
FEATURE DESCRIPTOR BY CONVOLUTION AND POOLING AUTOENCODERS

L. Chen, F. Rottensteiner, C. Heipke

Institute of Photogrammetry and GeoInformation, Leibniz Universität Hannover, Germany -

(chen, rottensteiner, heipke)@ipi.uni-hannover.de

Commission III, WG III/1

KEY WORDS: Image Matching, Representation Learning, Autoencoder, Pooling, Learning Descriptor, Descriptor Evaluation

ABSTRACT:

In this paper we present several descriptors for feature-based matching based on autoencoders, and we evaluate the performance of

these descriptors. In a training phase, we learn autoencoders from image patches extracted in local windows surrounding key points

determined by the Difference of Gaussian extractor. In the matching phase, we construct key point descriptors based on the learned

autoencoders, and we use these descriptors as the basis for local keypoint descriptor matching. Three types of descriptors based on

autoencoders are presented. To evaluate the performance of these descriptors, recall and 1-precision curves are generated for

different kinds of transformations, e.g. zoom and rotation, viewpoint change, using a standard benchmark data set. We compare the

performance of these descriptors with the one achieved for SIFT. Early results presented in this paper show that, whereas SIFT in

general performs better than the new descriptors, the descriptors based on autoencoders show some potential for feature based

matching.

1. INTRODUCTION

Feature based image matching aims at finding homologous

feature points from two or more images which correspond to the

same object point. Key point detection, description and

matching among descriptors form the feature based local image

matching framework, e.g. (Lowe, 2004). The performance of

local image matching is determined to a large degree by an

appropriate selection of a descriptor. For each key point to be

matched, such a descriptor has to be extracted from the image

patches surrounding the key-point, and these descriptors can be

seen as features providing a higher-level representation of the

key point. In this context, hand-crafted features such as SIFT

(Lowe, 2004) and SURF (Bay et al., 2008) have been shown to

be very successful in image matching. However, the manual

feature design process, also referred to as feature engineering, is

labor intensive and thorny. In order to make an algorithm less

dependent on feature engineering, it would be desirable to learn

features automatically. As a by-product, one can hope that

based on automatically learned features, novel applications can

be constructed faster (Bengio, 2013).

Bengio et al. (2013) claim that artificial intelligence must

understand the world as it is captured by the sensor. They argue

that this can only be achieved if one can learn to identify and

disentangle the underlying explanatory factors hidden in the

observed low-level sensor data. To learn features automatically

from low-level sensory data rather than designing features

manually can be seen as an attempt to capture the explanatory

factors directly from the data. Recent progress in feature

learning (Farabet et al., 2013) has shown that the application of

automatically learned features can lead to comparable or even

better results than using classical manually designed features in

image classification.

Feature-based image matching also relies on an appropriate

selection of features (descriptors) rather heavily, whilst only a

quite limited number of studies about feature learning has been

conducted in this community. In our previous work (Chen et al.,

2014), we learned a descriptor as well as the corresponding

matching function based on Haar features and Adaboost

classification, relying on labeled (matched or unmatched) image

patch pairs. This work was based on supervised learning. In

order to be able to learn descriptors without having to provide

manually annotated training data, in this paper we use

unsupervised learning algorithms, in particular autoencoders for

that purpose. Thus, we will for the first time apply this

framework, originally designed for image encoding and

classification tasks, to the problem of feature based matching.

We will introduce three ways in which this can be achieved.

The focus of this paper is on the comparison of the new

methods with each other, but also with the classical hand-

crafted descriptor provided by SIFT, in order to show the

potential, but also the limitations of such an approach.

2. RELATED WORK

Classical hand-crafted descriptors, e.g. SIFT (Lowe, 2004) and

SURF (Bay et al., 2008), aggregate local features in a window

surrounding a key-point. An extension of SIFT is given by

PCA-SIFT (Ke and Sukthankar, 2004), which introduces

dimension reduction of SIFT by analyzing the principal

components of SIFT descriptors over a large number of SIFT

descriptors which are extracted from real images. Other hand-

crafted feature descriptors all inherit the spirit of aggregating

local feature response but vary the shape of pooling from grid

(SIFT) to log-polar regions (Mikolajczyk and Cordelia, 2005) or

concentric circles (Tola et al., 2010).

Building a descriptor can be seen as a combination of the

following building blocks (Brown et al., 2011): 1) Gaussian

smoothing; 2) non-linear transformation; 3) spatial pooling or

embedding; 4) normalization. If we take corresponding image

patch pairs from different images as positive matching samples,

image matching can be dealt with as a two-class classification

problem. For the input training patch pairs, the similarity

measure based on every dimension of the descriptor is built. Fed

with training data, the transformation, pooling or embedding

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W2, 2015
PIA15+HRIGI15 – Joint ISPRS conference 2015, 25–27 March 2015, Munich, Germany

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-W2-31-2015

31

that gets minimum loss can be found to build a new descriptor

(Brown et al., 2011).

Early descriptor learning work aimed at learning discriminative

feature embedding or finding discriminative projections, while

still using classic descriptors like SIFT as input (Strecha et al.,

2012). More recent work deals with pooling shape optimization

and optimal weighting simultaneously. In (Brown et al., 2011),

a complete descriptor learning framework was presented. The

authors test different combinations of transformations, spatial

pooling, embedding and post normalization, with the objective

function of maximizing the area under the ROC curve, to find a

final optimized descriptor. The learned best parametric

descriptor corresponds to steerable filters with DAISY-like

Gaussian summation regions. A further extension of this work

is convex optimization introduced in (Simonyan et al., 2012) to

tackle the difficult optimization problem in (Brown et al., 2011).

Since descriptor is naturally a kind of representation for the raw

input data, it holds an innate link to representation learning,

where researchers try to teach an algorithm how to extract

useful representations of the raw input data for applications

such as image classification (Farabet et al., 2013). The

unsupervised learning method we use in this paper,

autoencoders (Hinton and Zemel, 1994), tries to find interesting

structures in the raw input data by minimizing a reconstruction

error of the input data. To the best of our knowledge, current

work on descriptor learning concentrates on supervised learning

side, while there is a lack of work on using unsupervised

learning for this purpose. This observation is the starting point

of our work. We want to investigate whether this type of

unsupervised learning can be used to define descriptors for

feature-based matching.

3. AUTOENCODERS

Autoencoders (Hinton and Zemel, 1994) directly learn a

parametric map from input data such as an image patch to

determine a feature descriptor. Each image patch is normalized

to zero-mean and unit-variance in advance, which can reduce

the effect of radiometric distortions.

3.1 Basic Structure

An autoencoder is a specific form of a neural network (NN).

Generally, a neural network contains one input layer, optionally

one or more hidden layers, and one output layer. Each layer is

composed of several units. For example, the NN shown in

Figure 1 consists of one input layer, one hidden layer and one

output layer. The number of units in the input layer depends on

the input data and the number of units of the output layer equals

to the number of target variables, e.g., the number of categories

in image classification.

In a NN, connections can be added between units of the same

layer or between units of different layers. The most commonly

used structure only connects the units in one layer with units in

its neighboring layer. Except for units of the input layer, each

unit will compute the weighted sum of all its inputs coming

from units of the previous layer, where the weights are learned

parameters. After adding a bias value to the weighted sum, a

non-linear activation function is applied to generate the output

of the unit, which, in turn, can be the input to a unit of the next

layer. This non-linear activation function improves the

modeling ability of neural networks. Otherwise, the

combination of multiple layers would just be equivalent to using

a one-layer linear mapping. The different layers of the network

apply a series of linear and non-linear transformations to the

input data. These transformations gradually transform the input

data to the higher level output representation in a nested

functional form.

The feature extraction function fθ in an autoencoder, also called

encoder, is defined explicitly in a specific parameterized closed

form. A feature vector can be computed as h= fθ(x) from an

input x with a form fθ(x)=(b+Wex), where  is the logistic

sigmoid function, serving as the activation function (Ng, 2011):

1
()

1 exp()
z

z
 

 

 (1)

where z= b+Wex and b is a vector of bias values. The feature

vector h corresponds to the output of the hidden units in the NN

and x corresponds to input units as shown in Figure 1. Note here

the input x corresponds to a square image patch of size K x K,

whose grey values are arranged in a column vector as shown in

Figure 1. Every pixel in image patch corresponds to one

element in the vector x. The matrix We corresponds to the

weights of the connections corresponding to the black arrows in

Figure 1 connecting the input and the hidden layers. Thus, a

linear mapping via the encoder weight matrix We and bias b is

first computed, then the non-linear sigmoid function is applied

to this mapping. The feature vector h is the result of the

autoencoder that will be used to define a descriptor that should

be a high-level representation of the image patch. Each line j in

the weight matrix We contains the weights for all the inputs of

the corresponding element hj in the feature vector. As the input

units correspond to a quadratic image patch, each line j of the

weight matrix can be interpreted as containing the coefficients

of a convolution filter applied to that image patch, and the

output of that filter is the feature hj. The fact that the weights We

are learned from the data means that in fact the convolution

filter that forms the basis of feature extraction is learned. This is

also true for the bias values that form the second input for the

non-linear transformation via the sigmoid function.

Figure 1. The Autoencoder's architecture. Input, hidden and

output units are indicated by black, red and green

circles, respectively.

Another function gθ=(d+Wdh), called the decoder, maps the

feature vectors back to input space and produces a

reconstruction r=gθ(h). The matrix Wd and d, indicated by the

r=gθ (h)

image

patch

output

reconstruction

x2

x1

...

xN

b

d

h=fθ (x)

decoder encoder

input data hidden layer

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W2, 2015
PIA15+HRIGI15 – Joint ISPRS conference 2015, 25–27 March 2015, Munich, Germany

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-W2-31-2015

32

blue arrows in Figure 1, are the decoder weight matrix and bias,

respectively. The autoencoder tries to approximate the input x

with the reconstructed signal r. Here r corresponds to the output

units, as shown in Figure 1. The training data consist of image

patches of size K x K in image patches surrounding key points

determined using some key-point extractor; details of training

data generation is described in section 6. Here we suppose the

number of training examples (image patches) is m. By

subtracting the reconstruction r from the input x and applying

the Euclidean norm to this difference over all training samples

we can get the reconstruction error L(x, r). In order to learn the

parameters of the autoencoder, i.e., the weight matrices and

biases of both the encoder and the decoder, this error function

has to be minimized. To prevent overfitting, a regularization

term is also added to the Euclidean norm of the difference. The

overall cost function is (Ng, 2011):

2
() ()

1

2 2

1 1

1 1
() ((())))

2

(() ())
2

m
i i

i

N H
ij ji

e d

i j

J g f x x
m

W W

 





 

 
  
 

 






(2)

where θ = {We, b, Wd, d}, which are the parameters to be

learned

 i = index of the training sample

 m = number of training samples

 N = K x K = number of units of the input layer x

 H = dimensionality of h

 λ = weight parameter

The weight parameter λ controls the relative importance of the

regularization term compared to the reconstruction error term.

One can learn the parameters θ={We, b, Wd, d} of the encoder

and the decoder simultaneously by minimizing the cost function

J(). Obviously, if the encoded feature h has the same

dimensionality as the input data x, the encoder will be the

identity function. In this case, it will be meaningless. To get

interesting structure inside the input data x, the structure of the

auto-encoder system should be constrained. The first constraint

normally used, as indicated in Figure 1, is that the

dimensionality of the encoded feature h should be low. If there

are structures in x, some of these structures will be discovered

by such a model (Ng, 2011).

Another constraint is the sparsity constraint. Sparsity means that

most of the hidden units (learned feature vector components)

stay "inactive", i.e., give an output close to 0 when presented

with an input x. In particular, for a specific hidden unit j, we

first denote its average (over the training data) activation (Ng,

2011) as:

()

1

1
()

m
i

j j

i

z
m

 


    (3)

where
j = average activation of the hidden unit j

 j = index of hidden unit

 i = index of a training sample

 zj
(i) = Wj

e x + bj

 Wj
e, bj = row j of the weight matrix and bias,

 respectively

   i

jz = activation function of the hidden unit j

The enforced sparsity constraint (Ng, 2011) is:

j  (4)

Here ρ is a constant, typically a small value, e.g. 0.05. This

implies that we would like the average activation of the hidden

neurons to be close to . To satisfy this constraint, the hidden

units’ activations must mostly be near 0 (Ng, 2011).

An extra penalty term considering the sparsity constraint is

added to the const function in Equation 2 (Ng, 2011):

1

1
log (1) log

1

H

sparsity

j j j

c
 

 
 


  




 (5)

where H = dimensionality of h.

Thus, the penalty term takes the form of the Kullback-Leibler

(KL) divergence. Minimizing the KL-divergence will cause
j

to be close to ρ. The final cost function to be minimized in

training is:

    sparsityJ J c     (6)

3.2 Training of the autoencoder

We determine the optimal values for the parameters θ of the

autoencoder by minimizing the cost function J’(θ) in Equation 6.

For that purpose we use gradient descent based on the limited-

memory Broyden–Fletcher–Goldfarb–Shanno method (Møller,

1993; Ng, 2011), which requires the partial derivatives of the

error function (first term in Equation 2) with respect to each

parameter. Back-propagation (Rumelhart et al., 1988) is used

for this purpose:

1. Apply an input vector x (i) to the autoencoder network

 and forward-propagate it through the network to get

 h(i) and r(i), where h(i) = fθ(x
(i))

2. Compute the errors of each unit in the output layer.

3. Back-propagate the errors to each hidden unit

4. At each unit, use the corresponding activation

function value and the back-propagated error to

evaluate the required derivatives.

For more details on this process refer to (Bishop, 2006; Ng,

2011).

4. PROPOSED DESCRIPTORS

In this paper, we propose three new interest point descriptors

based on autoencoders. We do not deal with interest point

extraction; for that purpose, we use the Difference of Gaussian

(DoG) detector, which is scale-invariant (Lowe, 2004). For each

detected feature point, we extract an image patch centered at

that point and aligned with the feature point’s main direction,

which is determined in the way described in (Lowe, 2004). The

size of the image patch is selected to be four times the extracted

point’s scale. This image patch is resampled to a square of P x P

pixels, where P is a parameter selected by the user. The second

parameter is the size of the image patch that defines the number

of input units for the autoencoder. This input is based on a patch

of K x K pixels. The variants of the descriptor differ in the

relation between P and K:

1) K < P: In this case, the K x K support region for the

autoencoder can be shifted within the P x P image patch. In

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W2, 2015
PIA15+HRIGI15 – Joint ISPRS conference 2015, 25–27 March 2015, Munich, Germany

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-W2-31-2015

33

javascript:void(0);
javascript:void(0);

this case, the autoencoder is applied to several K x K sub-

windows in the larger image patch, and the descriptor is

derived from all autoencoder outputs; there are two versions

of the descriptor that are based on different strategies for

selecting sub-windows and for generating the actual

descriptor

2) K = P: in this case one can directly use the autoencoder

output as the descriptor for the interest point.

To train the autoencoder, the DoG interest point detectors is

applied to training images, the P x P support regions are

extracted as described above, and each potential K x K sub-

window is extracted. All of these sub-windows are collected as

the final training patches.

4.1 Descriptor DESC-1: K < P, no pooling

In this situation, the image patches extracted near a feature point

are larger than the area for applying autoencoder, so that the

autoencoder is applied to four sub-windows of the P x P image

patch. The arrangement of these sub-windows is indicated by

squares of different colour in Figure 2. Please note that the four

sub-windows will overlap. We concatenate the hidden outputs

of the learned autoencoder in these four sub-windows from left

to right, top to bottom, to get a descriptor, whose dimension will

be 4 x H, where H is the dimension of the feature vector h of the

autoencoder. This descriptor will be referred to as DESC-1 in

our experiments.

Figure 2. The arrangement and size (in pixel) of DESC-1. The

learned autoencoder is applied to each of the 4

coloured regions, and the resulting feature vectors are

concatenated to form the final key point descriptor.

4.2 Descriptor DESC-2: K < P, pooling is applied

Alternatively, the autoencoder can be applied to each potential

K x K sub-window of the P x P pixels. If we just concatenate

the hidden output of these units as in DESC-1, we will get

descriptor of a much higher dimension. To make things worse,

many components of such a descriptor will be redundant and

thus might hurt the discriminative power of the descriptor. To

avoid this redundancy, we introduce a feature pooling strategy

(Brown et al., 2011). Specifically, to produce DESC-2 the

following steps are carried out (cf. Figure 3):

1) We apply the autoencoder to each possible sub-window

inside the image patch. The size of the autoencoder window

and the image patch is K× K and P× P pixels, respectively.

Using the short-hand D = P-K+1, there are D x D such

windows. For each such window we determine H features.

Consequently, we obtain H maps of D x D pixels each.

2) We apply mean pooling to the resultant maps: Each map is

split into non-overlapping sub-windows of C × C pixels,

and the average value of each map is computed for each of

these sub-windows. This results in H. output maps of size

(D/C) x (D/C). This step is illustrated by the purple arrow in

Figure 3 for one of the sub-windows of size C x C.

3) We take the values at each location in these maps and

arrange them in a vector in column-major order. The vector

thus obtained is the final descriptor DESC-2. As shown in

Figure 3, the first H output values (in dark red) are arranged

as the first H elements of DESC-2, while the H values of the

right lower corner (in blue) are arranged as the last H

elements of DESC-2.

Figure 3. The procedure of building DESC-2.

The dimensionality of DESC-2 is (D/C)×(D/C)×H.

4.3 Descriptor DESC-3: K = P

In this situation, the autoencoder is directly trained based on the

resampled P×P patches. The H hidden values of the learned

encoder is directly arranged as a vector to give the final

descriptor DESC_3. Consequently, the descriptor will have H

dimensions.

5. DESCRIPTOR EVALUATION FRAMEWORK

To evaluate the performance of our descriptors, we rely on the

descriptor evaluation framework in (Mikolajczyk and Schmid,

2005). We use their online affine datasets1. As the images in the

datasets are taken either from planar scenes or from the same

sensor positions just using rotated cameras, image pairs are

always related by a homography. Every sub-dataset contains six

images transformed to different degrees, and the homography

between the first image and the remaining five images in each

sub-dataset is provided with the dataset. The datasets include six

types of transformations, namely rotation, zoom + rotation,

viewpoints changes, image blur, JPEG compression, and light

change. One test image pair for 'viewpoint change' is shown in

Figure 4.

5.1 Data generation

After applying the DoG detector to the test images, we extract

image patches surrounding feature points in the way described

in Section 4. After that, our descriptors are extracted from these

1 http://www.robots.ox.ac.uk/~vgg/research/affine/ (accessed

10 February 2015)

Image

patch

convolution using

learned autoencoders
mean pooling final descriptor

P

P-K+1

H

K

auto-

encode

r

K

K

K

P

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W2, 2015
PIA15+HRIGI15 – Joint ISPRS conference 2015, 25–27 March 2015, Munich, Germany

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-W2-31-2015

34

patches, and the nearest neighbor matching strategy is used to

get correspondence between patches from different images. We

use the nearest neighbor distance ratio to eliminate unreliable

matches, i.e. matches for which the ratio between the distances

of the two nearest neighbors in descriptor space is smaller than

a threshold (Lowe, 2004; Mikolajczyk and Schmid, 2005).

Figure 4. One test image pair from "graf" datasets.

The ground truth correspondences are produced according to the

ratio of intersection and union of the regions surrounding a key

point (Mikolajczyk and Schmid, 2005). In short, if two detector

regions share enough overlap after projecting into one image

using the homography, these two key points are judged to be a

correspondence. Just as (Mikolajczyk and Schmid, 2005), we

also set the minimum overlap ratio required for a point pair to

be considered to be a correct match to 0.5.

5.2 Evaluation criteria

Following the work in (Mikolajczyk and Schmid, 2005), we use

recall and 1-precision as evaluation criteria. The recall is

defined as follows:

.

#

correct matches
recall

correspondences
 (7)

where #correspondences is the number of ground truth

correspondences that is generated according to procedures

described in 5.1, whereas #correct matches is the number of

correct matches from the matching result based on the

descriptor to be evaluated. This criterion gives the proportion of

all potential matches that are detected based on the descriptor. A

perfect result would give a recall equal to 1, which means the

tested descriptor can find all potential matches between the two

tested images.

The second criterion is 1-precision, which is defined as the

number of false matches divided by the total number of matches.

1 .

falsematches
precision

correct matches falsematches
 


 (8)

For the interpretation of the figures and possible curve shapes

please refer to (Mikolajczyk and Schmid, 2005). By varying the

nearest neighbor distance ratio, one can get different recall and

1-precision values that are used to generate performance curve.

6. EXPERIMENTS

In this section, we first present our trained autoencoders for

different values of K. By observing the training result we can

see how the basic components of image patch (or sub-patch)

changes with K. This part is covered in section 6.1. Afterwards,

we present the performance evaluation of DESC-1, DESC-2 and

DESC-3 using different parameters over K, C and H in section

6.2. The comparison to SIFT is also presented in this section.

6.1 Trainging of Autoencoders

The training of the autoencoders is based on images from the

Urban and Natural Scene Categories2 of the LabelMe dataset.

The training data are generated as described in section 4.We

randomly select 50 and 100 images from this dataset for the

training of 1) and 2), respectively. After processing as described

in section 4, the number of training patch is 78400 and 133164

for 1) and 2), respectively. For 3) and 4), we randomly select

400 images and obtain 178677 training patches. Our

implementation is based on the Vlfeat library (Vedaldi and

Fulkerson, 2010).

In all experiments, we use patches of 16 x 16 pixels for

extracting the descriptors, thus P = 16. The parameters of the

cost function minimized in the training procedure are set to

ρ=0.05, λ=0.0001. These values were found empirically. As far

as the other parameters of the descriptors (K, H) are concerned,

we use four different settings:

1) K = 9, H=9;

2) K = 11, H=12;

3) K = 16, H=64;

4) K = 16, H=128.

Obviously, variants 1) and 2) correspond to for DESC-1 and

DESC-2, while 3) and 4) are relevant to define DESC-3. The

autoencoder learning is implemented based on the exercise code

from the Unsupervised Feature Learning and Deep Learning

(UFLDL) online tutorial 3 . The trained auto-encoders for

variants 1) and 2) are shown in Figure 5.

Figure. 5 Learned encoders of autoencoders. Left: setting 1);

Right: setting 2)

In the left part of Figure 5, there are 9 K x K blocks for variant

1). Each of these blocks indicates the encoding weight between

the K x K inputs and one of the hidden units. Consequently,

each block shows one row of the weight matrix We of the

autoencoder, which can be interpreted as a convolution filter of

size K x K used to obtain one of the features of h. The

interpretation of the weights for variant 2) on the right hand side

of Figure 5 follows similar lines, the difference being that here

we have H = 12 such convolution filters of size 11 x 11. The

learned weights of the autoencoders are similar to convolution

filters for detecting edges in images. However, using larger

values of K and H, some of the learned convolution filters

correspond to blob features, as shown in Figure 6. The results

for variant 4) shows similar but more abundant relevant

structures.

2 http://cvcl.mit.edu/database.htm (accessed 10 February 2015)
3 http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/

(accessed 10 February 2015)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W2, 2015
PIA15+HRIGI15 – Joint ISPRS conference 2015, 25–27 March 2015, Munich, Germany

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-W2-31-2015

35

6.2 Performance Evaluation

Table 1 shows the image pairs used for performance evaluation

in this paper. We select the first three images in every dataset as

test images, and image matching are conducted between the first

and the second (also third) image. By varying the nearest

neighbor distance ratio from 1.2 to 3.2 we obtain the recall and

1-precision curve. The dominator on the label of vertical axis is

the number of correspondences which are generated according

to section 5.1.

Transformations Dataset Index of image pairs

zoom + rotation "bark" 1-2, 1-3

viewpoint change "graf" 1-2, 1-3

image blur "trees" 1-2, 1-3

light change "leuven" 1-2, 1-3

JPEG compression "ubc" 1-2, 1-3

Table 1. Image pairs for performance evaluation.

Figure. 6 Learned encoders of autoencoders for setting 3) P =

16, K = 16, H=64.

6.2.1 Different pooling size for DESC-2: We start with the

evaluation of DESC-2, where we can use different sizes for

pooling (described by the parameter C; cf. Section 4.2). With

different pooling sizes, the dimensionality of DESC-2 will be

different. We tested 4 different variants of DESC-2 as shown in

Table 2.

Name K H C
Dimensionality

of descriptor

K11H12C2-108 DESC-2 11 12 2 108

K11H12C3-48 DESC-2 11 12 3 48

K9H9C2-144 DESC-2 9 9 2 144

K9H9C3-36 DESC-2 9 9 3 36

Table 2. Different pooling configurations of DESC-2.

The performance evaluation on the "graf" dataset of these

descriptors from different configuration is given in Figure 7.

Performance curves in other datasets all show a similar trend,

they are not included here for lack of space. The performance of

SIFT is also presented. The descriptor K9H9C2-144 DESC-2

performs best among those four configurations, but all learned

descriptors perform worse than SIFT. One possible

interpretation of this could be that K9H9C2-144 DESC-2 has

the highest dimensionality of the descriptor among the four

descriptors.

Figure 7. Descriptor performance curves for different pooling

configurations of DESC-2

6.2.2 Comparison of DESC-1, DESC-2 and DESC-3: In

this section we tested different variants of DESC-1, DESC-2 and

DESC-3 as indicated in Table 3. For the descriptor type DESC-2,

we only use the best one from section 6.2.1, K9H9C2-144

DESC-2.

Name K H C
Dimensionality

of descriptor

K9H9-36 DESC-1 9 9 ~ 36

K11H12-48 DESC-1 11 12 ~ 48

K9H9C2-144 DESC-2 9 9 2 144

K16H64-64 DESC-3 16 64 ~ 64

K16H64-128 DESC-3 9 128 ~ 128

Table 3. Different configurations for DESC-1, DESC-2 and

DESC-3.

Figure 8 shows the performance evaluation result for of the

different configurations for all types of transformation listed in

Table 1.

From the performance curves shown in Figure 8 one can infer

that all variants of DESC-1, DESC-2 and DESC-3 are currently

inferior to SIFT in terms of recall and 1-precision.

6.3 Discussion

In all tested transformations, the DESC-3 descriptor performs

better than DESC-1 and DESC-2. This superiority is much more

distinctive in (a) zoom + rotation, (d) light change and (e) JPEG

compression. Between the two DESC-3 descriptors, K16H64-

128 DESC-3 is better than K16H64-64 DESC-3 almost in all

cases. In the cases of (a) zoom + rotation, (b) viewpoint change

and (c) image blur, DESC-2 performs much better than DESC-1.

A potential explanation of this fact could be that the convolution

(densely extracted redundant features) and pooling find more

discriminative components in the whole patch since they try

every potential sub-window while DESC-1 only uses four fixed

sub-windows.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W2, 2015
PIA15+HRIGI15 – Joint ISPRS conference 2015, 25–27 March 2015, Munich, Germany

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-W2-31-2015

36

(a)

(b)

(c)

(d)

(e)

Figure 8. Performance curves of different descriptors under different types of transformations. (a) zoom + rotation. (b) viewpoint

change. (c) image blur. (d) light change. (e) JPEG compression

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W2, 2015
PIA15+HRIGI15 – Joint ISPRS conference 2015, 25–27 March 2015, Munich, Germany

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-W2-31-2015

37

Although our current result shows that DESC-3 is inferior to

SIFT, from the comparison we can still have several interesting

comments:

1) It is possible to improve the performance of the DESC-3 by

increasing H. Currently, the maximum value for H used in

our experiments is 128. Whether or not this can be

improved further by increasing the dimensionality of the

descriptor still needs to be studied.

2) The performance of all kinds of descriptors might be further

improved by tuning the parameters both in autoencoder (N,

H, λ, ρ) and the descriptor construction (K, H, C).

3) Adding a supervised framework which integrates descriptor

learning and learning of the matching score function as it

was carried out in our previous work (Chen et al., 2014)

seems to be a natural extension of this work. In this context,

the features to be learnt could be based on DESC-3.

Another very important notable point of our work is that it the

shift between the training data and performance evaluation data,

that is to say, we train our descriptor on another data set than the

test set. This is due to the fact that the performance evaluation

data is a really small size dataset which cannot support a

reasonable training of our encoder. Even though descriptors do

not perform as well as SIFT, in particular DESC-3 seems to

have the potential to achieve a performance good enough to be

used for matching. This shows that unsupervised learning of

descriptors for image matching based on autoencoders is

feasible, though further research will have to show whether

these preliminary results can be improved.

7. CONCLUSION

In this paper we have presented several types of descriptors

based on learned autoencoders, which is an unsupervised

learning algorithm. We evaluate the performance of these

descriptors using the recall and 1-precision (Mikolajczyk and

Schmid, 2005) curves. Evaluation results show that the present

descriptor DESC-3 is the most promising one, and it may be

possible to improve it both by tuning corresponding parameters

and concatenating a supervised learning framework.

The future work will include more investigations into tuning the

parameters of DESC-3. Furthermore, we will try to use more

representative training data. Finally, we would like to integrate

the unsupervised descriptor training with a supervised learning

framework for additionally learning the matching score function.

ACKNOWLEDGEMENTS

The author Lin Chen would like to thank the China Scholarship

Council (CSC) for supporting his PhD study in Leibniz

Universität Hannover, Germany.

REFERENCES

Bay, H., Ess, A., Tuytelaars, T., et al., 2008. Speeded-up robust

features (SURF). Computer Vision and Image Understanding,

110(3), pp. 346-359.

Bengio, Y. Courville, A. Vincent, P., 2013. Representation

learning: A review and new perspectives. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 35(8), pp. 1798-

1828.

Bishop, C. M., 2006. Pattern recognition and machine learning.

springer, New York, pp. 241-245.

Brown, M., Hua, G., Winder, S., 2011. Discriminative learning

of local image descriptors. IEEE Trans Pattern Anal Mach

Intell, 33(1), pp. 43-57.

Chen, L., Rottensteiner, F., & Heipke, C., 2014. Learning image

descriptors for matching based on Haar features. ISPRS-

International Archives of the Photogrammetry, Remote Sensing

and Spatial Information Sciences, 1, pp. 61-66.

Farabet, C., Couprie, C., Najman, L., & LeCun, Y., 2013.

Learning hierarchical features for scene labeling. Pattern

Analysis and Machine Intelligence, IEEE Transactions on,

35(8), pp. 1915-1929.

Hinton, G. E. Zemel, R. S., 1994. Autoencoders, minimum

description length, and Helmholtz free energy. Advances in

neural information processing systems, pp. 3-3.

Ke, Y., Sukthankar, R., 2004. PCA-SIFT: A more distinctive

representation for local image descriptors. Proceeding IEEE

Conf. Computer Vision and Pattern Recognition, (2), pp. II-

506-II-513

Mikolajczyk, K., Schmid, C., 2005. A performance evaluation

of local descriptors. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 27(10), pp. 1615-1630.

Møller, M. F., 1993. A scaled conjugate gradient algorithm for

fast supervised learning. Neural networks, 6(4), pp. 525-533.

LeCun, Y. Bottou, L. Bengio, Y. et al., 1998. Gradient-based

learning applied to document recognition. Proceedings of the

IEEE, 86(11), pp. 2278-2324.

LeCun, Y., Ranzato, M.A., 2013. Deep Learning Tutorial.

International Conference on Machine Learning.

Lowe, D. G., 2004. Distinctive image features from scale-

invariant keypoints. International Journal of Computer Vision,

60(2), pp. 91-110.

Ng, A., 2011. Sparse autoencoder. CS294A Lecture notes, 72.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J., 1988.

Learning representations by back-propagating errors. Cognitive

modeling, 5.

Simonyan, K., Vedaldi, A., Zisserman, A., 2012. Descriptor

learning using convex optimisation. European Conference on

Computer Vision (ECCV) 2012. Springer Berlin Heidelberg, pp.

243-256.

Strecha, C., Bronstein, A. M., Bronstein, M. M., Fua, P., 2012.

LDAHash: Improved matching with smaller descriptors. IEEE

Trans Pattern Anal Mach Intell, 34(1), pp. 66-78.

Tola, E., Vincent, L., Fua, P., 2010. Daisy: An efficient dense

descriptor applied to wide-baseline stereo. IEEE Trans Pattern

Anal Mach Intell, 32(5), pp. 815-830.

Vedaldi, A., Fulkerson, B., 2010. VLFeat: An open and portable

library of computer vision algorithms. In Proceedings of the

international conference on Multimedia ACM. pp. 1469-1472.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W2, 2015
PIA15+HRIGI15 – Joint ISPRS conference 2015, 25–27 March 2015, Munich, Germany

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-W2-31-2015

38

http://www.springer.com/computer/image+processing/journal/11263

