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ABSTRACT: 

 

Traditional single-lens vertical photogrammetry can obtain object images from the air with rare lateral information of tall buildings. 

Multi-view airborne photogrammetry can get rich lateral texture of buildings, while the common area-based matching for oblique 

images may lose efficacy because of serious geometric distortion. A hierarchical dense matching algorithm is put forward here to 

match two oblique airborne images of different perspectives. Based on image hierarchical strategy and matching constraints, this 

algorithm delivers matching results from the upper layer of the pyramid to the below and implements per-pixel dense matching in 

the local Delaunay triangles between the original images. Experimental results show that the algorithm can effectively overcome the 

geometric distortion between different perspectives and achieve pixel-level dense matching entirely based on the image space. 

 

 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

The traditional single-lens photogrammetry cannot effectively 

obtain the lateral texture of tall buildings, while multi-view 

airborne photogrammetry can compensate for this shortcoming 

(Zhu et al., 2013). Combination of vertical images and oblique 

images into 3D modeling with abundant texture is an important 

trend in the development of photogrammetry (Gui et al. 2012; 

lo et al. 2013). This platform is equipped with multiple-

perspective sensors to ensure more comprehensive access to 

objective information. The structure is usually mounted as one 

vertical lens with 4 ( or 2) oblique lenses (Zhu et al., 2013). 

  Image matching is a critical part of digital photogrammetry, 

whose quality directly affects the accuracy of the DSM (Digital 

Surface Model). The popular area-based matching methodology 

for multi-view oblique images almost completely loses efficacy 

because of the large geometric distortion between multi-view 

images. Matching algorithms for images with large geometric 

distortion can be invariant feature-based matching methods, e.g. 

SIFT (Scale Invariant Feature Transform) (Lowe, 2004), SURF 

(Speeded-Up Robust Features) (Bay et al., 2009), ASIFT 

(Affine - Scale Invariant Feature Transform) (Moreal and Yu, 

2009). Dense matching methodology is usually narrowing 

searching area based on comprehensive utilization of image-

space and object-space information, e.g. GC3 (Geometrically 

Constrained Cross-Correlation), MVLL (Modified Vertical 

Line Locus). But these algorithms are mainly used for images 

of the same perspective and experiments on multi-view oblique 

images are rare. In this paper, a dense matching algorithm 

specifically for multi-view oblique images is proposed based on 

invariant feature-based matching and geometric correction of 

area-based matching. 

 

2. MULTI-VIEW AIRBORNE OBLIQUE IAMGES 

Take five-view camera as an example, in multi-view airborne 

photogrammetry, the five lenses expose at the same time at a 

single shot, and images and their exterior orientation elements 

are obtained. The operation principals of the vertical lens are 

similar to those in the traditional photogrammetry. The tilt 

directions and placement characteristics determine the 

difference between oblique images and vertical images. The 

four oblique lenses are usually mounted as Malta shape, e.g. 

Chinese TOPDC-5, SWDC-5 and AMC580, of which the 

angles between vertical and oblique lenses generally range from 

45° to 60°. Figure 1 shows the vertical-, forward-, rear- and left-

view images of the same scene taken by five-view AMC580 

camera over Dengfeng, Henan province. 

 

  
(a) Vertical-view (b) Forward-view 

  
(c) Rear-view (d) Left-view 

Figure 1. The multi-view images of AMC580 

 

Figure 1 shows there is not only rotation of optic axis but also 

pitching differences between images of different views. Moreal 

and Yu (2009) put that longitude difference and latitude 

difference from geography could be used to quantitatively 

measure the two kinds of tilt degrees in oblique images. In 

figure 1, the tile angles of oblique lenses are all 45°, so the 

longitude differences between (a) and (b), (c), (d) are 0°, 180°, 

90° respectively and the latitude differences are all 45° (Zhang 
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et al., 2014). The image contrast and brightness of different 

perspectives are of a significance difference and serious 

overlapping and redundancy exist in multi-view images. In 

addition, scales on one single oblique image are not constant, 

which is the most important difference from vertical images 

(Grenzdorffer et al., 2008; Gruber and Walcher, 2013; Petrie, 

2008; Hohle, 2008). These characteristics of oblique images 

make the effects of feature-based matching and area-based 

matching decline sharply, and even fail completely. 

 

3. THE OVERALL PIPELINE OF HIERARCHICAL 

MATCHING 

Image matching is the process of searching the corresponding 

entity between the reference images and the matching images. 

Often the corresponding point cannot be found on the matching 

image and then this problem seems to be insoluble. Geometric 

constraints are often used to initially narrow the searching area 

thus to improve the matching efficiency and reliability. In 

computer vision, given certain pairs of corresponding points, 

the relative camera geometry and the entire geometry of two 

images can be obtained. The widely used constraint methods 

are homography and epipolar constraint, the relevant matrix 

being the homography H  and the fundamental matrix 

F (Hartley and Zisserman, 2003; Yang et al., 2012). 

 

Image frame of the frame camera imagery is considerably wide 

now, so three-layer hierarchical matching strategy is used to 

deliver and refine the matching results. The corresponding pairs 

and geometric relationship are passed down to the original layer, 

and the per-pixel matching is finally realized on the original 

images. Figure 2 shows the overall pipeline of matching process 

between vertical image and oblique image. 
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Figure 2. The overall pipeline of hierarchical dense matching 

 

Although SIFT descriptor is invariant and stable towards image 

rotation, our experiments show that SIFT and ASIFT for images 

rotated to the same direction in advance can achieve better 

matching effect than for images without rotation. So 

overlapping images are rotated to the same perspective first so 

that the images will point in the same direction in general. 

Assume that the original image size is w h  (width× height) and 

the point coordinate on the rotated image is  ,x y . Then there 

are three conditions of calculating the screen coordinates on the 

original images: 

 

1. Before 180° rotation, the screen coordinate is 

 1, 1w x h y    . 

2. Before clockwise 90° rotation, the screen coordinate is 

 , 1y h x  . 

3. Before anticlockwise 90° rotation, the screen coordinate is 

 1,w y x  . 

 

Then both the original images after rotation are resampled twice 

to obtain three-layer image pyramids, from bottom to top: layer 

0 (the original layer), layer 1 (the middle layer), layer 2 (the 

highest layer). On the second layer, after low-pass filtering 

twice, the image size tends to be smaller and detailed 

information has been largely filtered out. The remains are 

mainly overall texture so scale- and rotation- invariant ASIFT is 

appropriate to implement here. With those delivered 

corresponding pairs, the distortion geometry is estimated 

between the two images on the layer 1. The matching image is 

rectified to the reference image with the geometric relationship. 

Assume that the imaged areas are both plane and the systematic 

error impact of lens distortion and atmospheric refraction is 

overlooked here. Then the perspective transformation can fully 

simulate this “image-to-image” coordinate correspondence 

between the two images (Yang et al., 2012). The efficient 

SURF matching algorithm is used between the reference image 

and the rectified matching image to achieve sub-pixel matching. 

Certainly the pixel coordinates on the rectified matching image 

should be projected reversely to the original Layer 1. To ensure 

the accuracy of rectification and inverse calculation, the bilinear 

interpolation or cubic convolution interpolation is adopted here. 

 

When the corresponding pairs are passed to the original images 

on layer 0, Delaunay triangulation is constructed among the 

evenly-distributed matching pairs after screening. The empty 

circle and the maximum minimum angle characteristics of 

Delaunay triangulation can ensure the nearest points are used to 

restrain the dense matching process (Zhang et al., 2013; Wu et 

al., 2011). To ensure the Delaunay networks on both images are 

corresponding and consistent, the Delaunay network is 

constructed first on the reference image with the reliable 

matching features. Following this is construction of network on 

the matching image with the chain code sequence of the left 

network. Finally, per-pixel dense matching is implemented in 

corresponding triangles. 

 

4. KEY TECHNOLOGY 

4.1 Delaunay Triangulation on Layer 0 

Delaunay triangular network is established with upper matching 

pairs on layer 0, which is followed by per-pixel dense matching 

in each Delaunay triangle. According to the theory of 

continuous disparity (Wu et al., 2011), the corresponding pixel 

of the reference image pixel must be located in or around the 

corresponding triangle. For a pair of corresponding triangles, 

our method calculates the circumscribed rectangles of both the 

triangles first and take the new rectangle with maximum length 

and width as the local rectification cell. The rectangular 

calculation cell should be expanded outward a certain number 

of pixels (half of the window size for correlation coefficient 

calculation) to ensure adequate surrounding pixels take part in 

the calculation of correlation coefficients. At that time, each 

pair of corresponding Delaunay triangles corresponds to one 

pair of “Rectangular Patches”. In each pair of rectangular 

patches, dense matching is implemented for every pixel in the 

Delaunay triangle as following: 

 

1. Search for the feature-based matching pairs in the 

rectangular range twice as wide as the rectangular patch to 
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calculate the perspective transformation geometry. The feature-

based pairs are delivered from SURF on Layer 1. 

2. Rectify the matching patch to the reference patch based on 

the perspective transformation matrix. Ideally, the pixels on the 

rectified patch exactly corresponds to the ones on the matching 

patch, i.e. the pixels with the same coordinates on both patches 

are ideally corresponding pixels. But owing to terrain 

deformation and undulation, there is a slight offset between the 

corresponding pixels. 

3. For every point P on the reference triangle, open the same 

n n  searching window around the pixel of the same 

coordinate on the right patch. Epipolar geometry is used to 

further constrain the searching space. Normalized Cross 

Correlation (NCC) (Wu et al., 2011) is taken as the correlation 

measurement here which is calculated between the reference 

pixel and the matching pixels in the searching window. The 

pixel on the right patch with the maximum NCC which is larger 

than the given threshold is the final corresponding pixel. 

 

Here we take rectangular patch as the rectification cell and the 

pixels in the triangles are only rectified once, thus the process 

of calculating NCC only involves “reading” gray level of pixels, 

and avoiding pixel projection and interpolation, which 

effectively improved operational efficiency. Besides, the NCC 

threshold is adaptively determined with the three pairs of 

triangular vertices. If the total number of corresponding pairs 

for calculating perspective transformation matrix is only 4 or 5, 

then the perspective matrix is not reliable enough and the 

threshold needs to be further increased by 0.1. Tests show that 

threshold of NCC generally ranges from 0.65 to 0.85. 

 

4.2 Homography and Fundamental Matrix 

In the imaging process, the perspective transformation can be 

represented with the homography H. Assume that the 

overlapping area or the imaged area is absolutely plane and 

only rotation, translation and scaling change exist, then all the 

corresponding points between the two images can be 

characterized with only one transformation matrix. The 

reference pixel coordinate is ( , ,1)Tx y ,the matching pixel 

coordinate is ( , ,1)Tx y  , the homography between them is in 

(Yang et al., 2012): 
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Then there is the following relationship between the two 

coordinates (Yang et al., 2012): 
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  (2) 

 

Epipolar geometry is widely used as image matching constraint: 

given the fundamental matrix F between two images and the 

reference pixel coordinate, the corresponding epipolar line can 

be determined on the matching image. Theoretically, the 

corresponding point on the matching image must be on the 

corresponding line, so epipolar geometry can transfer the two-

dimensional searching into one-dimentioanal. F is determined 

by imaging camera position and orientation and can also be 

approximately obtained with at least 8 pairs of corresponding 

pixels (Hartley and Zisserman, 2003). 

 

F is calculated with the delivered SURF matching pixels from 

layer 1. Take these pairs as check points, experiental results 

show that 98% of these points can achieve the accuracy of 5 

pixels and 100% can achieve the accuracy of 6 pixels. The 

constraint effect is shown in Figure 3. The horizon-axis is the 

corresponding point sequence and the vertical-axis is the 

constrait offset. Figure 4 shows the constrait effect of 5-pixel 

accuracy of features and the corresponding epipolar lines. the 

circles are the matching points. By further comparison, epipolar 

constraint can achieve higher accuracy than homography 

constraint, i.e., F can better express the overall geometric 

transformation of two images than H. So on layer 0, 

homography constraint is used in the local triangles, while 

epipolar constraint is globally used. 

 

 
Figure 3. Constraint accuracy of epipolar geometry 

 

 
Figure 4. Epipolar geometry 

 

When calculating H or F, more than necessary pairs of 

corresponding points are used to obtain optimal solutions under 

the RANSAC (Random Sample Consensus) (Fisehler and 

Bolles, 1981) criteria. 

 

4.3 Feature Screening 

In the upper two layers of the image pyramid, two types of 

corresponding features need to be screened. One is mismatching 

points derived from ASIFT and SURF, the other is dense 

matching points. For the first type, RANSAC can take the role 

to screen them. The over-dense matching pairs are screened in 

case of non-significant Delaunay constraint and low efficiency. 

The main idea of feature screening is judging the distance of 

two pairs of corresponding points on the reference and the 

matching images. If one of the two distances is less than the 

threshold, one of the two pairs should be removed. Provided 

that n pairs of corresponding points are given, the number of 

judgement is
2

nC . For the i th and the j th corresponding points 

which are independent, assume that DLij  is the distance of 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W2, 2015 
PIA15+HRIGI15 – Joint ISPRS conference 2015, 25–27 March 2015, Munich, Germany

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-3-W2-289-2015

 
291



 

the two features on the reference image, DRij is the distance 

on the matching image: 

 

1. 1DLij T   or 1DRij T  : The two pairs are too closely 

distributed, so remove one pair of them. 1T  is the repetitive and 

redundant threshold, which takes 5 pixels here. 

2. 2DLij T   or 2DRij T  : the two pairs are so close that 

the triangulation constraint is not significant, so remove one 

pair. 2T  is the minimum distance threshold, often determined 

by the terrain condition and matching accuracy and should 

increase gradually down along the image pyramid. 

3. 2DLij T   and 2DRij T  ,  both of the two pairs should 

be kept. 

 

The premise of the screening process is the acquisition of 

reliable and high-precision matching features. After screening, 

the matching features can be used to establish Delaunay 

triangles. 

 

5. EXPERIMENTS 

The experimental data are both derived from the airborne 

images over Dengfeng taken by AMC580. They are cut from 

the original 10328 ×7760 oblique images. The data information 

is shown in Table 1. 

 

NO Image Size 
Lens 

Perspective 
Remarks 

1 800×800 
Vertical & 

Rear 

Plain and smooth 

terrain 

2 1000×1000 
Vertical & 

Forward 

Significant 

brightness 

difference 

Table 1. The dataset information 

 

Under the 3-layer image pyramid matching strategy, the reliable 

matching results and Delaunay triangle numbers are listed in 

Table 2. Group 1 is matching images of plain area, and the 

terrain is plane. Because of the overall direction is not the same, 

the rear-view image should be rotated by 180° first. Only 64 

pairs of ASIFT matching pairs are remained after screening. 

100 pairs of matching pairs are obtained on layer 1, which are 

delivered to Layer 0 to establish 186 Delaunay triangles. Per-

pixel dense matching is conducted on layer 0 finally and 

214,028 pairs of corresponding points are obtained. Group 2 is 

matching the vertical- and forward-view images. 340 Delaunay 

triangles are established on Layer 0 and 317,551 pairs of points 

are matched. Every pixel in the Delaunay triangles is meant to 

search for the corresponding pixel on the matching image. The 

matching success rate is the percentage of successful matching 

numbers to all the points on the reference Delaunay triangles. 

The matching success rates of the two experiments are both 

over 75%. 

 

NO Layer 2 Layer 1 Layer 0 

Delaunay 

Triangle 

Number 

Matching 

Success 

Rate 

1 64 100 214,028 186 76.34% 

2 68 178 317,551 340 81.68% 

Table 2. Matching results 

The final matching results of the two experiments are showed in 

Figure 5 and Figure 6. In these two figures, (a) and (b) are 

matching results of layer 2 and layer 1 respectively; (c) are the 

Delaunay triangulation on layer 0; (d) are point clouds 

generated from matching pairs assisted with the exterior 

elements derived from the commercial Icaros Photogrammetric 

Suite (IPS). 

  
(a) Matching results of layer 2 

  
(b) Matching results of layer 1 

  
(c) Triangular networks on layer 0 

 
(d) Dense point cloud 

Figure 5. Matching results of Group 1 

 

  
(a) Matching results of layer 2 
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(b) Matching results of layer 1 

  
(c) Triangular networks on layer 0 

 
(d) Dense point cloud 

Figure 6. Matching results of Group 2 

 

By comparison of Figure 5(a) and (b), the feature-base 

matching of ASIFT on Layer 2 and the SURF on Layer 1 can 

achieve the similar distribution of matching features. In the 

textureless area, the ASIFT and SURF are difficult to achieve 

successful matching. In Figure 6(a) and (b), there is no 

successful matching in the upper right area (the vegetarian area) 

and these areas are usually constrained by large triangles and 

thus difficult to achieve a successful match in the following 

area-based matching (see the sparse point cloud on the upper 

right area in Figure 6(d)). 

 

Certain pairs of the 186 Delaunay triangles and rectangular 

patches in Group 1 are shown in Figure 7. On each row, the first 

two patches are the corresponding rectangular patches and the 

following two are rectangular patches with the corresponding 

Delaunay triangles. The corresponding rectangular patches are 

of the same size. The left images shown in Figure 7 are the 

reference images while the right are the rectified matching 

images. So the corresponding patches on every row look similar 

to each other and the corresponding pixels are close with only 

several pixels’ offset. 

 

    

    

    

    
(a) Rectangular patches (b) Delaunay Triangles 

Figure 7. Part rectangular patches of Group 1 

 

This paper adopts the manual method to testify the matching 

accuracy. On the original images, 50 easily distinguishable 

corresponding pairs are selected and we find that the numbers 

of correct matching for the two groups are 49 and 46 

respectively and the matching accuracy goes to pixel-level. 

There are two main sources of mismatches: one source is 

matching errors on the textureless or texture-repetitive area; the 

other is projection and interpolation error on layer 1 and layer 0. 

 

6. CONCLUSIONS AND OUTLOOK 

Without POS data, this paper implements the dense per-pixel 

matching which can effectively compensate for the longitude 

and latitude deformation of multi-view oblique images. The 

image hierarchical strategy and image space-based geometric 

constraints are used to restrain the searching area and refine the 

matching results. The Delaunay triangulation is used to 

compensate for the serious geometric distortion to achieve the 

successful pixel-level matching for at least 75% pixels on the 

restrained area of the reference multi-view images. Since the 

Delaunay triangles on the original images are rectified only 

once, the searching process can be implemented around the 

pixels of the same coordinates and thus avoid the repetitive 

projection and interpolation. For the challenges of matching 

textureless or texture-repetitive area, multi-view matching and 

object space information is to be further studied and combined 

into our algorithm. 
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