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ABSTRACT: 

 

In this paper we present several descriptors for feature-based matching based on autoencoders, and we evaluate the performance of 

these descriptors. In a training phase, we learn autoencoders from image patches extracted in local windows surrounding key points 

determined by the Difference of Gaussian extractor. In the matching phase, we construct key point descriptors based on the learned 

autoencoders, and we use these descriptors as the basis for local keypoint descriptor matching. Three types of descriptors based on 

autoencoders are presented. To evaluate the performance of these descriptors, recall and 1-precision curves are generated for 

different kinds of transformations, e.g. zoom and rotation, viewpoint change, using a standard benchmark data set. We compare the 

performance of these descriptors with the one achieved for SIFT. Early results presented in this paper show that, whereas SIFT in 

general performs better than the new descriptors, the descriptors based on autoencoders show some potential for feature based 

matching.   

 

 

1. INTRODUCTION 

Feature based image matching aims at finding homologous 

feature points from two or more images which correspond to the 

same object point. Key point detection, description and 

matching among descriptors form the feature based local image 

matching framework, e.g. (Lowe, 2004). The performance of 

local image matching is determined to a large degree by an 

appropriate selection of a descriptor. For each key point to be 

matched, such a descriptor has to be extracted from the image 

patches surrounding the key-point, and these descriptors can be 

seen as features providing a higher-level representation of the 

key point. In this context, hand-crafted features such as SIFT 

(Lowe, 2004) and SURF (Bay et al., 2008) have been shown to 

be very successful in image matching. However, the manual 

feature design process, also referred to as feature engineering, is 

labor intensive and thorny. In order to make an algorithm less 

dependent on feature engineering, it would be desirable to learn 

features automatically. As a by-product, one can hope that 

based on automatically learned features, novel applications can 

be constructed faster (Bengio, 2013). 

 

Bengio et al. (2013) claim that artificial intelligence must 

understand the world as it is captured by the sensor. They argue 

that this can only be achieved if one can learn to identify and 

disentangle the underlying explanatory factors hidden in the 

observed low-level sensor data. To learn features automatically 

from low-level sensory data rather than designing features 

manually can be seen as an attempt to capture the explanatory 

factors directly from the data. Recent progress in feature 

learning (Farabet et al., 2013) has shown that the application of 

automatically learned features can lead to comparable or even 

better results than using classical manually designed features in 

image classification.  

 

Feature-based image matching also relies on an appropriate 

selection of features (descriptors) rather heavily, whilst only a 

quite limited number of studies about feature learning has been 

conducted in this community. In our previous work (Chen et al., 

2014), we learned a descriptor as well as the corresponding 

matching function based on Haar features and Adaboost 

classification, relying on labeled (matched or unmatched) image 

patch pairs. This work was based on supervised learning. In 

order to be able to learn descriptors without having to provide 

manually annotated training data, in this paper we use 

unsupervised learning algorithms, in particular autoencoders for 

that purpose. Thus, we will for the first time apply this 

framework, originally designed for image encoding and 

classification tasks, to the problem of feature based matching. 

We will introduce three ways in which this can be achieved. 

The focus of this paper is on the comparison of the new 

methods with each other, but also with the classical hand-

crafted descriptor provided by SIFT, in order to show the 

potential, but also the limitations of such an approach. 

 

 

2. RELATED WORK 

Classical hand-crafted descriptors, e.g. SIFT (Lowe, 2004) and 

SURF (Bay et al., 2008), aggregate local features in a window 

surrounding a key-point. An extension of SIFT is given by 

PCA-SIFT (Ke and Sukthankar, 2004), which introduces 

dimension reduction of SIFT by analyzing the principal 

components of SIFT descriptors over a large number of SIFT 

descriptors which are extracted from real images. Other hand-

crafted feature descriptors all inherit the spirit of aggregating 

local feature response but vary the shape of pooling from grid 

(SIFT) to log-polar regions (Mikolajczyk and Cordelia, 2005) or 

concentric circles (Tola et al., 2010). 

 

Building a descriptor can be seen as a combination of the 

following building blocks (Brown et al., 2011): 1) Gaussian 

smoothing; 2) non-linear transformation; 3) spatial pooling or 

embedding; 4) normalization. If we take corresponding image 

patch pairs from different images as positive matching samples, 

image matching can be dealt with as a two-class classification 

problem. For the input training patch pairs, the similarity 

measure based on every dimension of the descriptor is built. Fed 

with training data, the transformation, pooling or embedding 
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that gets minimum loss can be found to build a new descriptor 

(Brown et al., 2011). 

 

Early descriptor learning work aimed at learning discriminative 

feature embedding or finding discriminative projections, while 

still using classic descriptors like SIFT as input (Strecha et al., 

2012). More recent work deals with pooling shape optimization 

and optimal weighting simultaneously. In (Brown et al., 2011), 

a complete descriptor learning framework was presented. The 

authors test different combinations of transformations, spatial 

pooling, embedding and post normalization, with the objective 

function of maximizing the area under the ROC curve, to find a 

final optimized descriptor. The learned best parametric 

descriptor corresponds to steerable filters with DAISY-like 

Gaussian summation regions. A further extension of this work 

is convex optimization introduced in (Simonyan et al., 2012) to 

tackle the difficult optimization problem in (Brown et al., 2011). 

 

Since descriptor is naturally a kind of representation for the raw 

input data, it holds an innate link to representation learning, 

where researchers try to teach an algorithm how to extract 

useful representations of the raw input data for applications 

such as image classification (Farabet et al., 2013). The 

unsupervised learning method we use in this paper, 

autoencoders (Hinton and Zemel, 1994), tries to find interesting 

structures in the raw input data by minimizing a reconstruction 

error of the input data. To the best of our knowledge, current 

work on descriptor learning concentrates on supervised learning 

side, while there is a lack of work on using unsupervised 

learning for this purpose. This observation is the starting point 

of our work. We want to investigate whether this type of 

unsupervised learning can be used to define descriptors for 

feature-based matching.  

 

 

3. AUTOENCODERS 

Autoencoders (Hinton and Zemel, 1994) directly learn a 

parametric map from input data such as an image patch to 

determine a feature descriptor. Each image patch is normalized 

to zero-mean and unit-variance in advance, which can reduce 

the effect of radiometric distortions.  

 

3.1 Basic Structure  

An autoencoder is a specific form of a neural network (NN). 

Generally, a neural network contains one input layer, optionally 

one or more hidden layers, and one output layer. Each layer is 

composed of several units. For example, the NN shown in 

Figure 1 consists of one input layer, one hidden layer and one 

output layer. The number of units in the input layer depends on 

the input data and the number of units of the output layer equals 

to the number of target variables, e.g., the number of categories 

in image classification.  

 

In a NN, connections can be added between units of the same 

layer or between units of different layers. The most commonly 

used structure only connects the units in one layer with units in 

its neighboring layer. Except for units of the input layer, each 

unit will compute the weighted sum of all its inputs coming 

from units of the previous layer, where the weights are learned 

parameters. After adding a bias value to the weighted sum, a 

non-linear activation function is applied to generate the output 

of the unit, which, in turn, can be the input to a unit of the next 

layer. This non-linear activation function improves the 

modeling ability of neural networks. Otherwise, the 

combination of multiple layers would just be equivalent to using 

a one-layer linear mapping. The different layers of the network 

apply a series of linear and non-linear transformations to the 

input data. These transformations gradually transform the input 

data to the higher level output representation in a nested 

functional form.  

 

The feature extraction function fθ in an autoencoder, also called 

encoder, is defined explicitly in a specific parameterized closed 

form. A feature vector can be computed as h= fθ(x) from an 

input x with a form fθ(x)=(b+Wex), where  is the logistic 

sigmoid function, serving as the activation function (Ng, 2011):   

 

1
( )

1 exp( )
z
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                               (1) 

 

where z= b+Wex and b is a vector of bias values. The feature 

vector h corresponds to the output of the hidden units in the NN 

and x corresponds to input units as shown in Figure 1. Note here 

the input x corresponds to a square image patch of size K x K, 

whose grey values are arranged in a column vector as shown in 

Figure 1. Every pixel in image patch corresponds to one 

element in the vector x. The matrix We corresponds to the 

weights of the connections corresponding to the black arrows in 

Figure 1 connecting the input and the hidden layers. Thus, a 

linear mapping via the encoder weight matrix We and bias b is 

first computed, then the non-linear sigmoid function is applied 

to this mapping. The feature vector h is the result of the 

autoencoder that will be used to define a descriptor that should 

be a high-level representation of the image patch. Each line j in 

the weight matrix We contains the weights for all the inputs of 

the corresponding element hj in the feature vector. As the input 

units correspond to a quadratic image patch, each line j of the 

weight matrix can be interpreted as containing the coefficients 

of a convolution filter applied to that image patch, and the 

output of that filter is the feature hj. The fact that the weights We 

are learned from the data means that in fact the convolution 

filter that forms the basis of feature extraction is learned. This is 

also true for the bias values that form the second input for the 

non-linear transformation via the sigmoid function. 

 

 

Figure 1. The Autoencoder's architecture. Input, hidden and 

output units are indicated by black, red and green 

circles, respectively. 

 

Another function gθ=(d+Wdh), called the decoder, maps the 

feature vectors back to input space and produces a 

reconstruction r=gθ(h). The matrix Wd and d, indicated by the 

r=gθ (h) 
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blue arrows in Figure 1, are the decoder weight matrix and bias, 

respectively. The autoencoder tries to approximate the input x 

with the reconstructed signal r. Here r corresponds to the output 

units, as shown in Figure 1. The training data consist of image 

patches of size K x K in image patches surrounding key points 

determined using some key-point extractor; details of training 

data generation is described in section 6. Here we suppose the 

number of training examples (image patches) is m. By 

subtracting the reconstruction r from the input x and applying 

the Euclidean norm to this difference over all training samples 

we can get the reconstruction error L(x, r). In order to learn the 

parameters of the autoencoder, i.e., the weight matrices and 

biases of both the encoder and the decoder, this error function 

has to be minimized. To prevent overfitting, a regularization 

term is also added to the Euclidean norm of the difference. The 

overall cost function is (Ng, 2011): 
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where  θ = {We, b, Wd, d}, which are the parameters to be  

learned 

 i = index of the training sample  

 m = number of training samples 

 N = K x K = number of units of the input layer x 

 H = dimensionality of h 

 λ = weight parameter  

 

The weight parameter λ controls the relative importance of the 

regularization term compared to the reconstruction error term. 

One can learn the parameters θ={We, b, Wd, d} of the encoder 

and the decoder simultaneously by minimizing the cost function 

J(). Obviously, if the encoded feature h has the same 

dimensionality as the input data x, the encoder will be the 

identity function. In this case, it will be meaningless. To get 

interesting structure inside the input data x, the structure of the 

auto-encoder system should be constrained. The first constraint 

normally used, as indicated in Figure 1, is that the 

dimensionality of the encoded feature h should be low. If there 

are structures in x, some of these structures will be discovered 

by such a model (Ng, 2011).   

 

Another constraint is the sparsity constraint. Sparsity means that 

most of the hidden units (learned feature vector components) 

stay "inactive", i.e., give an output close to 0 when presented 

with an input x. In particular, for a specific hidden unit j, we 

first denote its average (over  the training data)  activation (Ng, 

2011) as: 
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where  
j  = average activation of the hidden unit j 

 j = index of hidden unit 

 i = index of a training sample 

 zj
(i) = Wj

e x + bj 

 Wj
e, bj = row j of the weight matrix and bias,  

             respectively 

   i

jz = activation function of the hidden unit j 

 

The enforced sparsity constraint (Ng, 2011)  is: 

 

j  (4) 

Here ρ is a constant, typically a small value, e.g. 0.05. This 

implies that we would like the average activation of the hidden 

neurons to be close to . To satisfy this constraint, the hidden 

units’ activations must mostly be near 0 (Ng, 2011).  

 

An extra penalty term considering the sparsity constraint is 

added to the const function in Equation 2 (Ng, 2011): 
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where  H = dimensionality of h. 
 

Thus, the penalty term takes the form of the Kullback-Leibler 

(KL) divergence. Minimizing the KL-divergence will cause 
j

to be close to ρ. The final cost function to be minimized in 

training is:  

 

    sparsityJ J c                        (6) 

 

3.2 Training of the autoencoder 

We determine the optimal values for the parameters θ of the 

autoencoder by minimizing the cost function J’(θ) in Equation 6. 

For that purpose we use gradient descent based on the limited-

memory Broyden–Fletcher–Goldfarb–Shanno method (Møller, 

1993; Ng, 2011), which requires the partial derivatives of the 

error function (first term in Equation 2) with respect to each 

parameter. Back-propagation (Rumelhart et al., 1988) is used 

for this purpose: 

 

1. Apply an input vector x (i) to the autoencoder network 

 and forward-propagate it through the network to get 

 h(i)  and r(i), where h(i) = fθ(x
(i)) 

2. Compute the errors of each unit in the output layer.   

3. Back-propagate the errors to each hidden unit  

4. At each unit, use the corresponding activation 

function value and the back-propagated error to 

evaluate the required derivatives. 

 

For more details on this process refer to (Bishop, 2006; Ng, 

2011).  

 

 

4. PROPOSED DESCRIPTORS 

In this paper, we propose three new interest point descriptors 

based on autoencoders. We do not deal with interest point 

extraction; for that purpose, we use the Difference of Gaussian 

(DoG) detector, which is scale-invariant (Lowe, 2004). For each 

detected feature point, we extract an image patch centered at 

that point and aligned with the feature point’s main direction, 

which is determined in the way described in (Lowe, 2004). The 

size of the image patch is selected to be four times the extracted 

point’s scale. This image patch is resampled to a square of P x P 

pixels, where P is a parameter selected by the user. The second 

parameter is the size of the image patch that defines the number 

of input units for the autoencoder. This input is based on a patch 

of K x K pixels. The variants of the descriptor differ in the 

relation between P and K:  

 

1) K < P: In this case, the K x K support region for the 

autoencoder can be shifted within the P x P image patch. In 
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this case, the autoencoder is applied to several K x K sub-

windows in the larger image patch, and the descriptor is 

derived from all autoencoder outputs; there are two versions 

of the descriptor that are based on different strategies for 

selecting sub-windows and for generating the actual 

descriptor  

2) K = P: in this case one can directly use the autoencoder 

output as the descriptor for the interest point.  

 

To train the autoencoder, the DoG interest point detectors is 

applied to training images, the P x P support regions are 

extracted as described above, and each potential K x K sub-

window is extracted. All of these sub-windows are collected as 

the final training patches.  

 

4.1 Descriptor DESC-1: K < P, no pooling 

In this situation, the image patches extracted near a feature point 

are larger than the area for applying autoencoder, so that the 

autoencoder is applied to four sub-windows of the P x P image 

patch. The arrangement of these sub-windows is indicated by 

squares of different colour in Figure 2. Please note that the four 

sub-windows will overlap. We concatenate the hidden outputs 

of the learned autoencoder in these four sub-windows from left 

to right, top to bottom, to get a descriptor, whose dimension will 

be 4 x H, where H is the dimension of the feature vector h of the 

autoencoder. This descriptor will be referred to as DESC-1 in 

our experiments.    

 
Figure 2. The arrangement and size (in pixel) of  DESC-1. The 

learned autoencoder is applied to each of the 4 

coloured regions, and the resulting feature vectors are 

concatenated to form the final key point descriptor.  

 

 

4.2 Descriptor DESC-2: K < P, pooling is applied 

Alternatively, the autoencoder can be applied to each potential 

K x K sub-window of the P x P pixels. If we just concatenate 

the hidden output of these units as in DESC-1, we will get 

descriptor of a much higher dimension. To make things worse, 

many components of such a descriptor will be redundant and 

thus might hurt the discriminative power of the descriptor. To 

avoid this redundancy, we introduce a feature pooling strategy 

(Brown et al., 2011). Specifically, to produce DESC-2 the 

following steps are carried out (cf. Figure 3): 

 

1) We apply the autoencoder to each possible sub-window 

inside the image patch. The size of the autoencoder window 

and the image patch is K× K and P× P pixels, respectively. 

Using the short-hand D = P-K+1, there are D x D such 

windows. For each such window we determine H features. 

Consequently, we obtain H maps of D x D pixels each.  

2) We apply mean pooling to the resultant maps: Each map is 

split into non-overlapping sub-windows of C × C pixels, 

and the average value of each map is computed for each of 

these sub-windows. This results in H. output maps of size 

(D/C) x (D/C). This step is illustrated by the purple arrow in 

Figure 3 for one of the sub-windows of size C x C. 

3) We take the values at each location in these maps and 

arrange them in a vector in column-major order. The vector 

thus obtained is the final descriptor DESC-2. As shown in 

Figure 3, the first H output values (in dark red) are arranged 

as the first H elements of DESC-2, while the H values of the 

right lower corner (in blue) are arranged as the last H 

elements of DESC-2. 

 

 
Figure 3. The procedure of building DESC-2. 

 

The dimensionality of DESC-2 is (D/C)×(D/C)×H. 

 

4.3 Descriptor DESC-3: K = P 

In this situation, the autoencoder is directly trained based on the 

resampled P×P patches. The H hidden values of the learned 

encoder is directly arranged as a vector to give the final 

descriptor DESC_3. Consequently, the descriptor will have H 

dimensions.  

 

 

5. DESCRIPTOR EVALUATION FRAMEWORK 

To evaluate the performance of our descriptors, we rely on the 

descriptor evaluation framework in (Mikolajczyk and Schmid, 

2005). We use their online affine datasets1. As the images in the 

datasets are taken either from planar scenes or from the same 

sensor positions just using rotated cameras, image pairs are 

always related by a homography. Every sub-dataset contains six 

images transformed to different degrees, and the homography 

between the first image and the remaining five images in each 

sub-dataset is provided with the dataset. The datasets include six 

types of transformations, namely rotation, zoom + rotation, 

viewpoints changes, image blur, JPEG compression, and light 

change. One test image pair for 'viewpoint change' is shown in 

Figure 4. 

 

5.1 Data generation 

After applying the DoG detector to the test images, we extract 

image patches surrounding feature points in the way described 

in Section 4. After that, our descriptors are extracted from these 

                                                                 
1  http://www.robots.ox.ac.uk/~vgg/research/affine/ (accessed 

10 February 2015) 
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patches, and the nearest neighbor matching strategy is used to 

get correspondence between patches from different images. We 

use the nearest neighbor distance ratio to eliminate unreliable 

matches, i.e. matches for which the ratio between the distances 

of the two nearest neighbors in descriptor space is smaller than 

a threshold (Lowe, 2004; Mikolajczyk and Schmid, 2005).  

 

 

Figure 4. One test image pair from "graf" datasets. 

 

The ground truth correspondences are produced according to the 

ratio of intersection and union of the regions surrounding a key 

point (Mikolajczyk and Schmid, 2005). In short, if two detector 

regions share enough overlap after projecting into one image 

using the homography, these two key points are judged to be a 

correspondence. Just as (Mikolajczyk and Schmid, 2005), we 

also set the minimum overlap ratio required for a point pair to 

be considered to be a correct match to 0.5.  

 

5.2 Evaluation criteria 

Following the work in (Mikolajczyk and Schmid, 2005), we use 

recall and 1-precision as evaluation criteria. The recall is 

defined as follows: 

 

#  
.

#

correct matches
recall

correspondences
    (7) 

 

where #correspondences is the number of ground truth 

correspondences that is generated according to procedures 

described in 5.1, whereas #correct matches is the number of 

correct matches from the matching result based on the 

descriptor to be evaluated. This criterion gives the proportion of 

all potential matches that are detected based on the descriptor. A 

perfect result would give a recall equal to 1, which means the 

tested descriptor can find all potential matches between the two 

tested images.  

 

The second criterion is 1-precision, which is defined as the 

number of false matches divided by the total number of matches. 

 

#  
1 .

#   #  

falsematches
precision

correct matches falsematches
 


 (8) 

 

For the interpretation of the figures and possible curve shapes 

please refer to (Mikolajczyk and Schmid, 2005). By varying the 

nearest neighbor distance ratio, one can get different recall and 

1-precision values that are used to generate performance curve. 

 

 

6. EXPERIMENTS 

In this section, we first present our trained autoencoders for 

different values of K. By observing the training result we can 

see how the basic components of image patch (or sub-patch) 

changes with K. This part is covered in section 6.1. Afterwards, 

we present the performance evaluation of DESC-1, DESC-2 and 

DESC-3 using different parameters over K, C and H in section 

6.2. The comparison to SIFT is also presented in this section. 

 

6.1 Trainging of Autoencoders 

The training of the autoencoders is based on images from the 

Urban and Natural Scene Categories2 of the LabelMe dataset. 

The training data are generated as described in section 4.We 

randomly select 50 and 100 images from this dataset for the 

training of 1) and 2), respectively. After processing as described 

in section 4, the number of training patch is 78400 and 133164 

for 1) and 2), respectively. For 3) and 4), we randomly select 

400 images and obtain 178677 training patches. Our 

implementation is based on the Vlfeat library (Vedaldi and 

Fulkerson, 2010). 

 

In all experiments, we use patches of 16 x 16 pixels for 

extracting the descriptors, thus P = 16. The parameters of the 

cost function minimized in the training procedure are set to 

ρ=0.05, λ=0.0001. These values were found empirically. As far 

as the other parameters of the descriptors (K, H) are concerned, 

we use four different settings:  

 

1) K = 9, H=9;  

2) K = 11, H=12;  

3) K = 16, H=64;  

4) K = 16, H=128.  

 

Obviously, variants 1) and 2) correspond to for DESC-1 and 

DESC-2, while 3) and 4) are relevant to define DESC-3. The 

autoencoder learning is implemented based on the exercise code 

from the Unsupervised Feature Learning and Deep Learning 

(UFLDL) online tutorial 3 . The trained auto-encoders for 

variants 1) and 2) are shown in Figure 5.  

 

 
 

Figure. 5 Learned encoders of autoencoders. Left: setting 1); 

Right: setting 2) 

 

In the left part of Figure 5, there are 9 K x K blocks for variant 

1). Each of these blocks indicates the encoding weight between 

the K x K inputs and one of the hidden units. Consequently, 

each block shows one row of the weight matrix We of the 

autoencoder, which can be interpreted as a convolution filter of 

size K x K used to obtain one of the features of h. The 

interpretation of the weights for variant 2) on the right hand side 

of Figure 5 follows similar lines, the difference being that here 

we have H = 12 such convolution filters of size 11 x 11. The 

learned weights of the autoencoders are similar to convolution 

filters for detecting edges in images. However, using larger 

values of K and H, some of the learned convolution filters 

correspond to blob features, as shown in Figure 6. The results 

for variant 4) shows similar but more abundant relevant 

structures.  

 

                                                                 
2  http://cvcl.mit.edu/database.htm (accessed 10 February 2015) 
3  http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/ 

(accessed 10 February 2015) 
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6.2 Performance Evaluation 

Table 1 shows the image pairs used for performance evaluation 

in this paper. We select the first three images in every dataset as 

test images, and image matching are conducted between the first 

and the second (also third) image.  By varying the nearest 

neighbor distance ratio from 1.2 to 3.2 we obtain the recall and 

1-precision curve. The dominator on the label of vertical axis is 

the number of correspondences which are generated according 

to section 5.1. 

 

Transformations Dataset Index of image pairs 

zoom + rotation "bark" 1-2, 1-3 

viewpoint change "graf" 1-2, 1-3 

image blur "trees" 1-2, 1-3 

light change "leuven" 1-2, 1-3 

JPEG compression "ubc" 1-2, 1-3 

Table 1. Image pairs for performance evaluation.  

 

 
Figure. 6 Learned encoders of autoencoders for setting 3) P = 

16, K = 16, H=64. 
 

 

6.2.1 Different pooling size for DESC-2: We start with the 

evaluation of DESC-2, where we can use different sizes for 

pooling (described by the parameter C; cf. Section 4.2). With 

different pooling sizes, the dimensionality of DESC-2 will be 

different. We tested 4 different variants of DESC-2 as shown in 

Table 2.  

 

Name K H C 
Dimensionality 

of descriptor 

K11H12C2-108 DESC-2 11 12 2 108 

K11H12C3-48 DESC-2 11 12 3 48 

K9H9C2-144 DESC-2 9 9 2 144 

K9H9C3-36 DESC-2 9 9 3 36 

Table 2. Different pooling configurations of DESC-2. 

 

The performance evaluation on the "graf" dataset of these 

descriptors from different configuration is given in Figure 7. 

Performance curves in other datasets all show a similar trend, 

they are not included here for lack of space. The performance of 

SIFT is also presented. The descriptor K9H9C2-144 DESC-2 

performs best among those four configurations, but all learned 

descriptors perform worse than SIFT. One possible 

interpretation of this could be that  K9H9C2-144 DESC-2 has 

the highest dimensionality of the descriptor among the four 

descriptors.  

 
Figure 7.  Descriptor performance curves for different pooling 

configurations of DESC-2 

 

 

6.2.2 Comparison of DESC-1, DESC-2 and DESC-3: In 

this section we tested different variants of DESC-1, DESC-2 and 

DESC-3 as indicated in Table 3. For the descriptor type DESC-2, 

we only use the best one from section 6.2.1, K9H9C2-144 

DESC-2. 

 

Name K H C 
Dimensionality 

of descriptor 

K9H9-36 DESC-1 9 9 ~ 36 

K11H12-48 DESC-1 11 12 ~ 48 

K9H9C2-144 DESC-2 9 9 2 144 

K16H64-64 DESC-3 16 64 ~ 64 

K16H64-128 DESC-3 9 128 ~ 128 

Table 3. Different configurations for DESC-1, DESC-2 and 

DESC-3. 

 

Figure 8 shows the performance evaluation result for of the 

different configurations for all types of transformation listed in 

Table 1. 

 

From the performance curves shown in Figure 8 one can infer 

that all variants of DESC-1, DESC-2 and DESC-3 are currently 

inferior to SIFT in terms of recall and 1-precision.  

 

6.3 Discussion 

In all tested transformations, the DESC-3 descriptor performs 

better than DESC-1 and DESC-2. This superiority is much more 

distinctive in (a) zoom + rotation, (d) light change and (e) JPEG 

compression. Between the two DESC-3 descriptors, K16H64-

128 DESC-3 is better than K16H64-64 DESC-3 almost in all 

cases. In the cases of (a) zoom + rotation, (b) viewpoint change 

and (c) image blur, DESC-2 performs much better than DESC-1. 

A potential explanation of this fact could be that the convolution 

(densely extracted redundant features) and pooling find more 

discriminative components in the whole patch since they try 

every potential sub-window while DESC-1 only uses four fixed 

sub-windows.  
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(c)  

 

    
(d)  

 

           
(e)  

 

Figure 8. Performance curves of different descriptors under different types of transformations. (a) zoom + rotation. (b) viewpoint 

change. (c) image blur. (d) light change. (e) JPEG compression 
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Although our current result shows that DESC-3 is inferior to 

SIFT, from the comparison we can still have several interesting 

comments: 

1) It is possible to improve the performance of the DESC-3 by 

increasing H. Currently, the maximum value for H used in 

our experiments is 128. Whether or not this can be 

improved further by increasing the dimensionality of the 

descriptor still needs to be studied.  

2) The performance of all kinds of descriptors might be further 

improved by tuning the parameters both in autoencoder (N, 

H, λ, ρ) and the descriptor construction (K, H, C). 

3) Adding a supervised framework which integrates descriptor 

learning and learning of the matching score function as it 

was carried out in our previous work (Chen et al., 2014) 

seems to be a natural extension of this work. In this context, 

the features to be learnt could be based on DESC-3.  

 

Another very important notable point of our work is that it the 

shift between the training data and performance evaluation data, 

that is to say, we train our descriptor on another data set than the 

test set. This is due to the fact that the performance evaluation 

data is a really small size dataset which cannot support a 

reasonable training of our encoder. Even though descriptors do 

not perform as well as SIFT, in particular DESC-3 seems to 

have the potential to achieve a performance good enough to be 

used for matching. This shows that unsupervised learning of 

descriptors for image matching based on autoencoders is 

feasible, though further research will have to show whether 

these preliminary results can be improved. 

 

 

7. CONCLUSION 

In this paper we have presented several types of descriptors 

based on learned autoencoders, which is an unsupervised 

learning algorithm. We evaluate the performance of these 

descriptors using the recall and 1-precision (Mikolajczyk and 

Schmid, 2005) curves. Evaluation results show that the present 

descriptor DESC-3 is the most promising one, and it may be 

possible to improve it both by tuning corresponding parameters 

and concatenating a supervised learning framework. 

 

The future work will include more investigations into tuning the 

parameters of DESC-3. Furthermore, we will try to use more 

representative training data. Finally, we would like to integrate 

the unsupervised descriptor training with a supervised learning 

framework for additionally learning the matching score function. 
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