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ABSTRACT:

The scan matching based simultaneous localization and mapping method with six dimensional poses is capable of creating a three

dimensional point cloud map of the environment, as well as estimating the six dimensional path that the vehicle has travelled. The

essence of it is the registering and matching of sequentially acquired 3D laser scans, while moving along a path, in a common

coordinate frame in order to provide 6D pose estimations at the respective positions, as well as create a three dimensional map of

the environment. An approach that could drastically improve the reliability of acquired data is to integrate available ground truth

information. This paper is about implementing such functionality as a contribution to 6D SLAM (simultaneous localization and

mapping with 6 DoF) in the 3DTK – The 3D Toolkit software (Nüchter and Lingemann, 2011), as well as test the functionality of the

implementation using real world datasets.

1. INTRODUCTION

Before the problem and the proposed solutions are discussed in

depth, it is necessary to provide the background information on

the involved technologies and current research efforts that have

enabled this work to be carried out.

The concept of using laser technology for distance measuring

was developed in the early 1960s. These efforts eventually re-

sulted in the creation of LiDAR (an acronym for Light Detection

And Ranging or a portmanteau of ”light” and ”radar”), which can

be used as a term referring to the general technology, as well as

an umbrella term that refers to technological solutions realizing

different distance measuring methods that employ a laser. The

LIDAR technology is currently quite established and has found

many uses ranging from geomatics to remote sensing. Laser

scanners mounted on aerial or orbital platforms are used to cre-

ate terrestrial and planetary digital surface models (Smith et al.,

2001), deduce atmospheric properties (Fernald, 1984), gather data

for use in forestry (Dubayah and Drake, 2000), agriculture, envi-

ronmental sciences and more (Campbell, 2002). Apart from one

and two dimensional laser scanners used in the mentioned scenar-

ios, three dimensional laser scanners with a near spherical field of

view have been developed and are being increasingly used in the

recent decades. Such laser scanners as well as carefully arranged

two dimensional laser scanner configurations are capable of cre-

ating a precise three dimensional point cloud of the surrounding

environment.

Although scans acquired by using a robotic platform can nowa-

days be registered reliably in a common reference frame there

is no guarantee of this generated point cloud being in any way

attached to ground truth even if it is known. This effectively

renders the results of using a robotic platform in these scenarios

substandard. Another scenario that could benefit from integrat-

ing the ground truth information in the 6D SLAM is the field of

car mounted road surveying. Such systems usually use GPS sig-

nal to generate reasonably reliable pose information to aid map-

ping. However, in important infrastructure objects, such as high-

way tunnels, the GPS signal can be unreliable. Integrating ground

truth data obtained by different surveying methods could improve

the overall result. Thus, the topic of implementing known poses

or ground truth points along the path of the vehicle carrying out

6D SLAM is a worthwhile effort that would advance the method

and widen its fields of application.

The paper is structured as follows: First, we recapitulate the ba-

sics of 6D SLAM, i.e., of globally consistant scan matching. Af-

terwards, we present our ground control point inclusion methods

as well as experiments and results.

2. POINT CLOUD REGISTRATION AND SCAN

MATCHING BASED SLAM

2.1 Pre-alignment of scans with ICP

We use the well-known ICP algorithm (Besl and McKay, 1992)

to calculate the transformation while the vehicle is acquiring a

sequence of 3D scans. ICP calculates point correspondences it-

eratively. In each iteration step, the algorithm selects the clos-

est points as correspondences and calculates the transformation

(R, t) for minimizing the equation

E(R, t) =

m
∑

i=1

∥

∥mi − (Rdi + t)
∥

∥

2
, (1)

where the tuples (mi,di) of corresponding model and data points

are given by minimal distance, i.e., mi is the closest point to di

within a close limit (Besl and McKay, 1992). The underlying as-

sumption of the ICP algorithm is that the point correspondences

are correct in the last iteration. In each iteration, the transforma-

tion is calculated by the quaternion based method of Horn (Horn,

1987).

To digitalize environments without occlusions, multiple 3D scans

have to be registered. Consider a vehicle traveling along a path,

and traversing (n+1) 3D scan poses X0, . . . ,Xn. A straightfor-

ward method for aligning several 3D scans taken from the poses

X0, . . . ,Xn is pairwise ICP , i.e., matching the scan taken from
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3,4Ē3,4

−C
−1
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Figure 1. Simple loop containing 5 vertices. The corresponding system of linear equations is shown on right side.

H =

















1 0 0 0 −t̄z cos(θ̄x) + t̄y sin(θ̄x) t̄y cos(θ̄x) cos(θ̄y) + t̄z cos(θ̄y) sin(θ̄x)
0 1 0 t̄z −t̄x sin(θ̄x) −t̄x cos(θ̄x) cos(θ̄y) + t̄z sin(θ̄y)
0 0 1 −t̄y t̄x cos(θ̄x) −t̄x cos(θ̄y) sin(θ̄x)− t̄y sin(θ̄y)
0 0 0 1 0 sin(θ̄y)
0 0 0 0 sin(θ̄x) cos(θ̄x) cos(θ̄y)
0 0 0 0 cos(θ̄x) − cos(θ̄y) sin(θ̄x)

















(5)

Mi =





1 0 0 0 −dy,i dz,i
0 1 0 −dz,i dx,i 0
0 0 1 dy,i 0 −dx,i



 . (6)

Figure 2. Definition of the matrix decomposition M and H.

pose X1 against the scan from pose X0, matching the scan from

X2 against the one from X1, and so on. The detection of closed

loops operates on the registered scans.

In case of a mobile mapping vehicle, we exploit the fact that

these vehicles typically feature two tilted 3D scanners. The pre-

alignment is carried out between the two stripes, which gage sur-

faces of the environment in a time-delayed manner. The con-

tinuous stream of observations is broken into small sections and

treated in a semi-rigid manner. This semi-rigid registration is very

similar to and extends the scan matching described next.

2.2 Globally Consistent Scan Matching

A 6 DoF graph optimization algorithm for global relaxation is

employed, a variant of GraphSLAM. Our method relies on a no-

tion of the uncertainty of the poses, calculated by the registration

algorithm. The following method extends the probabilistic ap-

proach first proposed in (Lu and Milios, 1997) to 6 DoF. For a

more detailed description of the extension refer to (Borrmann et

al., 2008a) and (Borrmann et al., 2008b). For each pose X, the

term X̄ denotes a pose estimate, and ∆X is the pose error.

The positional error of two poses Xj and Xk is described by:

Ej,k =
m
∑

i=1

∥

∥Xj ⊕ di −Xk ⊕mi

∥

∥

2
=

m
∑

i=1

∥

∥Zi(Xj ,Xk)
∥

∥

2
.

(7)

Here, ⊕ is the compounding operation that transforms a point

into the global coordinate system. For small pose differences,

Ej,k can be linearized by use of a Taylor expansion:

Zi(Xj ,Xk) ≈ X̄j ⊕ di − X̄k ⊕mi (8)

−
(

∇jZi(X̄j , X̄k)∆Xj −∇kZi(X̄j , X̄k)∆Xk

)

(9)

where ∇j , ∇k denote derivatives with respect to Xj and Xk

respectively. Utilizing the matrix decompositions MiHj and

DiHk of the respective derivatives that separate the poses from

the associated points gives:

Zi(Xj ,Xk) ≈ Zi(X̄j , X̄k)− (MiHj∆Xj −DiHk∆Xk)
(10)

≈ Zi(X̄j , X̄k)−
(

MiX
′
j −DiX

′
k

)

(11)

Appropriate decompositions are given for Euler angles, quater-

nion representation and the Helix transformation in (Nüchter et

al., 2010). In the following, we will work with the pose repre-

sentation as Euler angles. This matrix decomposition cannot be

derived from first principles and was first presented in (Borrmann

et al., 2008a). Since Mi as well as Di are independent of the

pose, the positional error Ej,k is minimized with respect to the

new pose difference E
′
j,k:

E
′
j,k = (Hj∆Xj −Hk∆Xk) (12)

= (X′
j −X

′
k). (13)

E
′
j,k is linear in the quantities X

′
j that will be estimated so that

the minimum of Ej,k and the corresponding covariance are given

by

Ēj,k = (MT
M)−1

M
T
Z (14)

Cj,k = s2(MT
M). (15)

where s2 is the unbiased estimate of the covariance of the identi-

cally, independently distributed errors of Z:

s2 = (Z−MĒ)T (Z−MĒ)/(2m− 3). (16)

Here Z is the concatenated vector consisting of all Zi(X̄j , X̄k)
and M the concatenation of all Mi’s.

Up to now all considerations have been on a local scale. With

the linearized error metric E
′
j,k and the Gaussian distribution

(Ēj,k,Cj,k) a Mahalanobis distance that describes the global er-
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ror of all the poses is constructed:

W =
∑

j→k

(Ēj,k −E
′
j,k)

T
C

−1

j,k(Ē
′
j,k −E

′
j,k) (17)

=
∑

j→k

(

Ēj,k − (X′
j −X

′
k)
)

C
−1

j,k

(

Ē
′
j,k − (X′

j −X
′
k)
)

.

(18)

In matrix notation, W becomes:

W = (Ē−HX)TC−1(Ē−HX). (19)

Here H is the signed incidence matrix of the pose graph, Ē is

the concatenated vector consisting of all Ē′
j,k and C is a block-

diagonal matrix comprised of C−1

j,k as sub matrices. To derive (19)

from (18) we used an incidence matrix and stacked the matrices

Ē
′
j,k and C

−1

j,k. For the latter, stacking must proceed in a diagonal

fashion. Minimizing function (19) yields new optimal pose esti-

mates. The minimization of W is accomplished by the following

linear equation system:

(HT
C

−1
H)X = H

T
C

−1
Ē (20)

BX = A. (21)

The symmetrical matrix B consists of the sub matrices

Bk,j = Bj,k =















n
∑

l=0

C
−1

j,l (j = k)

−C
−1

j,k (j 6= k).

(22)

The entries of A are given by:

Aj =
n
∑

k=0

k 6=j

C
−1

j,kĒj,k. (23)

In addition to solving for X this allows us to compute the associ-

ated covariance CX of X:

CX = B
−1. (24)

The results have to be transformed to obtain the optimal pose

estimates as follows:

Xj = X̄j −H
−1

j X
′
j , (25)

Cj = (H−1

j )CX
j (H−1

j )T . (26)

Figure 1 shows a simple graph containing five vertices and five

directed edges. Each edge denotes a scan matching, where the

model set corresponds to the 3D point cloud with an outgoing

edge and the data set corresponds to the point cloud with the in-

coming edge. For all points in the data set the closest point in the

model set is calculated. Based on these point pairs the covariance

matrices are estimated as stated above. The matrix B features 4

entries, since the first 3D scan, i.e., scan 0, defines the coordinate

system and is not transformed. However, the covariance matrices

with index 0 appear in the loop closing and at B1,1

Following the convention in (Borrmann et al., 2008a), we repre-

sent a pose X, as well as its estimate and error, in Euler angles

X =















tx
ty
tz
θx
θy
θz















X̄ =















t̄x
t̄y
t̄z
θ̄x
θ̄y
θ̄z















∆X =















∆tx
∆ty
∆tz
∆θx
∆θy
∆θz















. (27)

The matrix decomposition MiH = ∇Zi(X̄) is given in Fig-

ure 2. As required, Mi contains all point information, while H

expresses the pose information. Thus, this matrix decomposition

constitutes a pose linearization similar to that proposed in the pre-

ceding section. While the matrix decomposition is arbitrary with

respect to the column and row ordering of H, this particular de-

scription was chosen due to its similarity to the 3D pose solution

given in Lu and Milios (1997). Finally, a system of 6(n−1) equa-

tions (n denotes the number of poses to be estimated) has to be

solved, but since the pose graph is sparse the resulting equation

system is sparse, too. We use a sparse Cholesky decomposition

as SLAM back end (Borrmann et al., 2008b)

3. INCLUDING INFORMATION OF GROUND

CONTROL POINTS

Arguably, the most important part of exploiting any available

global truth data in static or kinematic 6D SLAM implemen-

tations is the ability to fix a pose in the global relaxation step.

As described previously, the globally consistent scan registration

method with Euler angles fixes the zeroth scan while other scans

are movable for registration (cf. Figure 1). This is usually the

desired behaviour.

The first approach to pose fixing that was explored is the so called

algorithmic approach. The main idea of this approach is to find

a way to introduce the pose fixing functionality in the 6D SLAM

algorithm without changing the way how the LUM with Euler

angles works. In other words, without changing any mathematics

behind the global relaxation algorithm.

The fixed scan version of 6D SLAM algorithm works similar to

the global relaxation described above. Two additional steps are

introduced. First, the graph is transformed to take into account

the fixed scans. Namely, the nodes representing the fixed poses

are merged with the zeroth node and the required link rearrange-

ment is done.

After the graph is rearranged, the vector containing all scans has

to be rearranged as well. Namely, a meta scan containing all

fixed scans has to be created and set as the zeroth scan. After

that all other scans have to be renumbered in a sequential manner

accordingly. This has to be done to ensure proper generation of

the matrices in the linear equation system BX = A.

Figure 3 (above) depicts a typical graph for the SLAM problem.

Each node is connected to a few further nodes as it is expected

that there is a large enough overlap that lets these point clouds to

be matched. The loop is closed, hence the last node is connected

to the first node. The grey nodes need to be regarded as fixed.

If this graph was passed to an unchanged LUM global relaxation

algorithm, the grey nodes would be treated as any other. The way

the LUM algorithm is defined, only the zeroth node is treated

as fixed. Thus, to treat scans 3 and 8 in Figure 3 as fixed, the

following actions have to be carried out:

1. Merge the fixed scans with the zeroth node.
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Figure 3. Above: A typical directed graph for a SLAM problem.

Each node is connected to a few further nodes that can be matched

to it and the loop is closed. The grey nodes have to be regarded as

fixed. Below: Structure of the graph after the scan fixing proce-

dure has been applied. The fixed scans are now treated as a single

metascan.

2. Add the edges pointing to and from the fixed nodes to the

zeroth node.

3. Remove duplicate links.

Figure 3 (below) depicts the example graph discussed previously

after the described procedure.

As opposed to the algorithmic approach to pose fixing, the mathe-

matical approach strives to fix the pose by exploiting the way how

the global relaxation is being done. In other words, although the

graph object has to be changed slightly in order to convey the nec-

essary information about which poses have to be fixed, the graph

structure should not be changed. Instead, the global relaxation al-

gorithm should make use of available information regarding fixed

scans and construct the linear equation system accordingly.

Given the math in section 2.. It is important to note that X rep-

resents the concatenation of poses X1, . . . ,Xn. In other words,

only the non-fixed poses compose the linear equation system

BX = A and are solved for. The j and k in (21) represent

columns and rows in the corresponding arrays and hence only in-

clude movable nodes, the sums in 21 include the zeroth node as

well through the use of index l. While this is appropriate notation

when only the zeroth node is fixed, if a graph with an arbitrary

number of fixed nodes is considered, the notation has to be ex-

tended. In this case, it is useful to use index l to denote the set of

fixed nodes. Then equations (21) become:

Bj,k =

{ ∑n

k=0
C

−1

j,k +
∑n

l=0
C

−1

j,l (j = k)

C
−1

j,k (j 6= k)
(28)

Aj =
n
∑

k=0,k 6=j

C
−1

j,kĒj,k +
n
∑

l=0

C
−1

j,l Ēj,l (29)

where C
−1

j,l represent the covariance between the j-th movable

and l-th fixed scans and Ēj,l is the corresponding observation.

Then, the linear equation system (21) consists of n equations and

can be solved for n variables, where n is the amount of movable

nodes. The graph edge information, as well as the neighbour

relations between all nodes, including the fixed ones, is taken

into consideration while building the matrix B and A according

to (28). To build the linear equation system, a fully connected

graph is considered where the covariance between two nodes that

are not connected with an edge is set to zero.

4. EXPERIMENTS AND RESULTS WITH FIXED

POSES

To test the functionality of the pose fixing methods, two exper-

iments were carried out. In both cases data were gathered by a

robot traversing the environment and stopping to make 3D point

clouds. However, both cases have distinct environmental proper-

ties allowing to highlight the differences between used methods.

The first dataset used to verify the developed methods is a dataset

recorded in Downtown Bremen, Germany. It contains a total of

thirteen three dimensional point clouds generated using a RIEGL

VZ-400 3D laser scanner. Each point cloud in turn contains up

to 22.5 million points. The initial pose estimations needed for

point cloud matching are provided by exploiting the odometry

data of the robot. Figure 5. shows the result. One can see that the

system cannot complete converge as the scans 0,3, and 8 cannot

be moved.

Apparently, the difference that sets these two scan fixing algo-

rithms apart in this situation has to be the final positions of the

movable scans. This is easily explainable by using the graphs that

have been used for both methods. The first difference is that the

zeroth node in the graph used for algorithmic scan fixing contains

all point clouds that have to be fixed as opposed to mathematical

approach where the point clouds are treated as fixed yet separate.

The second difference is the amount of links which is heavily re-

duced in algorithmic scan fixing as opposed to mathematical scan

fixing.

The second dataset used to verify and test the developed scan

fixing methods is the Hannover dataset. The dataset consists of

468 3D scans with around twenty thousand data points in each

scan. The environment recorded in this dataset differs consider-

ably from the one described by the Bremen dataset. The Han-

nover dataset considers of data taken by a mobile vehicle as it

has travelled through the campus of University of Hannover. It

is a relatively vast environment with low to medium rise build-

ings and park-like features such as trees and other vegetation.

Most scans are matchable only to its direct spatial neighbours

as no prominent features that can be observed from many van-

tage points around the campus are present in the dataset. The

result is given as video at the follwoing URLs: http://youtu.

be/c9ULBq9CyEQ (original algorithm as given in (Borrmann et

al., 2008a)), http://youtu.be/aph7fFm8H94 (one scan fixed

in addition to the origin), and http://youtu.be/CFoTtDNaZuQ

(two scans fixed).
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5. FROM FIXING SCAN POSES TOWARDS

INCORPORATING GROUND CONTROL POINTS

In previous parts methods for doing simultaneous localization

and mapping, as well as methods for denoting certain posed as

fixed while doing SLAM have been described.

Let us consider a situation where a dataset has been acquired

in a statical terrestrial manner using a 3D scanner and there are

ground truth points along the path that can readily be identified

in the dataset. In this situation each scan provides a 3D represen-

tation of the surrounding environment in which zero to n ground

truth points can be identified. The problem of aligning a pose

with the underlying ground truth eventually boils down to find-

ing a transformation between the set of the known ground truth

points and the set of the corresponding points of the dataset. The

criterion for reliable pose determination is to have at least three

non-singular, non-linear ground truth points that can be identified

in a single scan if current methods of determining a transforma-

tion between two matchable point clouds are used.

Kinematic SLAM adds it’s own corrections both to pose fixing

and the incorporation of ground truth data. While the underly-

ing algorithm for the pre-processing step is the same as for static

SLAM, eventually the whole dataset is split up in smallest pos-

sible slices where each slice has it’s own modifiable pose as de-

scribed in Elseberg et al. (2013). More often than not it will be the

case that it is not possible to identify three ground truth positions

in a single slice to perform unambiguous data association.

Experiments have been carried out on a tunnel dataset that con-

tains 3D point cloud data taken using a LIDAR system consisting

of two 2D laser scanners arranged in the typical ”X” formation

and positioned on top of a car. Apart from point and trajectory

information, the dataset comes with ground truth information.

Ground truth points have been acquired using independent sur-

veying methods. The ground truth coordinates point to a bolt

head in the centre of a painted circle on the tunnel’s wall. Due

to paint having different reflectance than the surrounding wall,

the painted circle is an identifiable feature in the dataset. Due to

separate point clouds being acquired by separate scanners and in

separate runs, it is possible to compare datasets that should yield

the same result and identify any discrepancies. Such comparison

has been done and can be examined in Figure 4.

In future work, we aim at constraining the semi-rigid SLAM cor-

rection, with ground control points. In typical setups there are

merely three control points per segment visible, thus fixing scans

at ground truth poses is not sufficient. A possible solution would

be to include the ground control points as a fixed ”‘scan”’ and

to incorporate a high weight of a matching between the extracted

marker and these points.

6. CONCLUSIONS

This paper has presented methods for fixing scan poses in our

globally consistent scan matching, i.e., our 6D SLAM optimiza-

tion framework. Experiments confirm the applicability in several

scenarions. Furthermore, we describe the real-world scenario of

using ground control points in a tunnel mapping task.
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