vision applications, including structure from motion (SfM) and 
robot navigation. Sparse matching is performed only on parts of 
stereo images, in which sufficient amount of information is 
available to achieve a meaningful comparison between images. 
Recent researches apply sparse matching to address a variety of 
problems. For instance, feature-based techniques of 
simultaneous localization and mapping (SLAM) rely on sparse 
matching (Hartmann et al., 2013). Also, in the indirect dense 
SLAM approaches, the tracking task is still based on sparse 
matching (Wendel et al., 2012). Besides, using sparse matches 
for external camera calibration provides the basis for almost all 
the dense matching techniques, which are based on rectified 
images (Wöhler, 2013). Real-time mosaicing of aerial images, 
particularly the images acquired from unmanned aerial vehicles, 
is also another important application, which applies the sparse 
matches for computing the sequential homographies between 
the images (Kekec et al., 2014).     
 
Since the sparse matching plays an important role in the 
mentioned applications, special care should be taken to control 
the accuracy of matching. Sparse matching techniques can be 
divided to two main categories of correlation-based and feature-
based approaches. The feature-based approach is recently 
gaining more popularity for addressing the sparse matching 
problem, because the recently-developed feature descriptors are 

invariant to many sorts of geometric and photometric 
transformations. However, even the results of feature-based 
matching are usually contaminated with a considerable 
percentage of outliers. From now on, the term "putative 
correspondences" is used to refer to the raw results of sparse 
matching, since they are the presumed matches possibly 
containing many outliers. The presence of outliers among 
putative correspondences is due to several factors. These factors 
include noisy measurements, insufficiency of local descriptors, 
and lack of distinctive texture patterns in the scene and 
existence of repetitive textures that cause high ambiguity in 
matching. In addition, the threshold value, which decides 
whether two points are similar enough to be matched, has an 
important impact on the amount of the outliers (Li and Allinson, 
2008). As a result, outlier detection should naturally be 
integrated into the sparse matching procedure to avoid the 
outliers affecting the accuracy of motion estimation and scene 
reconstruction. 
 
Generally, outlier detection techniques are based on the fact 
that correct matches (inliers) have some spatial characteristics 
in common. Therefore, the matches which are not consistent 
with such spatial characteristics can be classified as outliers. 
Consequently, the techniques of outlier detection can be divided 
to two categories based on the spatial characteristic that they 
use for detecting the inliers: i) the techniques based on epipolar 
geometry, ii) the techniques based on other spatial 
characteristics. The state-of-the-art with respect to these two 
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categories is discussed in subsections 1.1 and 1.2. Accordingly, 
the main focus and contributions of this paper are presented in 
subsection 1.3. 
 
1.1 Inlier Detection Based on Epipolar Geometry 

The idea of using epipolar geometry as the constraint to detect 
the inliers has been proposed in several studies. With this 
regard, the matching problem turns into two problems of i) 
robust estimation of epipolar geometry (motion model) from 
putative correspondences, ii) detecting the entire set of inliers 
using the estimated motion model as the constraint; i.e. the 
matches not fitting to the estimated motion model are the 
outliers. The techniques of robust epipolar geometry estimation 
can themselves be divided to two categories: i) the techniques 
that search the discrete space of matches to find the minimum 
number of inliers required for calculating the epipolar 
geometry, ii) the techniques that directly search the continuous 
space of the orientation parameters. The related work with 
respect to each of these categories is discussed in the following 
paragraphs.  
  
Random Sample Consensus (RANSAC) techniques are popular 
hypothesize-and-verify approaches in the field of robust 
estimation. Basically, RANSAC aims to determine the optimal 
motion model from an uncontaminated sample set by 
maximizing its support size. Then, the inliers can be detected as 
matches whose residuals from the estimated motion model are 
less than a given threshold. To find an uncontaminated sample 
set, successive random sampling from the putative 
correspondences is performed. By this definition, five major 
questions are involved in RANSAC-like techniques. i) Is 
maximizing the support cardinality a reasonable objective 
function when no information about the amount of the outliers 
is available? ii) How to handle the large number of random 
samples (number of RANSAC iterations) in cases where the 
inlier ratio is either unknown or very small? iii) How to ensure 
the robustness of the estimated motion model against the 
influence of the noise since it is relying on a minimal, just 
enough, subset of inliers? iv) How to control the effect of the 
degenerate solutions which naturally maximize the support 
cardinality? v) Does the threshold used to detect all the inliers 
reflect the uncertainty of estimated motion model as well? 
Some of these questions are partly answered by different 
variants of RANSAC, none of which actually try to address all 
these questions.   
  
Unlike the standard RANSAC, there are improved variants 
which use robust objective functions to determine the support 
cardinality. In MSAC, a version of RANSAC inspired by M-
estimators, inliers are scored based on their fitness and outliers 
are scored with a non-zero constant penalty. MLESAC 
algorithm maximizes the log-likelihood of the solution via 
RANSAC process by assuming that the outliers are distributed 
uniformly and the residuals distribute a Gaussian function over 
inliers. MAPSAC is also a refined version of MLESAC with 
Bayesian model estimation. Such objective functions make 
motion models with similar inlier scores more distinguishable. 
However, their main drawback is that they make certain strict 
assumptions about the distribution of the residuals either for 
inliers or outliers. 
 
The sampling strategy in RANSAC is very crucial as it 
influences the efficiency of the algorithm with respect to the 
number of RANSAC iterations and degeneracy of the estimated 
model.  To control the first factor (speed of the algorithm), two 

strategies can be taken. The first one is to enforce initial 
consistency check on the samples for improving the quality of 
the hypotheses. PROSAC method by Chum and Matas (2005) 
and GroupSAC method by Ni et al.  (2009) are the examples of 
such a strategy. The second strategy proposed in the literature 
to reduce the number of RANSAC iterations is to reduce the 
solution space by only verifying the hypotheses with higher 
probability of being optimal. These high-probable hypotheses 
can be selected by Td,d test (Matas and Chum, 2004) or bail-out 
test (Capel, 2005). In addition, the hypothesis verification can 
be performed preemptively in a breadth-first manner only for a 
fixed number of sample sets (Nistér, 2005). The main strategy 
to control the degeneracy of the solutions is to investigate the 
support of the current best solution either locally or globally. 
Lo-RANSAC method by Chum et al. (2003) and QDEGSAC 
proposed by Frahm and Pollefeys (2006) are the examples of 
such techniques. The main issue concerned with these 
techniques is that, besides adding operations to the original 
RANSAC algorithm, they mostly require supplementary 
information of the scene or the matches.  
 
As mentioned earlier, there are studies in the literature for 
robust epipolar geometry estimation that propose to search the 
continuous space of orientation parameters directly. The main 
issue with such techniques is that the space of orientation 
parameters are not bounded, specifically talking about 
translations. To overcome this drawback, the search space can 
be re-parameterized as a rotation space. Taraglio and Chiesa 
(2011) propose a genetic approach for estimating the epipolar 
geometry by directly searching the space of five relative 
orientation parameters. However, the continuous, 5-dimensional 
search-space reduces the chance of reaching the optimal 
solution with evolutionary search, specifically when high 
accuracy is required. Branch-and-bound technique has been 
used in the literature to efficiently search such a 5-dimensional 
rotation space (Hartley and Kahl, 2007). The main issue 
concerning such techniques is their vulnerability to large 
percentage of outliers (Yang et al., 2014). Besides, these 
techniques require that the cameras are intrinsically calibrated. 
This is due to the fact that they are only able to estimate the 
essential matrix and not the fundamental matrix. As a result, 
they are not suitable for image collections from unknown 
sources (e.g., images from internet).  
 
1.2 Inlier Detection Based on Other Spatial Characteristics 

In addition to the techniques of inlier detection using epipolar 
geometry, there are several methods which are based on other 
spatial criteria. Here, the related work reflecting the main ideas 
of such methods is reviewed, and the reasons why they are not 
practical in general cases are discussed. Accordingly, the inlier 
detection methods based on robust epipolar geometry 
estimation are more general than the methods discussed in this 
subsection; because they can be used for various types of 
images without being concerned about their photometric 
characteristics. 
 
Radhika et al. (2009) suggest detecting the outliers as the 
matches that have disparity values noticeably far from the mode 
of the disparity values of their local neighbours. Determining a 
reliable threshold and size of the local neighborhood is a 
concerning factor in this approach. Hasler et al. (2003) believe 
that outlying matches follow a pattern similar to the one that is 
generated by comparing two random regions of the images. 
This pattern is used to predict the error distribution among the 
outliers. However, this method may fail to define a proper error 
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distribution in images with relatively high homogeneity in one 
region and high diversity in another region. Adam et al. (2001) 
suggest that the lines between correct matches follow a typical 
orientation if the feature points in one image are rotated by a 
certain angle. The matches whose joining lines do not make 
such an orientation are recognized as outliers. However, the 
mentioned assumption is true for images taken by narrow-angle 
cameras. Likewise, Wang et al. (2010) suggest using the global 
parallax histograms of distances and angles between the 
matches to detect outliers. They assume that the peaks of the 
histograms correspond to the average distance and angle 
between correct matches. Therefore, outliers produce distances 
and angles, which are considerably far from these peaks. 
However, such methods may fail when the scene objects are 
located at considerably varying depths and orientations relative 
to the cameras. In such situations, neither the distance 
histogram nor the angle histogram does provide a unique peak. 
 
1.3 The Power of Genetic Algorithm 

In this paper, we focus on the problem of detecting inliers from 
putative correspondences based on the robust estimation of the 
epipolar geometry. To this end, we adapt the integer-coded 
genetic algorithm (GA) to accurate motion estimation and inlier 
detection. The proposed technique can be considered as an 
extension of RANSAC-like methods where random search is 
replaced with evolutionary search. The evolutionary search has 
two major advantages. First, the search is performed on a 
population of feasible solutions instead of a single initialization. 
Second, new samples are produced considering the results 
obtained via the previous samples. This causes the search 
algorithm both to locally improve the previous solutions 
(exploitation) and to globally search for new solutions 
(exploration) (Haupt abd Haupt, 2004). The genetic operators 
considered in this paper are i) integer crossover, which 
combines the position of the matches in the previous samples to 
reproduce new samples, ii) mutation, which modifies each 
solution locally to test new samples at the neighbourhood of 
previous samples, iii) random exploration, which explore the 
entire search space without considering the previous solutions 
to avoid local optima, and iv) replacement, which determines a 
new population of hypotheses from both the best solutions at 
the previous population (elites) and the genetically reproduced 
solutions. Each operator is specifically adapted to the 
requirements of the inlier detection process. 
 
Besides the evolutionary search, we have used the power of 
genetic encoding scheme for encoding the matches as a 
meaningful array of integers, instead of a random permutation 
of integers. With this regard, each match is labelled with two 
integers representing its position. Therefore, the genetic 
operators become efficiently meaningful. For example, the 
mutation operator modifies the horizontal and vertical position 
of the matches locally. In addition, instead of random sampling 
for exploring the search space, a guided sampling scheme is 
proposed. This scheme is based on the spatial distribution of the 
matches; thus, it is useful to avoid degenerate and locally 
optimum solutions.  
 
Furthermore, we have defined the cost function in genetic 
algorithm not only based on the residuals at the minimal sample 
set of inliers (from which the epipolar geometry is initially 
estimated), but also based on the fitness of the estimated model 
to the least number of inliers in the dataset, which we call the 
inlier-set of minimum cardinality. We have also considered a 
simple technique to ensure that the robust estimation of the 

epipolar geometry is performable for poor-perspective camera 
models as well.  
Once the genetic algorithm is terminated, the inlier-set of 
minimum cardinality and the re-estimated motion model using 
this set are determined. So, the last task is to calculate a 
threshold value to detect all the inliers among putative 
correspondences based on their residuals from the estimated 
motion model. To this end, the uncertainty of the estimated 
motion model and spatial configuration of the inlier-set are 
taken into account. Therefore, the threshold is determined 
adaptively without enforcing any probability distribution on the 
inliers residuals. 
 
The rest of the paper is organized as follows. The main problem 
of simultaneous inlier-detection and motion estimation is 
formulated in section 2. Section 3 describes the solution using 
the genetic algorithm, which is followed by the method of 
detecting all the inliers in section 4. The experimental results 
are discussed in section 5, and the conclusion is presented in 
section 6.  
 

2. PROBLEM FORMULATION 

In this study, the motion model is represented by the 
fundamental matrix. Therefore, the problem is formulated as 
estimating the accurate fundamental matrix by minimizing the 
sum of squared Sampson errors over an inlier-set of minimum 
cardinality. This minimum cardinality can be easily 
hypothesized without loss of generality. For instance, 
considering a data set with 60% outliers in reality, one who has 
no knowledge of the error scale can assume that at least 10% of 
the data are inliers. Generally, the least number of inliers would 
be a more relaxed assumption than the approximate ratio of 
outliers in the dataset. Therefore, the problem is first to find a 
minimal set of inliers from which the fundamental matrix is 
calculated. Then, the next step is to evaluate the optimality of 
the estimated fundamental matrix based on the squared 
Sampson distances that are calculated for all the matches. A 
fundamental matrix is optimal only and only if it minimizes the 
sum of squared Sampson errors over an inlier-set of minimum 
cardinality, for example over the best 10% of the dataset.  
 
The fundamental matrix (F) is defined by equation (1), 
assuming that the world-coordinate system coincides with the 
first camera coordinate system: 

 2 1
TF K t RK  ,   (1) 

where K2 and K1 are the calibration matrices of the second and 
the first camera respectively. (R,t) represent the rigid body 
transformation (rotation and translation) from the second 
camera coordinate system to the first one, and  t  is the anti-

symmetric matrix defined from t. Considering the fact that 
 t  is of rank 2, F is also a rank-2 matrix with zero determinant. 

Considering a fundamental matrix F, the Sampson distance, d, 
can be calculated for the corresponding points ,  x x  as the 
measure of the re-projection error (Torr and Murray, 1997).  

2 2 2 2 2 2
1 2 1 2

1 2 3 1 2 3

( ) (  ) /( )

where:

[ , , ] =  and [ , , ]

T

T T

d F F l l l l

l l l F l l l F

     

   

x x

x x

    (2) 

Within the scheme of this study, each match is labelled with 
two integers based on its position on the overlapping area of 
images, one integer for its horizontal and the other for its 
vertical position relative to other points. This labelling fashion 
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is justified later in section 3. Therefore, the whole set of 
matches can be represented by a label-set S as 

{ ( , ) |1 ,1 ,1 }S k i j k N i W j H       , where W and H 
represent the vertical and horizontal extent of the matches, and 
N is the total number of matches in the dataset. Accordingly, a 
feasible solution for estimating the fundamental matrix can be 
represented as a set   with the following definition and 
constraints: 

1 12
{1:12} {1:12} {1:12},

{ , .., |  and }i i j
i i j j i

m m m S m m
      

            (3) 

Every corresponding pair, mi, is composed of two points, the 
point 

imx  on the left image and its corresponding 
imx  on the 

right image. The matches in a feasible solution set are 
substituted in equation (4) to determine the fundamental matrix. 
In equation (4), the coordinates 

imu  and 
imu are the normalized 

homogeneous coordinates calculated from 
imx  and 

imx  in the 

normalization process using transformation matrices T  and T   
respectively (Hartley, 1997).  

11 12 13
1

21 22 23

31 32 33

 0  for {1 :12}
( , )

det( ) 0

:

i i

T
m m

T

F i
F

F

Where

F F F

F F F F T FT

F F F

 

     
 

 
    
  

u u
U

    (4) 

The coefficients of the fundamental matrix are defined only up 
to an unknown scale. Therefore, a constraint should be added to 
the elements of the fundamental matrix to prevent the trivial 
solution F=0. Several methods exist to impose such a 
constraint. Here, the eight-point algorithm is used, which 
suggests to divide all the elements by F33, leaving F33=1.  
However, this assumption (F33=1) is not realistic in case of 
poor-perspective camera models. That is, the rotation of the 
second camera coordinate system with respect to the first one is 
mainly planar (kappa rotation), and the omega and phi rotations 
are not considerable. In this case, F33 approaches zero, and the 
above-mentioned assumption fails. In this paper, we propose to 
use an arbitrary fundamental-matrix transformer in order to 
keep the conventional assumption of the eight-point algorithm 
(F33=1), and to avoid exceptions in case of poor-perspective 
camera models ( 33 0F  ). In other words, we define an 

arbitrary, non-zero, full-rank 3 3 transformation matrix ( )fT  

to bring the points expressed in the coordinates system of the 
second camera to an arbitrary coordinate system, which 
certainly forms a perspective model with the first camera. 
Therefore, we change the equation (4) as follows: 

33

 0  for {1 :12}

( , ) det( ) 0

1 0

Where:

i i

i i

T
m m

m f m

F i

F F

F

T

   
   


 

 


 





u u

U

u u

    (5) 

Thus, the final fundamental matrix (F) can be recovered using 
the following equation. 

T T
fF T T FT       (6) 

As mentioned earlier, we assume that at least J matches in the 
dataset of size N are certainly inliers. Indeed, we set the 
breakdown point of the inlier detection technique to 
( ) /N J N . Then, the optimality of the fundamental matrix is 

measured as the sum of squared Sampson distances over an 
inlier-set of size J. Therefore, the optimal fundamental matrix, 
F̂ , can be defined as in equation (7), where d is the Sampson 
distance computed using equation (2). 

2 2 2 2 2 2
1 2 1

1

ˆ arg min ( )  s.t. 
J

j J J N
j

F d F d d d d d


 
        

 
         (7) 

In summary, the main problem is to find the minimal set  of 
matches to find an optimal F, which minimizes the sum of the J 
shortest Sampson squared distances in the dataset. In theory, the 
solution space of this problem contains all possible 
combinations of twelve out of N putative matches 12( )N C . 

 
3. SPARCE MATCHING VIA GENETIC ALGORITHM 

The concluded problem can be considered as an integer, 
nonlinear problem where the variables are sets of integer pairs 
(equation (3)), and the objective function is complex and 
nonlinear (equation (7)). There are several ways to solve such a 
problem, including dynamic programming, mixed-integer 
programming and heuristic optimization. Although dynamic 
programming and mixed-integer, nonlinear programming 
provide good tools to address such problems, they still require 
considerable computational effort (Elbeltagi et al., 2005). In 
contrast, heuristic and meta-heuristic optimization techniques 
are capable of finding good-enough solutions within a 
reasonable time by applying probabilistic transition rules rather 
than deterministic ones. Accordingly, in this paper, a modified 
version of the integer-coded genetic algorithm originally 
proposed by Deep et al. (2009) is applied. Although GA is 
conventionally known to be slower than similar optimization 
methods, using its evolutionary nature with properly-defined 
operators and sampling strategies can make it much efficient. 
Besides, genetic algorithms have the advantage that they can be 
simply parallelized (Haupt and Haupt, 2004). 
 

Input
Putative correspondences 

Output 
Estimated epipolar geometry (fundamental matrix) and the entire set of 
inlier matches 

a) Genetic Algorithm 
- Input: The label-set of matches 
- Objective: Estimate the accurate fundamental matrix via finding an 

inlier-set of minimum cardinality 

1. Initialize the first population by guided sampling 
While the best solution is not improved anymore 

2. Compute F from each individual 
3. Evaluate each individual by computing the sum of the J smallest 
squared Sampson residuals (Equation (7)) 
4. Perform genetic operators on the individuals of the current 
population and reproduce the next population 
5. Save the best solution so far with the inlier-set of minimum 
cardinality (size=J) associated with it 

End while 
6. Re-estimate the fundamental matrix ( F̂ ) using the inlier-set of 

minimum cardinality from the best solution ( Î ) 

b) Estimate the uncertainty of the motion model ( ˆ
ˆ

F
 ) 

c) Estimate the average and uncertainty of the Sampson residuals (Md ,Sd) for 
Î  to determine the outlying threshold 

d) Compute and threshold the Sampson residuals on other matches to 
determine the entire set of inlier 

Table 1. The pseudo-code of the proposed sparse matching 
technique via genetic algorithm 

 
Basically, GA encodes the decision variables (chromosomes) 
into a cellular environment (e.g. binary strings, integer sets or 
real-value arrays). Then, several sub-sets of the chromosomes 
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are sampled; each combination is called an individual. A set of 
individuals form the population. In every iteration of the 
evolution, the parent individuals in the population are evaluated 
against the objective function. They keep being crossed-over, 
mutated and/or randomized based on their fitness to produce a 
new population. These iterations go on the same way until 
reaching an optimal solution, which cannot be improved 
anymore by younger generations. 
 
As mentioned earlier in section 2, each gene is a 
correspondence that is labelled with two integers from the label-
set S. This labelling fashion accelerates the hypothesis 
generation step and makes the integer mutation and cross-over 
procedures geometrically meaningful. Correspondingly, each 
individual denotes a feasible subset of matches, as a variable-set 
 , for estimating the correct fundamental matrix. 

First, GA is initialized by generating a random population of 
candidate solutions sampled across the search space of size 

12
N C .  If the sampling is done in a completely random way, 
then there is big risk to produce more degenerate solutions than 
near-optimal ones. See the example given in section 5. To avoid 
such degenerate solutions (local optima), guided sampling is 
proposed in this paper. To guide the sampling, the minimal 
rectangle containing the model area on the first image is divided 
to 12 sub-regions of equal area as in Figure 1. The density of 
each region is calculated as the number of matches enclosed by 
it, normalized by the total number of matches. For the first half 
of the population, every individual (every set   in the 
population) is made of twelve matches that are randomly picked 
up from twelve different regions. For the other half of the 
population, the matches are picked up from twelve regions, 
which are selected successively in the roulette-wheel selection. 
That is the density of a region determines its probability to 
participate in sampling. Following this sampling scheme, we 
can assure that the samples are well distributed on the whole 
model area. Figure 2 illustrates an example of putative matches 
distributed on the minimal rectangle and the roulette wheel 
corresponding to it. 

 
Figure 1. Guided sampling- finding the minimal rectangle and 

diving it to sub-regions of equal area 
 

 
Figure 2. Guided sampling based on the density of the regions 
 
Once the population is formed, for each individual the cost 
function is calculated as in equation (7), and a fitness value is 
assigned to the chromosome; the lower the value of the cost 
function, the fitter the solution. A selection operator is then 
applied to the population to allocate the instances of fitter 
solutions for entering a mating pool as parents to reproduce a 
new generation of solutions. The tournament selection is used 
here due to its higher computational efficiency over other 
selection techniques (Deep et al., 2009). Afterwards, new 

individuals are reproduced from the selected parents by 
crossover and mutation operators.  
 
The crossover operator combines the chromosomes to explore 
the search space. Two offsprings, 1offspring  and 2offspring , are 

created by combining two selected parents, 
1

1 {  | i {1:12}}par
parent im    and 2

2 {  | i {1:12}}par
parent im   , using 

the crossover operator as in equation (8). 

1
1

2
2

1 1 1 2

2 2 1 2

{  | i {1:12}}

{  | i {1:12}}

where:

( )

( )

offs
offspring i

offs
offspring i

offs par par par
i i i i i

offs par par par
i i i i i

m

m

m round m m m

m round m m m





  

  

  

  

                   (8)              

Instead of the originally proposed Laplace-distributed 
parameter by Deep et al. (2009) for i , we define it differently 

via equation (9) in order to preserve the constraints of the 
decision variables (equation (3)). Therefore, constraint-violation 
validation is not required for the produced offsprings. In 
equation (9),  0,1iu   is a uniformly distributed random 

number. 

1 2

1 2 1 2

1 2

1 2 1 2

1 2

1 2 1 2

1 1
max( , )

( , )
min( , )

1 1
max( , )

par
i i

i par par
i i i i

par par
i i

par par par par
i i i i

ipar par
i i

par par par par
i i i i

m m

m m m m

W H m N m

m m m m
u

m m

m m m m

  
 

 

  
 

  
 
  
 
   

                 (9)              

While crossover is conducted on two parental individuals, 
mutation is carried out to modify one solution randomly but 
locally via mutating an individual's genes. A mutated solution, 

mut , is created from a parent solution par  by the following 
equation (Deep et al., 2009).  

( min( )) ,

(max( ) ) ,

par par par

mut

par par par

s t u

t us

                  

                  (10)              

In equation (10), min( )

max( ) min( )
t

 


  
, u is a random uniformly 

distributed number between zero and one, and  21s s  follows 

a power distribution with s1 having a random value between 
zero and one. At any iteration, random exploration is also 
performed by generating a fixed number of individuals based on 
the sampling strategy explained earlier. Generating random 
solutions as one portion of the population reduces the chance of 
converging to local optima. 
 
The replacement strategy applied in this study can be 
considered as a combination of steady-state and elitist 
replacement methods. It helps to keep the best solutions of older 
generations and to maintain the population diversity to avoid 
premature convergence. Assume that -P  is the population of 
the last generation, +P is the population of the selected parents 
from -P , and ++P  is the population of the reproduced 

offsprings.  Accordingly, -q demonstrates the least fitness value 

among the best third quartile of individuals in -P . Therefore, 
the new population P  starts forming by the fittest individuals 
of -P  (elites).  Among the elite individuals with similar fitness, 
those whose variable-sets are formed by matches coming from 
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more distinct regions of the minimal rectangle have priority in 
the replacement. The rest of the places at P  will be occupied 
by the following replacement condition. 

-

-

if  fitness( )  
  

if  fitness( )  

i i
i

i i

P P q
P

P P q

 

 

  


   (11) 

Equation (11) implies that an offspring whose quality is worse 
than 75% of the previous solutions cannot replace its parents. 
The genetic algorithm iterates the procedures mentioned above 
until there is no improvement in the average of the elites' fitness 
values for a specified number of generations. 
 

4. INLIER DETECTION 

Once the genetic algorithm terminates, the inlier-set of 
minimum cardinality with size J is found out, Î , and the 
accurate fundamental matrix, F̂ , is re-estimated using these 
points by performing least squares adjustment on the following 
observation equations. 

33
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Geometric outliers can, now, be classified as the points that 
their residuals from the estimated fundamental matrix are more 
than a threshold. The important issue would be the way to 
determine this threshold. Conventionally, it is common to 
assume that the residuals for the inliers follow a normal 
distribution with known standard deviation σ. Standard 
RANSAC algorithms also estimate σ using maximum likelihood 
estimation based on the median of the residuals issued by inliers 
of the minimal sample set (Raguram, 2013). In this paper, 
instead of using a fixed threshold for outlier classification 
scheme, we use the uncertainty of the estimated model ( F̂ ) and 
the position of the inliers on the images to calculate an adaptive 
threshold. 
 
Referring to equation (12), the covariance matrix of the 
estimated parameters can be derived using the covariance law 

as in equation (13), where A
X




U , B

L




U  and V̂  is the vector 

of estimated residuals. 

1 1
ˆ
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ˆ ( ( ) )
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T
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                             (13) 

Knowing from equation (6) that ˆ ˆ( )T T
fF T T FT G X   , we can 

determine the uncertainty of the estimated fundamental matrix 
using the rules of error propagation as follows. 

ˆ ˆ
ˆ ˆ

ˆ ˆ

T

F X

G G

X X

             
                                (14)              

Assuming that matches are influenced by a normal 
measurement noise with a standard deviation bounded to 

max pixels, we can calculate the uncertainty of Sampson 

distances for any corresponding pair located at position 
( , )i ix yix  on the left image and ( , )i ix y  ix  on the right image 

as follows. 
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Applying equation (15) to the inlier-set Î  results in a set of 
Sampson distances. The average of these distances, 

ˆ
( )d i

i I
M mean d


 , and the average of the distance uncertainties, 

ˆ
( )

id d
i I

S mean 


 , can represent the distribution of the Sampson 

distances for the inliers. Considering Tchebyscheff’s inequality, 
at least 90% of the population is within 3.16 times the standard 
deviation from the mean, no matter what kind of probability 
distribution they are following. Therefore, every match k is an 
outlier by confidence of 90% if its residual expressed as 
Sampson squared distance, kd , is greater than ( 3.16 )d dM S  . 

 

5. EXPERIMENTS AND RESULTS 

Different aspects of the proposed approach based on GA were 
evaluated on a synthetic dataset. The dataset contained 30 
synthetic images simulated using a 3D point cloud (Figure 3). 
Gaussian noise with standard deviation of two pixels was also 
added to the image points. Using these image points, three sets 
of contaminated data with outlier ratios of 20%, 45% and 70% 
were generated. The outliers were simulated as random gross 
errors from both normal and uniform probability distributions.  
 
The results of inlier detection and motion estimation were 
compared both against the ground-truth and several other 
algorithms, including RANSAC, MSAC, MLESAC, Least 
Trimmed Squares (LTS) and Least Median of Squares 
(LMedS). For all the methods, the maximum number of 
iterations was set to 4000, except for the GA, LTS and LMedS. 
The GA algorithm converges itself when there is no 
improvement to the results. The fixed number of iterations for 
LTS and LMedS was set to 300, since generally they didn't 
improve the residuals after one or two hundred iterations. Our 
method is implemented in MATLAB directly without using the 
optimization toolbox, and all the experiments were performed 
on a standard PC with Intel-i7 2.4GHz CPU and 8GB memory. 
Parallel computing is not applied at these experiments, though 
the GA algorithm can be parallelized simply.  The efficiency of 
each algorithm was evaluated in terms of the following factors: 
- Time of processing in seconds (t) and number of iterations 
(Itr) before converging to a solution (for GA, the number of 
iterations is the number of evolution iterations multiplied by the 
population size which is set to 25), 

- Ratio of inliers (ρ) that is the percentage of the detected inliers 
from the total number of matches,  

- Accuracy of inlier detection (α), which is the proportion of 
correctly identified outliers/inliers (true positive and true 
negative) among all the points, 

- Sensitivity or true-positive rate (TPR), which is the proportion 
of correctly identified inliers among all inlier ground-truths, 

- Specificity or true-negative rate (TNR), which is the 
proportion of correctly identified outliers among all outlier 
ground-truths, 
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- Average of the squared Sampson distances for detected inliers 
(μd), which shows how well the estimated motion parameters fit 
to the detected inliers, 

- Distance between the estimated fundamental matrix and the 
reference one (DF), which is measured using the method 
described by Zhang (1998), 

- Frobenius norm of the difference between the normalized 
estimated fundamental matrix and the reference one (||ΔF||). 
 
The averages of the results for all the images in the synthetic 
datasets are presented in Table 2, Table 3 and Table 4. As it can 
be noticed, at presence of high percentage of outliers, the 
performance of GA was decreased. However, the results 
(particularly the accuracy and true positive rate) were 
considerably better than other methods. Besides, the proposed 
algorithm could deal with high ratio of outliers without 
dramatically increasing the computational effort.  
 
 GA LTS LMedS RANSAC MSAC MLESAC

t 4.72 0.25 0.26 2.98 3.06 1.43 

Itr 3584 300 300 4000 4000 1913 

ρ 31.15 9.97 50.03 19.89 16.16 4.29 

α 85.49 71.46 67.03 76.75 73.74 70.27 

TPR 77.73 19.05 78.43 44.40 33.16 7.59 

TNR 88.82 93.92 62.15 90.61 91.13 97.13 

μd 0.028492 0.011267 0.674036 0.000569 0.000659 0.000736 

DF 54.25 91.91 62.37 63.04 48.96 19.15 
||ΔF|| 0.057683 0.050766 0.055650 0.109889 0.094048 0.066350 

Table 2. Results for the synthetic dataset with 70% outlier 
 
 GA LTS LMedS RANSAC MSAC MLESAC

t 0.11 0.25 0.25 0.25 0.25 0.14 

Itr 1856 300 300 4000 4000 1802 

ρ 54.58 9.97 50.03 57.11 57.02 22.71 

α 99.11 54.64 90.78 94.71 94.99 65.42 

TPR 98.80 17.83 87.09 97.10 97.28 39.21 

TNR 99.49 99.63 95.28 91.78 92.19 97.46 

μd 0.000069 0.000055 0.037973 0.000193 0.000196 0.000554

DF 10.32 326.22 1105.68 8033.61 5216.04 532.96 
||ΔF|| 0.003664 0.044149 0.020060 0.010616 0.009662 0.048997

Table 3. Results for the synthetic dataset with 45% outlier 
 

 GA LTS LMedS RANSAC MSAC MLESAC

t 0.01 0.26 0.26 0.02 0.02 0.00 
Itr 2142 300 300 4000 4000 554 
ρ  80.01 9.97 50.03 80.08 79.87 67.04 
α 99.88 29.97 70.01 99.19 98.73 86.09 
TPR 99.93 12.46 62.52 99.55 99.13 83.21 
TNR 99.69 99.98 99.94 97.79 97.13 97.61 
μd 0.000017 0.000000 0.000003 0.000047 0.000036 0.000179 
DF 5.42 19.61 6.75 8.12 788.60 278.71 
||ΔF|| 0.005007 0.014935 0.002542 0.000809 0.004858 0.007914 

Table 4. Results for the synthetic dataset with 20% outlier 
 

The experiments also showed the fact the hypothesis generation 
via the proposed algorithm was more effective than RANSAC-
like methods. For these experiments, the useless hypotheses 
were defined as those samples which even fail to estimate the 
motion parameters. We defined this failure as the event when 
the average of 10 percent of the shortest Sampson distances 
among the whole dataset becomes more than 100. Accordingly, 
the average rates of useless hypothesis generation for GA, 
RANSAC, MSAC and MLESAC were 1.1%, 2.8%, 3.4% and 
5.1% respectively. 

 
Figure 3. The synthetic data set. The 3D point cloud at the top, 

the planimetric view of the point cloud at the bottom 
left and the thumbnails of the simulated images at 
the bottom right. 

 
For testing the efficiency of the sampling method proposed in 
section 3, we considered the two images in Figure 4. Due to the 
texture pattern on the left wall, many more features are detected 
over that wall in comparison with other texture-less walls or 
doors (see the putative correspondences in Figure 4, at left). 
Therefore, there is a great chance to pick up all the samples 
from the matches located only on this wall. As a result, the 
fundamental matrix that is calculated from the matches on this 
dominant plane will actually be a homography fitting very well 
to all the inliers on this plane, which is an example of 
degeneracy. Such a homography does not fit to the matches at 
the rest of the scene and does not estimate the camera motion 
correctly. The comparative the results obtained by applying all 
the methods to the images of Figure 4 are presented in Table 5. 
To verify the accuracy, some signalized targets were used as 
control tie points. The average of the squared Sampson 
distances on the control points (μd.CP) shows how well the 
estimated motion model fits to the inliers correctly distributed 
at the scene. As Figure 5 demonstrates, RANSAC techniques 
failed to consider the inliers outside the dominant plane for 
motion estimation. However, the genetic algorithm guided the 
sampling and evolution process in a way, which considered the 
distribution of the points. Therefore, the local optima could be 
avoided more efficiently. 
 

 
Figure 4. Stereo images at the right and putative 

correspondences illustrated at the left 
 
 GA LTS LMedS RANSAC MSAC MLESAC
t 1.14 0.38 0.27 3.15 3.12 2.09 
Itr 2800 300 300 4166 4095 3000 
ρ 74.14 9.99 50.00 16.91 17.77 15.63 
μd 0.027023 0.000311 0.012626 0.000828 0.000815 0.000877 
μd.CP 1.65 9695.29 1154.07 6628.88 34350.29 9835.40 
DF 2.63 31475.01 197.93 251.43 2025.65 2810.34 
||ΔF|| 0.000016 0.000318 0.000480 0.000227 0.001977 0.000711 

Table 5. Results for the images in Figure 4 
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Figure 5. Results of RANSAC inlier detection at the left and 

GA inlier detection at the right 
 
 

6. CONCLUSION 

In this study we proposed a modified version of integer-coded 
genetic algorithm for the problem of accurate motion estimation 
and inlier detection from putative matches. The proposed 
algorithm can be considered as a universal solution to most of 
the drawbacks involved in conventional robust estimators, 
specifically RANSAC-like methods. Based on the experiments, 
the proposed approach showed robustness to high percentage of 
outlier and, also, to non-uniformly textured images where the 
chance of degeneracy in motion estimation is high. In general, 
the method was able to detect the inliers by 85% to 100% 
accuracy, which is a remarkable success for large data sets. 
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