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ABSTRACT: 

 

Semi-Global Matching (SGM) is a widespread algorithm for image matching which is used for very different applications, ranging 

from real-time applications (e.g. for generating 3D data for driver assistance systems) to aerial image matching. Originally developed 

for stereo-image matching, several extensions have been proposed to use more than two images within the matching process (multi-

baseline matching, multi-view stereo). These extensions still perform the image matching in (rectified) stereo images and combine 

the pairwise results afterwards to create the final solution. This paper proposes an alternative approach which is suitable for the 

introduction of an arbitrary number of images into the matching process and utilizes image matching by using non-rectified images. 

The new method differs from the original SGM method mainly in two aspects: Firstly, the cost calculation is formulated in object 

space within a dense voxel raster by using the grey (or colour) values of all images instead of pairwise cost calculation in image 

space. Secondly, the semi-global (path-wise) minimization process is transferred into object space as well, so that the result of semi-

global optimization leads to index maps (instead of disparity maps) which directly indicate the 3D positions of the best matches. 

Altogether, this yields to an essential simplification of the matching process compared to multi-view stereo (MVS) approaches. After 

a description of the new method, results achieved from two different datasets (close-range and aerial) are presented and discussed. 

 

 

                                                                 
*  Corresponding author 

1. INTRODUCTION 

Semi-Global Matching (Hirschmüller, 2005) has proven to be a 

powerful stereo matching algorithm which is used for a variety 

of applications and measurement tasks, ranging from close-

range and real-time applications to aerial image matching. It has 

become widespread especially due to several advantages 

compared to other matching algorithms: It is very robust and 

reduces large outliers in low or non-textured areas while 

preserving edges and sharp object boundaries. It allows for the 

use of pixel-wise cost functions and is therefore able to resolve 

fine spatial structures on the object surface. Further on, it is 

almost independent of task dependent parameter settings and so 

it reduces efforts for the adaption of matching parameters for a 

special measurement task, avoids unsuccessful test runs and can 

be used in black box solutions. Finally, it can be implemented 

very efficiently in terms of computing time by using hierarchical 

matching strategies and techniques of parallelization on special 

hardware (GPU, FPGA) (Banz et al., 2010)(Buder, 2012)(Ernst 

& Hirschmüller, 2008)(Michael et al., 2013). All in all SGM 

can be regarded as a good compromise between highly accurate 

but less robust image matching techniques and robust but time-

consuming global matching methods. 

For a number of applications it is sufficient to use stereo 

cameras for image matching. This is especially true for many 

applications in computer vision (e.g. stereo cameras in 

assistance systems) where the need for real-time results is more 

important than high accuracies. On the other hand, various tasks 

focus on the accurate and complete 3D reconstruction of 

complex scenes (e.g. for aerial image matching, in fields of 

cultural heritage, archaeology, industrial measurements and so 

on). For these purposes, dense surface matching has been 

extended to so-called multi-baseline matching as proposed e.g. 

in Hirschmüller (2008) or multi-view stereo algorithms as 

proposed e.g. in Rothermel et al., (2013) and Wenzel et al. 

(2013). Multi-baseline matching performs stereo matching by 

SGM between a base image and all match images. Further on, 

invalid disparities are removed by consistency checks (left-right 

check) and all stereo matching results are combined by selecting 

the median value of all disparities for each pixel. Afterwards, 

the accuracy can be increased by calculating the weighted mean 

of all correct disparities, i.e. all disparities within an interval of 

e.g. 1 pixel around the median. 

The multi-view stereo algorithm in Rothermel et al. (2013) 

performs stereo matching for all overlapping image pairs or at 

least for a selection of these. After removing outliers by left-

right consistency checks an additional outlier elimination is 

performed by checking for geometric consistency in object 

space – considering uncertainty ranges that have been derived 

by error propagation. Finally, all corresponding image 

coordinates of each object point are used for triangulation to 

calculate the final 3D coordinates. 

Both, multi-baseline matching as well as multi-view stereo 

approaches perform the matching in image pairs and do not 

allow for multi-image matching.  

A method for multi-image matching by using facets in object 

space and simultaneous adjustment of DSM, orthophoto and 

parameters of a reflexion model was proposed by Wrobel 

(1987) and further on extended and modified by 

Weisensee (1992), Schlüter (2000) and Wendt (2002). 

Another method for multi-image matching that uses Least-

Squares Matching (LSM) was proposed by Grün (1985) and 

Grün & Baltsavias (1988). This method extends LSM by 

introducing epipolar- or collinearity constraints to the equation 

system so the search range is limited to epipolar lines. 
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Both approaches, object-based matching with facets as well as 

LSM are using non-linear functional models within the 

adjustment and therefore need an approximate representation of 

the surface. 

Within this paper, an approach for multi-image matching is 

proposed that uses a semi-global optimization strategy and is 

therefore applicable without any a priori knowledge about the 

object surface. Compared to SGM, the proposed method is 

mainly characterized by transferring the matching procedure 

from image into object space. This has several advantages 

compared to SGM in MVS. 

Firstly, in pairwise matching the subsequent consistency checks 

can be performed more easily because the matching directly 

leads to 2.5D coordinates in object space. A transfer of disparity 

maps from image to object space is not necessary anymore and 

consistency has to be checked in Z-direction only. 

Secondly, it is not required to rectify the images before the 

matching. Since in MVS every image has to be rectified several 

times for the use in different image pairs the new approach 

leads to a reduction of processing steps. 

Thirdly, the whole voxel grid can be subdivided into smaller 

parts with the size of each part being easily adapted to the 

available memory space. Hence, the algorithm can process very 

large datasets even with standard hardware. 

Finally, it is possible to correlate images not only pairwise but 

also to perform real multi-image matching which is not 

provided by existing MVS approaches. 

Further advantages of the new approach will be discussed in the 

following sections. In chapter 3 the results of two different 

datasets (close-range object and aerial image setup) are 

discussed. 

 

2. OBJECT-BASED MULTI-IMAGE SEMI-GLOBAL 

MATCHING (OSGM) 

Within this chapter the method of object-based multi-image 

semi-global matching will be described in detail (section 2.2 to 

2.9). In advance, a short review of SGM is given in section 2.1. 

 

2.1 Review of SGM 

The SGM method as originally described in Hirschmüller 

(2005) proposes an intelligent solution for the approximate 

minimization of global 2D energy functions as they are used 

e.g. within global image matching methods. SGM uses the 

following energy function: 
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The first term of (1) contains the matching costs C between a 

pixel p' in image 1 and a potential corresponding pixel p'' in 

image 2 (at a specific disparity Dp). The second term adds a 

penalty P1 for the current disparity DP to the cost value C if the 

difference between DP and the disparity Dq at a neighbouring 

pixel q is 1 (the function T returns 1 if |Dp–Dq|=1 and 0 in all 

other cases). The second term adds a larger penalty to the cost 

value C if the difference exceeds 1 (the function T returns 1 if 

|Dp-Dq|>1 and 0 in all other cases). 

First step in SGM is the cost calculation to build up the 

structure C(p', Dp) in equation (1) by calculating the matching 

costs between every pixel p' in the first image and all potentially 

corresponding pixel p'' in the second image. Using rectified 

image pairs the relationship between p' and p'' can be expressed 

by the parallax or disparity D with p''(x''=x'-D, y''=y'). 

For calculating the matching costs different cost functions can 

be used, varying from very simple block matchers (e.g. 

differences of absolute intensity values (SAD)) to sophisticated 

pixel-wise approaches (e.g. mutual information as described in 

Hirschmüller (2005)). An analysis of different cost functions is 

not addressed in this paper but can be found e.g. in 

Hirschmüller and Scharstein (2007). 

Second step in SGM is cost aggregation. The main idea of SGM 

is to utilize cost aggregation not in all directions (which would 

be necessary for a rigorous global solution) but in the direction 

of r=16 or at least r=8 paths Lr. Cost aggregation can be done 

recursively and separately for each path Lr with 
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with (p', D) = (x', y', D).  

The positions of adjacent pixels are defined separately for each 

path with p-r: 
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(e.g. with u=1, v=0 for a path in x'-direction).  

 

The expression in (2) searches the minimum path costs 

inclusive possibly added penalties P1 and P2 at the position of 

the previous pixel in path direction (p-r) and adds this minimum 

to the cost value C(p', D)) at the current pixel p' and the 

disparity D. The last term of (2) subtracts the minimum path 

cost of the previous pixel to avoid very large values in Lr.  

The results of the cost aggregation for 8 (or 16) paths can be 

fused with 
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Then the final disparity D is derived from (4) by searching the 

minimum in for each pixel p' in S(p', D). The final disparity is 

stored for each pixel p' leading to a dense disparity map D(p'). 

 

2.2 Semi-global matching in object space 

In the proposed method the object space has to be subdivided 

into a dense voxel raster in a first step. Each voxel may be a 

cube or a cuboid. The size of the cuboids (ΔX, ΔY, ΔZ) defines 

the resolution in object space and should be adapted to the 

mean ground sampling distance (so that for each pixel one 3D 

point is estimated) as well as to the spatial configuration of the 

images (base-to-height ratios). 

For transferring the semi-global optimization procedure from 

image into object space the global energy function in (1) has to 

be modified to 
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The first term in (5) contains the matching costs for each voxel 

of the raster and the second and third term add penalties P1 and 

P2 in case of differences in Z-direction between adjacent voxels. 
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Therefore, the smoothness constraints of Semi-Global Matching 

effectuate a smoothing in the direction of a defined axis in 

object space. For classical 2.5D approaches this is the Z-

direction of the global coordinate system. For 3D applications it 

is necessary to define a number of appropriate local coordinate 

systems and to assign a selection of appropriate images for 

matching to each local coordinate system. The matching is then 

performed within the local systems and all resulting point 

clouds have to be transformed into a global system afterwards. 

 

2.3 Cost calculation in object space 

In analogy to classical SGM the first step in OSGM is the 

calculation of the matching costs to build up the structure 

C(X,Y,Z). Therefore, the centre of each voxel is re-projected 

into all images by using the collinearity equations and the grey 

(or colour) values of the corresponding image coordinates are 

used for cost calculation (Figure 1). 

 

 

Figure 1. Calculation of matching costs for a voxel 

 

If window-based cost functions are used (e.g. Census or 

normalized cross-correlation, NCC) the matching window is 

defined in object space parallel to a reference plane which is the 

X/Y-plane of the global (for 2.5D applications) or a local (for 

3D application) coordinate system. In a next step the matching 

window is re-projected into all images and the grey or colour 

values underneath the re-projected windows are used for cost 

calculation. This is important because it leads to a high 

invariance against image rotations and (within limits) to 

different images scales. Therefore, images with larger baselines 

can be combined whereas stereo SGM typically uses image 

pairs with short baselines for pairwise matching.  

Most of the common cost or similarity functions are designed 

for the calculation of the (dis)similarity between two signals (or 

respectively two images) and therefore are well-suited for 

pairwise image matching. Thus, for a combined cost calculation 

for n images it is necessary to think about sensibly extensions of 

cost or similarity functions for multi-image correlation. 

However, since pairwise image matching in multi-image 

bundles can be used for consistency checks and can therefore be 

regarded as an important tool for the reliable detection of 

occlusions and outliers, both strategies (pairwise image 

matching and combined multi-image matching) should be 

considered within the new approach.  

Since the re-projection of the voxel centres or the matching 

window leads to sub-pixel coordinates within the images the 

SGM in object space leads directly to 3D points with sub-pixel 

accuracy. This is another advantage compared to the standard 

SGM in which sub-pixel accuracy is typically achieved by 

interpolating between neighbouring cost-values in disparity 

space, e.g. by quadratic curve fitting as suggested in 

Hirschmüller (2008). 

 

2.4 Cost functions 

Until now the focus was set on the development of the matching 

more than on implementing sophisticated cost functions.  

A simple cost function which is often used for SGM is given by 

census Zabih and Woodfill (1994). Census is highly invariant 

against radiometric differences between the images and 

therefore leads to robust matching results. The cost parameter of 

census is given by the Hamming distance between two image 

windows. Hence, the maximum number of distinguishable cost 

values is equal to the maximum hamming distance hmax which 

depends on the window size (e.g. for a 5x5 window hmax=25).  

Since changes of the centre coordinates of the voxels in Z-

direction by small increments ΔZ lead to sub-pixel movements 

of the matching windows within the images, it is necessary to 

use a cost function that allows for the distinction between these 

sub-pixel movements. First investigations by using census have 

shown that it does not fulfil this requirement due to its limited 

resolution as described above.  

Therefore, the normalized cross correlation (NCC) is used 

which is defined by 
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In (6) σfg is the covariance between the grey values within the 

two image windows f and g and σf  and σg are the variances of 

the grey values in the image windows. Since the coefficient ρfg 

is a measure of the similarity and SGM typically uses cost 

values for the description of the dissimilarity, (6) is modified 

with 

 

fg 1       (7) 

 

The co-domain of the cost parameter ρ includes cost values 

between 0.0 (low matching costs, high similarity) and 2.0 (high 

matching costs, low similarity).  

 

2.5 Cost aggregation in object space 

For the minimization of (5) by adapting the semi-global 

approach the path-wise cost aggregation can be done in analogy 

to the standard SGM separately for every path Lr with 
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The expression in (8) is a modification of (2) in which v is used 

as substitution for the X,Y-coordinate of a voxel centre: 
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The X,Y-position of adjacent voxels are defined separately for 

each path with v-r: 
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(e.g. with u=1, v=0 for path r=1, see Figure 4).  
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The expression in (8) searches the minimum path costs 

including possibly added penalties P1 and P2 at the position of 

the previous voxel in path direction (v-r) and adds this 

minimum to the cost value C(X,Y,Z) of the current voxel. The 

penalty P1 is added if the difference in Z-direction between the 

current voxel and the adjacent voxel is equal to ΔZ (which is the 

height of one voxel) and P2 is added if the difference in Z-

direction is larger than ΔZ. The last term of (8) subtracts the 

minimum path cost of the previous voxel to avoid very large 

values in Lr. The paths of minimum costs are illustrated 

exemplarily in Figure 2. 

 
Figure 2. Paths of minimum costs 

 

Analogue to (4) the results of the cost aggregation for 8 (or 16) 

paths can be fused with 
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The matching result then is derived from (11) by searching the 

minimum in S(v,Z) for each v: 
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The final Z-coordinate for each voxel v is equal to the position 

Z where S(v,Z) reaches a minimum. The final value is stored in 

an index map Z(v) for each voxel v (instead of a disparity map 

D(p)). 

 

2.6 Hierarchical computation 

As stated above the spatial resolution of the voxel grid is ideally 

adapted to the (mean) GSD of the images to create dense 3D 

point clouds. Therefore, the voxel grid contains a very high 

number of voxels. To speed up the computation time for 

calculation and aggregation of costs it is reasonable to use a 

hierarchical approach (matching in image pyramids). The image 

pyramids are built up in a typical way by applying a low pass 

filter on the original images (Gaussian) and bisecting the 

resolution of the images from one pyramid level l to the next 

one (l+1). Accordingly, the resolution of the voxel raster has to 

be bisected as well by doubling the voxel sizes with ΔXl = ΔXl+1 

· 2, ΔYl = ΔYl+1 · 2 and ΔZl = ΔZl+1 · 2. 

The process of matching in image pyramids is shown in Figure 

3: 

 

 
Figure 3. Hierarchical matching 

 

The initial matching is performed in the highest level (low 

resolution) of the pyramid without any limitation of the search 

range. Afterwards, the matching result is analysed by deriving 

minimum and maximum Z-values by applying erosion and 

dilatation operators on the index map Zl(X,Y) for the current 

pyramid level l. For both, erosion and dilatation, windows with 

a fixed size of 7x7 elements are used for each pyramid level. 

Larger windows sizes extend the search ranges in case of high 

variations in Z-direction (e.g. in urban areas). 

 

 
Figure 4. Limitation of search ranges 

 

Further on, the results of erosion and dilatation are shifted in Z-

direction with a constant offset of -2·ΔZl and +2·ΔZl, 
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respectively, to avoid too strong limitations of the search range 

in areas of local maxima and minima on the object surface. 

Finally, the results of erosion and dilatation for a pyramid 

level l are up-scaled for the next lower pyramid level l-1, where 

they are used as limitations of the search range. Figure 4 shows 

exemplarily the results of erosion and dilatation as well as the 

derived limitation of the search range for a cross-section of the 

object surface. 

 

2.7 Consistency checks 

The new approach allows for pairwise matching as well as for 

multi-image matching. In pairwise matching the cost structure 

Ci(X,Y,Z) has to be built up for each image pair i (with  

i=n·(n-1)/2 and n=number of images). Afterwards, for each pair 

a matching result is generated by semi-global optimization in 

object space and all pairwise results can be used for consistency 

checks, aiming for the detection of occlusions and the 

elimination of outliers. Therefore, for the matching result of 

each pair uncertainty ranges are defined (in Z-direction, see 

Figure 5) and the number c of all results from other image pairs 

that are lying within an uncertainty range is determined. If c is 

exceeds a threshold t the matching is assumed to be consistent 

and the final result is set equal to the mean of all Z-values 

within the uncertainty range.  

Figure 5 illustrates the procedure. The results of matching in 

pair 3 and 4 are within the uncertainty range of the matching in 

pair 1 and the result of pair 2 is outside. If, for example, t is set 

to 2 the results of matching in pair 1, 3 and 4 would be assumed 

to be consistent. The final Z-coordinate is then set to the mean 

Z-value of pair 1, 3 and 4. 

The threshold t can be adapted automatically related to the 

number of images i in which the current voxel is visible, e.g. t = 

i / 2). The uncertainty range can be estimated by simple error 

propagation using a priori knowledge about base-to-height 

ratios and image matching quality. 

 

 
Figure 5. Consistency checks 

 

The approach generally allows for the estimation of more than 

one Z-value for each X-Y-coordinate. For each pairwise 

matching result the consistency to all other results is checked 

and the consistency criterion could be fulfilled for different Z-

values. This will be the case in partly occluded areas where 

voxels in different heights are identified, which are not visible 

in all image pairs. 

 

2.8 Image selection for block-wise matching 

For processing larger image bundles it is helpful to sort the 

images in advance and to assign them to different segments of 

the surface. We use a relatively simple approach to complete 

this task.  

First step is to subdivide the voxel grid into small blocks (see 

Figure 6). The maximum size of a block is derived from the 

available memory space as well as from the amount of overlap 

of the images.  

 

 
Figure 6. Selection of images for block-wise matching 

 

In a second step the eight corners of each block are re-projected 

into all images. Every image in which a block is entirely visible 

is assigned to this block, resulting in a list of images for each 

block which can be used for matching.  

Since the robustness of matching decreases with increasing 

baselines and the probability of occlusions may increase as well, 

it is sensible to prioritize the images within the lists for each 

block. For this, the vectors between the projection centres (O') 

and the centre point of the block (S) and the angles α between 

these vectors and the reference axis for SGM (the Z-axis) are 

calculated. Afterwards, the image lists are re-sorted in 

ascending order for α.  

The re-sorted lists gives by tendency a priority to image pairs 

with short baselines. If the number of images for matching 

should be limited – which is be useful for the processing of 

highly overlapping image data – the first images of the lists can 

be selected for matching (Step 3 in Figure 6).  

Afterwards, each block is processed separately, considering 

overlaps between the blocks. 

 

2.9 Parallel computing 

The current version of the semi-global matching in object space 

is implemented by using multi-threading on CPU which leads to 

acceptable computing times even for large datasets. As 

mentioned before, a further increase of performance can be 

achieved by implementing the algorithm on highly paralleling 

hardware (GPUs). 

For parallelization each block is subdivided into a number of 

smaller blocks corresponding to the number of available 

processor kernels. Further on, cost calculation can be done 

simultaneously for all blocks on the different kernels. 

For cost aggregation each path is processed in one thread which 

is feasible because eight path directions are used and can be 

assigned to the eight kernels of the CPU. 
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3. RESULTS 

Within this chapter results of OSGM are presented and 

discussed. Two different datasets have been processed: a close-

range dataset and a set of aerial images of an urban area. 

 

3.1 Close-range dataset 

The close-range dataset contains 38 images capturing a small 

clay sculpture (figure 7). The size of the sculpture is about 

80mm (height), 100mm (length) and 60mm (width). It has a 

slightly natural textured surface and continuous curved areas as 

well as fine geometrical structures in regions of the head and the 

back.  

 

 
Figure 7. Test object 

 

For the purpose of comparison the object was measured using a 

fringe projection system from multiple viewing directions. The 

results of all views are transformed into a global coordinate 

system by a set of coded targets for the orientation of the 

scanner (Figure 8). Later on, these coded targets are used also 

for orientation of the images so that both, the matching and the 

scanning result, are present in the same coordinate system. The 

accuracy of the scanner is specified with 20-50µm, depending 

on the properties of the surface and the resolution is 40µm 

(specification of the manufacturer). The scanning result leads to 

a surface representation (TIN) of about 630.000 triangles. 

 

 
Figure 8. Reference point field (left) and result of fringe 

projection measurements (right) 

 

The images for matching were captured with a calibrated Nikon 

D2x camera from different viewing directions. The mean 

distance to the object is about 550mm which leads to a mean 

ground sample distance of about 0.3mm. The spatial 

configuration of the image bundle is illustrated in figure 9. 

Finally, the matching has been performed by using all 38 

images. The voxel size was set to ΔX=ΔY=ΔZ=0.3mm. As cost 

function the normalized cross correlation as described in section 

2.3 and 2.4 and small matching windows with 5x5 elements 

were used. 

 
Figure 9. Spatial configuration of the image bundle 

 

The point cloud achieved from matching consists of 

110.000 points, computing time was approximately two 

minutes. The matching result is illustrated in Figure 10:  

 

 
Figure 10. Result of OSGM, colour coded point cloud 

 

The comparison between matching result and fringe projection 

measurement focuses on the evaluation of the matching 

accuracy. Figure 11 shows the colour-coded 3D deviations 

(shortest distance between each point to the TIN of the fringe 

projection measurement, calculated by Geomagic): 

 

 
Figure 11. Comparison to fringe projection measurement 
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The standard deviation is about 0.16mm which corresponds to 

approximately half of the resolution and therefore can be 

regarded as a reasonably result. The fine structures in regions of 

the head (small grooves) are well resolved without smoothing 

which is due to the small matching windows. In some areas (e.g. 

at the front feet) the deviations reach up to 0.5 mm which 

cannot be fully explained until now. Altogether, the matching 

shows a very good result. 

 

3.2  Aerial images 

The second dataset consists of a selection of 10 aerial images, 

captured above an urban area by a DMC camera. Ground 

sample distance is 10cm and the images are overlapping by 60% 

in both directions. In the first instance, a squared area of about 

500m x 500m was selected for the matching. 

 

 
Figure 12. Test area for matching 

 

The matching was initialized with a voxel size of 

ΔX=ΔY=ΔZ=10cm according to the GSD. As cost function 

within semi-global matching, normalized cross correlation is 

used, and the window size is set to 5x5 elements again. The 

matching generates a dense point cloud with about 25 million 

points.  

 

 
Figure 13. Dense point cloud, 25 million points 

 

 

 

 

 

 
Figure 14. Details of a TIN derived from unfiltered point cloud 

(right) and corresponding image sections (left) 

 

The 3D visualisation in figure 14 (right hand side) shows a TIN 

which has been derived from the unfiltered point cloud. On the 

left hand side the corresponding image sections are illustrated.  

Obviously, the surface has been captured with lots of details 

(structures on the roofs, e.g. like dormers) and changes in height 

are modelled very well (e.g. borders of the buildings). 

For an extensive evaluation of the quality of the matching result 

a comparison to high resolution LiDAR data is planned. A 

combined dataset with high resolution image data and high 

resolution LiDAR data will be available soon. 

 

4. SUMMARY AND OUTLOOK 

The presented modification of SGM is mainly characterized by 

transferring the process of cost calculation and path-wise cost 

aggregation from image into object space. Instead of estimating 

dense disparity maps, index maps are generated which directly 

indicate the best matches in 3D space. 

The new approach was tested under laboratory conditions by 

using a test object with reference data of a fringe projection 

measurement as well as for a set of areal images. The tests show 

very promising results. The new method maintains the benefits 

of SGM (e.g. robustness in non-textured areas, good results at 

sharp object boundaries) and adds several advantages.  

In opposite to most multi-baseline or multi-view stereo 

approaches the new approach works without rectified images 

and therefore reduces the efforts for pre-processing (no need for 

image rectification) and for post-processing (no need for the 

fusion of disparity maps). Further on, the new method allows 

for the integration of more than two images into the matching 

process and is therefore suitable for real multi-image 

correlation. All in all, the new algorithm has a clearly simplified 

structure compared to SGM in multi-view stereo approaches. 

Further developments will focus on the implementation of 

pixel-wise cost functions to fully exploit the advantages of 

SGM. For an extensive evaluation of the matching quality 

especially for aerial images, new datasets containing high 

resolution images as well as LiDAR data will be processed. 

Since the structure of the proposed method separates the 

process of cost calculation from special properties of image 
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sensors, extensions for the integration of other sensors (e.g. 

aerial or satellite based) should be considered. In addition, the 

integration of colour- or multi-spectral information into the 

matching process could be helpful for stabilizing the matching 

process.  
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