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ABSTRACT: 
 
The city management is increasingly supported by information technologies, leading to paradigms such as smart cities, where 
decision-makers, companies and citizens are continuously interconnected. 3D modelling turns of great relevance when the city has to 
be managed making use of geospatial databases or Geographic Information Systems. On the other hand, laser scanning technology 
has experienced a significant growth in the last years, and particularly, terrestrial mobile laser scanning platforms are being more and 
more used with inventory purposes in both cities and road environments. Consequently, large datasets are available to produce the 
geometric basis for the city model; however, this data is not directly exploitable by management systems constraining the 
implementation of the technology for such applications. 
This paper presents a new algorithm for the automatic detection of zebra crossing. The algorithm is divided in three main steps: road 
segmentation (based on a PCA analysis of the points contained in each cycle of collected by a mobile laser system), rasterization 
(conversion of the point cloud to a raster image coloured as a function of intensity data), and zebra crossing detection (using the 
Hough Transform and logical constrains for line classification). After evaluating different datasets collected in three cities located in 
Northwest Spain (comprising 25 strips with 30 visible zebra crossings) a completeness of 83% was achieved. 
 
 

1. INTRODUCTION 

Cities are increasingly large and complex areas that require 
integrated technologies for an effective management and to 
ensure productivity, continued economic growth and 
environmental sustainability. The city management is 
increasingly supported by information technologies, leading to 
paradigms such as smart cities, where decision-makers, 
companies and citizens are continuously interconnected. 3D 
modelling turns of great relevance when the city has to be 
managed making use of geospatial databases or Geographic 
Information Systems. In this sense, the new concepts of 3D 
modelling not accounting only for geometry but also for 
semantic and topologic data became of essential importance. 
Standard schemas such as cityGML contribute to define how 
3D models need to be structured in order to be used under an 
interoperable perspective. On the other hand, laser scanning 
technology has experienced a significant growth in the last 
years, and particularly, terrestrial mobile laser scanning 
platforms are being more and more used with inventory 
purposes in both cities and road environments. Consequently, 
large datasets are available to produce the geometric basis for 
the city model, however, this data is not directly exploitable by 
management systems constraining the implementation of the 
technology for such applications. 
 
In the last times, an intense activity on automating data 
processing has been reported by the literature. Serna and 
Marcotegui (2014) published an interesting review of methods 
that focused on urban environments, including several 
approaches for tackling the detection, segmentation, and 
classification of urban objects. Intense work in the detection an 
classification of road markings has been published in the laset 
years (Hervieu et al., 2015; Kumar et al., 2014; Guan et al., 

2014).  Different approaches such as the creation of images 
(Zhu et al., 2010), voxelization (Douillard et al., 2011), 
mathematical morphology (Hernández and Marcotegui, 2009) 
may contribute to the detection of urban objects from point 
cloud data. Classification requires more complex approaches 
after extracting appropriate descriptors for objects. An example 
is the usage of decision trees with support vector machine 
(SVM) algorithms as proposed by (Owechko et al., 2010; 
Golovinskiy et al., 2009). 
 
This work presents different approaches to automatically detect 
and classify urban objects such as traffic signs and markings 
from large LiDAR datasets. Particularly, it will be shown how 
reducing data to 2D space can contribute for an efficient and 
robust segmentation of the 3D data. Also, using rasterization 
approaches permits the application of well-validated image 
processing algorithms (such as mathematical morphology, the 
Generalized Hough Transform, clustering algorithms, etc.) that 
contribute to a more robust segmentation of point clouds. 
 
In the case of road marking, an algorithm was developed that 
consists of several subsequent processes starting with a road 
segmentation by performing a curvature analysis for each laser 
cycle, then intensity images are created in order to detect zebra 
crossing using the Generalized Hough Transform and logical 
constrains. To optimize the results, image processing algorithms 
are applied including binarization, median filtering, and 
mathematical morphology operations. Once the road marking is 
detected its position and orientation are calculated with 
inventorying purposes using Geographic Information Systems. 
 
Real scenarios are scanned using the Mobile Laser Scanners 
(on-the-fly mode) and used to test the methods and algorithms 
presented in the paper. The initial results are promising, with 
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efficiency ratios over 83%. The accuracy of the results, as well 
as the acceptable computation time, recommend extending the 
approaches developed in this paper for traffic signs to other 
objects of the city. Additionally, by appropriately structuring 
the segmentation results using the cityGML schema eases the 
implementation of the MLS technology for the extensive 
inventory and 3D modelling of cities and their components.  
 

2. METHODOLOGY 

The main steps of the algorithm for automatic data extraction of 
zebra passes position and orientation are shown in figure 1. 
Next, the main processes of the algorithm are described which 
were implemented using Matlab software. 

 
Figure 1. General workflow of the proposed algorithm for zebra 

crossing detection. 
 
2.1 Road Segmentation 

The principal component analysis (PCA) is a mathematical 
procedure that seeks to reduce the dimensionality of a set of 
variables to a new set of variables (principal components) that 
are linear combinations of the initial variables and are also 
uncorrelated to each other. In this work, a PCA is used in order 
to detect geometric changes into the profile defined by the 
points contained in each scanner line (each cross-section 
generated by the scanner when rotating 360º) [13, 15]. 
 
Since the data of each cross-section is represented into 2D 
space, analysis is performed using the altitude of each point (Z 
coordinate) and deflection angle. These two variables allow to 
easily detecting peaks denoting the transversal limits of the road 
when PCA analysis is performed into the local neighbourhood 
(10 points) of each of the points contained in each scanner 
cross-section. Figure 2 shows the value of the second 
eigenvalue in the PCA analysis (using 2 variables: z coordinate 
and deflection angle) with respect to deflection angle. As can be 
seen, in the range of angles than correspond to road the second 
eigenvalue is almost zero, and peaks appear at those points 
corresponding to the borders of the road. 
 

 
Figure 2. Segmentation of road points using a peak detection 
based on the second eigenvalue during PCA analysis of a cross 
section of the road. 
 
Figure 3a presents an example of point cloud to be segmented. 
After applying the filter to each individual cross section of the 
road, an irregular segmentation may happen in those cross 
sections where other objects alter the profile of the street to the 
segmentation does not happen in a coherent manner as shown in 
figure 3b. To improve the segmentation avoiding the effect 
caused by cars or other objects in the street, the angle of 
segmentation was averaged having into account the precedent 
cross-sections. Figure 3c shows the sample point cloud after 
correcting the angle of partition. 
 

 
 
Figure 3. Segmentation of road from the original point cloud: a) 
original point cloud; b) noise segmentation evaluating each laser 
cross-section; c) improved segmentation averaging the angles of 

segmentation with the angles of precedent cross-sections. 
 
Once the road is segmented from the rest of the point cloud this 
down sampled point cloud is partitioned into strips of the same 
length in order to normalize the data processing. A length of 18 
m was established for each strip, which is computed from the 
navigation data provided by the Mobile Laser Scanner used to 
collect the data. 
 
An overlap of 50% between adjacent strips is programmed to 
avoid the loss of relevant information about the urban parts (i.e. 
zebra crossings). Figure 4 shows an example of road cutting in 
strips.  For example, the zebra crossing is completely recorded 
in strip 7. However, if only strips 6 and 8 would be acquired, 
the data will not provide the complete information from the 
zebra crossing so the road marking would be hardly detected. 
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Figure 4. Example of road segmentation and strips with overlap 
of 50 %. 
 
 
2.2 Point cloud rasterization 

Point cloud data show geometric and radiometric information 
that can be easily converted in an image by applying image 
processing algorithms. The radiometric information of each 
coordinate comes from the reflective intensity of the laser light 
and depends on the distance between laser emitter and target 
surface, reflection angle, and target reflectivity. The painted 
road, as occurs in a zebra crossing, gives high reflectivity in 
comparison to their surroundings. This characteristic will be 
used to transform the point cloud data from the road to 2D 
imaging data. 
 
The first step in road rasterization consists of the projection of 
the point cloud data on the plane that best fits to the road strip. 
Next, a nearest neighbour algorithm is used to assign the 
intensity data to a regular matrix created on the projection 
plane. The algorithm calculates the Euclidean distance between 
each node of the matrix and the neighbourhood points. Once the 
closest point is defined, the value of intensity is assigned to the 
node. Distance between nodes was selected to be 5 cm to have 
an enough spatial resolution in the images. Finally, the intensity 
from the images (12 bits: 0 – 4095) is normalized between 0 and 
1. Figure 5 shows an example of the rasterized data. 
 

 
Figure 5. Example of the raster image of a zebra crossing from a 
point cloud. 
 
 
2.3 Image preparation 

Image processing techniques are used in this step of the 
algorithm in order to ease the detection of the road marks, 
particularly zebra crossing. Road marking detection is based on 
the higher reflectivity of the element and in the characteristic 
parallel lines of the edges between the painting area and the 
pavement. 

 
The first step to detect reflective paintings consists of the noise 
reduction applying a median filter (figure 6b). Then threshold is 
applied to the previously filtered image. The thesholding is 
calculated using the Otsu method (Otsu, 1979), which chooses 
the threshold that minimize the intraclass variance of the black 
and white pixels (figure 6c). 
 

 
Figure 6. Image processing to detect reflective painted marks. A 
intensity image; b) filtered image using median filter; c) binary 
image using the Otsu method. 
 
To improve the edges of the markings Mathematical 
morphology is used. Particularly a closing operation (dilation 
followed by and erosion) of the image using a 5 x 5 square 
structure is performed (that correspond to a square element side 
length of 25cm on ground). The purpose of the closing is to fill 
the gaps between the pixels in the border of white marks. This 
morphological operation is critical to achieve robust edge 
detection. 
 
The second step consists of the edge detection of the zebra 
crossing. Edge detection is performed using the Canny method, 
which finds edges by looking for local maxima of the gradient 
of the image. The gradient is calculated using the derivative 
Gaussian filter. As it can be observed in Figure 7 (left), edges 
appear very thin. To improve the edge thickness a dilation 
operation (Figure 7 – right) is performed with a square structure 
element (5x5). 
 

 
Figure 7. Edge detection of the zebra crossing (left). Image after 
a dilation (right). 
 
2.4 Line classification using Hough Transform 

The last step refers to the detection of lines in a binary image 
using the Hough Transform. The result of detection is shown in 
Figure 8 where the lines detected are depicted in green. Some 
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lines are not detected for the constrains defined in the Hough 
Transform (principally lines were incomplete and their length 
did not satisfied the minimum length expected for a zebra 
crossing mark). 

 
Figure 8. Line detection using the Hough Transform 

 
To define detection of lines as a zebra crossing the authors 
established logical criteria. Lines represent a zebra crossing 
when they can be represented by a set of parallel lines with 
similar angle to the direction of the vehicle and with similar 
length. The authors establish a limit of 6 lines to avoid false 
positives. This threshold corresponds to a zebra pass with a 
minimum of 3 painting areas. The process of checking the 
number of lines from the Hough Transform detector counting is 
automatically performed. 
 
The location of the zebra crossing is obtained from averaging 
the points defining the lines correctly used to identify the road 
mark from the HT detector. As the pixel coordinates from 
image come from the point cloud data, the 3D coordinates are 
directly obtained and the data can be transferred to Geographic 
Information Systems, for example to perform the inventory of a 
road. The direction and size of the zebra crossing is computed 
from the angle defined by lines and their length, respectively. 
Further details of the method can be seen in Riveiro et al., 2015. 
 
 

3. CASE STUDIES 

3.1 Study sites 

Three mobile LiDAR datasets were used for this work. The 
mobile LiDAR survey was done without interrupting the traffic 
conditions using the Optech Lynx mobile mapper of the 
University of Vigo. In all cases the dilution of precision of the 
global navigation satellite system was kept below 2.5 to obtain 
accurate data. The acquisition frequency of the inertial 
measurement unit of the Optech was configured to 200 Hz to 
acquire an accurate trajectory data. LiDAR sensors were set up 
at 500 kHz (laser measurement rate) and 200 Hz (scan 
frequency) to provide a dense point cloud, with the maximum 
possible resolution. 
 
LiDAR datasets were all collected in the Northwest region of 
Spain. The first dataset was collected in the Augas Férreas 

Square in the city of Lugo; the second area was collected in 
Samil Avenue in the city of Vigo; and finally, the third dataset 
was registered in Progreso Street in the city of Ourense. Augas 
Ferreas data comprises 11 strips with a total of 34.352.512 
points, Samil Avenue comprises 12 strips with 35.026.765 
points, and Progreso Street has 2 strips with 6.181.733 points. 
An example view of the Progreso Street is shown in figure 9. 
 

 
Figure 9. A 3D view of the point cloud collected in the Progreso 
Street (Ourense, Spain). 
 
 
3.2 Instrumentation.  

The mobile LiDAR used for surveying was the Optech Lynx 
Mobile Mapper (Figure 10). The systems consist of a navigation 
system with global navigation and inertial units, two LiDAR 
sensors and four digital cameras. All the systems are 
geometrically boresighted and time stamped to give an accurate 
point cloud from the environment after a mobile surveying. The 
maximum measurement range (according technical 
specifications from the manufacturer) is 200 m. Range precision 
is 8 mm and absolute accuracy 5 cm [14]. The laser 
measurement rate is programmable between 75 and 500 kHz. 
The system can detect up to 4 returns from each laser pulse. The 
scan frequency is also programmable between 80 and 200 Hz. 
The scanner field of view is 360º. It requires a power of 12 
VDX and 30 A. Operating temperature ranges between -10º C 
and 40ºC. 
 

 
Figure 10. Optech Lynx mobile mapper. Draw (right) and 
survey van (left). 
 

4. RESULTS 

Table 1 presents the results obtained from the 3 different study 
sites. A total of 30 zebra crossing were evaluated with a 
completeness of 83 %. The results were checked comparing the 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015 
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.  
Editors: U. Stilla, F. Rottensteiner, and S. Hinz 
doi:10.5194/isprsarchives-XL-3-W3-103-2015 

 
106



 

output of the algorithm with the manual detection performed by 
a human operator.  
 
Site Strip Points X (m) Y (m) Complet

eness 

Pr
og

re
so

 

St
re

et
 

P1 

 

3796143 593371 4688086 3/3 

P2 

 

2385590 593424 4687855 3/3 

Sa
m

il 
A

ve
nu

e 

S1 1756687 518695 4674416 1/1 

S2 2359182 518841 4674519 1/1 

S3 2467759 519038 4674518 1/1 

S4 5290571 - - 0/0 

S5 2929814 519210 4674388 1/1 

S6 5193961 519445 4674352 1/2 

S7 3197622 - - 0/1 

S8 2629765 - - 0/0 

S9 1316111 - - 0/1 

S10 1610806 520138 4673855 1/1 

S11 1188348 - - 0/0 

S12 5086139 520391 4673226 1/1 

A
ug

as
 F

er
re

as
 S

qu
ar

e 

A1 4243692 618488 4761271 1/1 

A2 5049528 618549 4761179 1/1 

A3 2294035 618644 4761173 1/1 

A4 1279948 618343 4761314 1/1 

A5 794258 618591 4761444 1/1 

A6 1490190 618445 4761509 1/1 

A7 3777648 618345 4761643 1/1 

A8 5000282 618288 4761578 2/2 

A9 3983655 618417 4761590 1/2 

A10 2046422 618332 4761442 1/1 

A11 4393954 618235 4761379 1/2 

Table 1. Results found for the three study sites. 

 
 
Figure 11 shows an example of a correctly detected zebra 
crossing. Some zebra crossing were not detected, although false 
positives are not presented in the results. 
 

 

Figure 11. Correct detection of a zebra crossing in Samil 
Avenue dataset. 
 
Those existing zebra crossing that were not detected by the 
algorithm, were deeply analysed in order to understand the 
causes of failure in the algorithm. For example, the algorithm 
does not detect another zebra crossing that can be visually 
located in the same strip of Samil Avenue dataset. The road 
contains occlusions due to vehicles above the zebra crossing in 
figure 12 (top – left image). As can be seen this would provoke 
a malfunction of the algorithm because those lines that are 
detected using the Hough transform would not satisfy the 
conditions of parallelism nor length established during the 
development of the algorithm. 
 

 
Figure 12. Malfunction of the algorithm due to occlusions of the 
point cloud. 
 
In Figure 13 binarization from the image (top – right) appears 
slightly deficient, probably by the low reflectivity of the paint of 
the zebra crossing. This fact diminishes the contrast between the 
asphalt and the road markings, and decreases the quality of the 
binarization. It also affects to the edge detection operation 
(bottom – left) and consequently it also affects to the line 
detection using the Hough transform (bottom – right). 
 
 

5. CONCLUSIONS 

An algorithm for the automatic detection of zebra crossing is 
developed with the aim of automate the detection and inventory 
of zebra crossings. The algorithm is divided in three main steps: 
road segmentation (based on a PCA analysis of the points 
contained in each cross-section of collected by a mobile laser 
system), rasterization (conversion of the point cloud to a raster 
image coloured as a function of intensity data), and zebra 
crossing detection (using the Hough Transform and logical 
constrains for line classification). 
A completeness of 83% was found when testing the algorithm 
over 25 strips with 30 zebra crossing. Non-detected zebra 
crossing were analysed and in all cases the reasons of failure 
come from two main reasons. The first comes from the loss of 
paining of the road marking due to time provoking a low 
contrast between the road and the zebra crossing. The second 
reason is motivated by occlusions caused by other vehicles in 
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the point cloud produced by other urban objects during the 
survey. All the test were done using Matlab software. 
 

 
Figure 13. Malfunction of the algorithm due to a deficient 
reflectivity of the road paintings. 
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