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ABSTRACT:

The analysis of individual trees is an important field of research in the forest remote sensing community. While the current state-of-the-
art mostly focuses on the exploitation of optical imagery and airborne LiDAR data, modern SAR sensors have not yet met the interest
of the research community in that regard. This paper describes how several critical parameters of individual deciduous trees can be
extraced from airborne multi-aspect TomoSAR point clouds: First, the point cloud is segmented by unsupervised mean shift clustering.
Then ellipsoid models are fitted to the points of each cluster. Finally, from these 3D ellipsoids the geometrical tree parameters location,
height and crown radius are extracted. Evaluation with respect to a manually derived reference dataset prove that almost 86% of all
trees are localized, thus providing a promising perspective for further research towards individual tree recognition from SAR data.

1. INTRODUCTION

The analysis of individual trees in remote sensing data until now
has mainly focused on the exploitation of aerial imagery or Li-
DAR point clouds. In this framework, many studies have been
published about the detection and localization of individual trees
(Pollock, 1996, Wulder et al., 2000, Leckie et al., 2005, Chen et
al., 2006, Chang et al., 2013) as well as the delineation of their
tree crowns (Culvenor, 2002, Pouliot et al., 2002, Erikson, 2003,
Koch et al., 2006, Jing et al., 2012). In contrast to that, the analy-
sis of forested areas on the single-tree level by means of synthetic
aperture radar (SAR) remote sensing has not yet met the interest
of the community, although modern sensors have reached sub-
meter resolutions down to the decimeter-range in recent years.
However, recently it has been shown that it is possible to gener-
ate almost fully layover- and shadow-free point clouds by means
of airborne single-pass SAR tomography using millimeterwave
sensors (Schmitt and Stilla, 2014). Therefore, in analogy to the
approaches based on 3D LiDAR point clouds, in this paper an
unsupervised segmentation of the TomoSAR point cloud aim-
ing at the reconstruction of individual trees is proposed. While,
for example, the studies of (Morsdorf et al., 2004) or (Gupta et
al., 2010) are suggesting to employ k-means clustering for tree
segmentation in LiDAR point clouds, in the presented work the
unsupervised mean-shift clustering algorithm is used. This way
the need to know the number of expected clusters and an ini-
tialization of their centers a priori is avoided and a fully auto-
matic procedure is enabled (Comaniciu and Meer, 2002), which
has already been proven for the reconstruction of buildings in To-
moSAR point clouds (Shahzad and Zhu, 2015). After clustering,
rotational ellipsoids are used to model the individual segments in
order to approximate the tree crown shapes. From these ellip-
soids the tree positions, heights and crown diameters can be ex-
tracted. This tree reconstruction strategy is evaluated using a 3D
TomoSAR point cloud, which was generated from airborne mil-
limeterwave InSAR data acquired from multiple aspect angles.

2. POINT CLOUD SEGMENTATION BY MEAN SHIFT
CLUSTERING

The basis of the method proposed in this paper is the clustering
of the 3D TomoSAR point cloud by the mean shift algorithm as

described by (Comaniciu and Meer, 2002). Since the tree crowns
generally show a comparably high point density, the points are
clustered in the spatial domain, i.e. the feature space is comprised
of spatial coordinates in Euclidian space. The kernel density esti-
mate at any point pi of the n 3D points is given by the expression

Dpi =
c

nb3

n∑
j=1

g
(
‖pi − pj

b
‖2
)
, (1)

where b is the bandwidth parameter and g (x) is a non-negative,
non-increasing, piecewise continuous function with definite in-
tegral, i.e.

∫∞
0
g (x) dx < ∞. Based on the concept of kernels

discussed by (Cheng, 1995) and (Comaniciu and Meer, 2002), the
function g (x) is defined as the profile of the radially symmetric
kernel G (x) satisfying

G (x) = cg
(
‖x‖2

)
, (2)

where c is a normalization constant ensuring thatG (x) integrates
to 1. Different kernels, such as the Epanechnikov kernel and the
Gaussian kernel can be used to define the density Dpi . Mean
shift clustering essentially seeks modes of the kernel density es-
timates and works iteratively by shifting every data point toward
the weighted mean of points within its neighborhood (defined to
be cylindrical in the presented case). The shift vector m (pi) al-
ways points towards the direction of the maximum increase in the
density Dpi and is computed as

m (pi) =

∑n
j=1 pj exp

(
− ‖pi−pj‖2

b2

)
∑n
j=1 exp

(
− ‖pi−pj‖2

b2

) − pi. (3)

The iteration process continues until there is no or only little shift
in m (pi) anymore, i.e. the length of the shift vector m (pi)
is close to 0. Due to the gradient ascent nature, the mean shift
algorithm returns clusters using the concept attraction of basin,
i.e. those points whose trajectories lead to the same mode form
the basin of attraction for that mode and are clustered into one
group. The clustering procedure is repeated until all points are
assigned to their respective modes.

Clustering via mean shift can be considered an unsupervised pro-
cedure since it does not require the number of clusters a priori,
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nor does it need any pre-defined model for the shape of the re-
sulting clusters. Nevertheless, it still does require a bandwidth
parameter (corresponding to the radius of the kernel), which af-
fects the number of clusters, i.e. the number of modes, that are
returned by the algorithm. However, unlike other clustering algo-
rithms such as k-means, fuzzy c-means, expectation maximiza-
tion etc., the bandwidth parameter exhibits a physical meaning
for variables in spatial coordinates and can be set based on prior
knowledge as, e.g., the expected average radius of the tree crowns
in the scene.

3. ROBUST MODELING OF ELLIPSOIDIC TREE
CROWNS

Since three-dimensional rotational ellipsoids can be seen as a
good approximation of deciduous tree crowns, the individual tree
clusters are modeled using generalized tri-axial ellipsoids. For
this purpose, parameters of an arbitrarily oriented minimum vol-
ume enclosing ellipse (MVEE) are estimated by first projecting
points belonging to individual tree clusters onto the xy-plane fol-
lowed by extruding the 2D xy-ellipse in z-direction to form a 3D
ellipsoid. The motivation for expanding the ellipsoid along the
z-axis is based on geometrical considerations: It is assumed that
correct tree models may have an arbitrary orientation in the xy-
plane, but remain upright or vertical with respect to the ground
(cf. Fig. 1). This is based on the light prior that tree trunks are
modeled to be vertical to the ground surface.

Computation of the MVEE

If K = {ki|i = 1, . . . ,m} denotes m clusters returned by
the mean shift algorithm, and Q = {qu|u = 1, . . . , r} de-
notes the set of r points qu belonging to a particular cluster kf
(f ∈ i), then any arbitrarily oriented ellipse ε can be a candidate
for MVEE(Q), if and only if all points in Q lie on or inside its
boundary, i.e. if the following condition is satisfied (Kumar and
Yildirim, 2005):(

qu − ckf
)T

A
(
qu − ckf

)
≤ 1 for u = 1, . . . ,m. (4)

In this equation, A is a d × d positive definite matrix, where d
refers to the dimension 2 in the presented case, and ckf is the cen-
ter of the ellipse surrounding the clustered points Q. The semi-
axes si of such an ellipse are given as

si = λ
− 1

2
i vi, (5)

where vi denote the eigenvectors of A, which correspond to the
directions of the semi-axes. λi denotes the eigenvalues of A,
which are related to the length of these axes: The length of each
axis is equal to 1√

λi

. The area of an ellipse or volume of an

ellipsoid, respectively, is thus directly proportional to det
(

1√
A

)
.

Therefore, in order to obtain an MVEE(Q), det
(

1√
A

)
has to be

minimized such that (4) is satisfied in conjunction with A being
positive definite. In order to solve this minimization, Khachyan’s
first order algorithm is used, which formulates the problem as
optimization using Lagrangian duality (Khachiyan, 1996).

The computed MVEE(Q) is extended to the third dimension by
extruding it in z-axis in order to form a 3D ellipsoid. The z-
coordinate of the ellipsoid center and its semi-axis length s3 in

(a)

(b)

Figure 1. Illustration of the ellipsoid modeling: (a) MVEE com-
puted using 3D points projected onto the xy-plane; s1 and s2 are
the computed semi-axes of the MVEE. (b) The MVEE of (a) is
extruded in z-direction both upwards and downwards forming a
3D ellipsoid with a third semi-axis denoted as s3. x′, y′ and z′

in (b) represent axes of the local coordinate system aligned to the
ellipsoid semi-axes. The red points in both (a) and (b) represent
the ellipsoid centers ckf .

z-direction are estimated by

ckfz =
1

N
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+
1

2
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)
,

(6)

where hmin,kf ,i and hmax,kf ,i (i = 1, . . . , N ) are the N lowest
heights and the N largest heights of all points in the cluster kf ,
respectively.

Once this modeling is complete, the tree parameters tree height,
crown diameter, and trunk location can directly be extracted from
the ellipsoid model: The tree height is the maximum height of
the ellipsoid in z-direction, the tree crown radii are given by the
x- and y-semi-axes of the ellipsoid, and the xy-coordinates of
the ellipsoid center point provide the location of the tree trunk.
Of course, this is a simplifying model only valid for deciduous
trees of approximately ellipsoidal shape, but an extension toward
a more general tree model as, e.g. described by (Sheng et al.,
2001) basically seems possible.
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4. EXPERIMENTS AND RESULTS

4.1 Test and Reference Data

The input data for the experiments presented in this paper is a
multi-aspect TomoSAR point cloud generated from an airborne
millimeterwave SAR dataset acquired during a flight campaign
over the city of Munich, Germany, in 2013 (Schmitt and Stilla,
2014). Using two opposing viewing directions, four images from
four simultaneously receiving antennas per pass, and a discretiza-
tion of 50 cm × 50 cm × 50 cm during processing, the resulting
3D point cloud consists of about 1.66 mio. points, corresponding
to an average point density of about 22 points/m2. As comparison
to helicopter-borne LiDAR point cloud showed (point density ca.
3 points/m2), the three-dimensional localization accuracy of the
TomoSAR points lies between 0.7 m and 1.4 m – negatively bi-
ased by systematic errors in the comparison due to different point
densities.

The test scene consists of the “Alter Nordfriedhof”, an abandoned
cemetery, which is used as a public park today. As can be seen in
Fig. 2, it is mainly characterized by a light planting of deciduous
trees, resembling a grove or little wood. The TomoSAR point
cloud is displayed in Fig. 3 (a).

Figure 2. Orthophoto of the test scene “Nordfriedhof” in Munich,
Germany.

As a reference dataset, a helicopter-borne LiDAR point cloud
containing approximately 0.16 mio. points (i.e. 3 points/m2)
in conjunction with a co-registered orthophoto was analyzed by
a human operator, who extracted tree positions, diameters and
heights manually. The result can be seen in Fig. 4. In total, the
reference consists of 570 trees with average height of 14.56 m
(median) or 12.33 m (mode), respectively, and an average radius
of 3.70 m (median) or 3.32 m.

4.2 Clustering Results

Fig. 5 compiles the clustering results for varying kernel band-
width parameter. Obviously, the optimal bandwidth parameter is
3.2 m, giving an optimal detection of 70.88% of the trees, plus
oversegmented detections (i.e. more than one cluster center for
a reference tree) at the rate of 14.91%. Thus, in total 85.79% of
all reference trees are discovered, only 14.21% are missed. In
this context, it is interesting to note that while the median tree
radius of the reference trees is 3.70 m, the mode of the tree radii
is 3.32 m. That means that only light prior knowledge about the
expected tree radii of the scene of interest is sufficient to tune the
clustering process, while keeping it otherwise fully unsupervised.

The result of the mean shift clustering of the point cloud with the
thus-determined bandwidth parameter of 3.2 m is displayed in

(a)

(b)

(c)

Figure 3. The scene shown in different processing stages: (a) The
3D point cloud as derived by multi-aspect TomoSAR data fusion;
(b) the clustered point cloud; (c) the reconstructed tree models.

Fig. 3 (b). It can be seen that the points have been segmented into
595 clusters, which already resemble individual trees by visual
impression.

4.3 Ellipsoid Modelling Results

The final result of the ellipsoid modeling process can be assessed
in Fig. 3 (c), including tree crowns of different shape and hypo-
thetical stem positions. A projection of the ellipsoids onto the 2D
reference data is shown in Fig. 6. A summary of the tree param-
eter reconstruction errors is given in Tab. 1. In addition, the error
distributions for tree heights and crown radii are shown in Fig. 7.

Figure 4. Reference data of the test scene, created from a LiDAR
point cloud and a co-registered orthophoto. Every circle indicates
one manually extracted reference tree.
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Figure 5. Determination of the optimal bandwidth parameter by
analysis of tree segmentation accuracy for all 570 reference trees.
Green indicates perfect matches of one cluster to one reference
tree, red missed reference trees. Blue indicates oversegmented
reference trees, i.e. reference trees which are connected to at least
two cluster centers.

Figure 6. Ellipsoid models projected onto the 2D reference
dataset for one-to-one comparison.

5. DISCUSSION

Although the results of this study are already very promising, they
also show there is still room for further improvement: First of all,
it is obvious that the clustering is dependent on choosing the opti-
mal bandwidth parameter. Although this can be handled by using
some light prior knowledge, an adaptive setting of the bandwidth
parameter could possibly enhance the segmentation accuracy, in
particular concerning the case of oversegmented trees. Secondly,
the ellipsoid model of course is only a coarse approximation of
real-life tree crowns, and only useful for deciduous trees at that.
Here, e.g. a generalized ellipsoid model also accounting for vary-
ing crown curvature could help to create a more universal ap-
proach and more detailed results. In addition, a more robust es-
timation of the tree heights and the crown radii is expected to
reduce the over-estimation bias in these parameters significantly.

Concerning the number of missed trees, there is unfortunately al-
ways the sensor-inherent limitation: If a small tree is surrounded
by large trees on all sides, not even multi-aspect SAR data will

MAE
Height 2.64 m
Radius 0.72 m
2D localization 1.43 m

Table 1. Mean absolute errors (MAEs) of reconstructed tree pa-
rameters.

(a)

(b)

Figure 7. Distributions of (a) the tree height errors and (b) the
crown radii errors. It can be seen that both tree heights and crown
radii tend to be slightly overestimated.

help to avoid missing that tree due to the side-looking nature of
the SAR imaging process. In such a case, only approaches based
on volume tomography might provide a viable solution.

Last but not least, it has to be mentioned that the reference data
also provides some potential for erroneous modeling, since no
analysis of any kind of data can replace in-situ observations. For
example, the smallest tree in the reference data is only 0.25 m
high, i.e. in a real ground truth dataset, it would possibly not
have been included at all.

6. CONCLUSION

In this article, an unsupervised approach for localization and re-
construction of individual trees from multi-aspect TomoSAR point
clouds has been described. The point cloud is first segmented
by unsupervised mean shift clustering. Then for every cluster a
three-dimensional ellipsoid is modeled to the contained points.
Since these ellipsoids are supposed to serve as satisfying approx-
imations of deciduous tree crowns, three important tree parame-
ters are extracted from each ellipsoid: tree location, tree height
and tree crown diameter. Experiments based on a TomoSAR
point cloud derived from an airborne millimeterwave dataset of
two opposing aspects acquired over a cemetery in the city of Mu-
nich, Germany, have shown that about 86% of all trees can be lo-
calized and reconstructed by the presented technology. Although
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the side-looking SAR imaging geometry serves as a system-inherent
limitation and leads to the fact that particularly small trees fully
surrounded by large trees will always be missed, the results pre-
sented in this paper are expected to further stimulate the research
interest in exploiting SAR imagery for forest remote sensing on
the individual tree level.
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