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ABSTRACT:

The Environmental Mapping and Analysis Programme EnMAP is a hyperspectral satellite mission, supposed to be launched into space
in the near future. EnMAP is designed to be revolutionary in terms of spectral resolution and signal-to-noise ratio. Nevertheless, it will
provide a relatively high spatial resolution also. In order to exploit the capacities of this future mission, its data have been simulated by
other authors in previous work. EnMAP will differ from other spaceborne and airborne hyperspectral sensors. Thus, the assumption
that the standard classification algorithms from other sensors will perform best for EnMAP as well cannot by upheld since proof.
Unfortunately, until today, relatively few studies have been published to investigate classification algorithms for EnMAP. Thus, the
authors of this study, who have provided some insights into classifying simulated EnMAP data before, aim to encourage future studies
by opening the EnMAP contest. The EnMAP contest consists in a benchmark dataset provided for algorithm development, which is
presented herein. For demonstrative purposes, this report also represents two classification results which have already been realized. It
furthermore provides a roadmap for other scientists interested in taking part in the EnMAP contest.

1 INTRODUCTION

The Environmental Mapping and Analysis Programme, acronym
EnMAP, is a spaceborne hyperspectral sensor to be launched dur-
ing the forthcoming years (Kaufmann et al., 2008; Stuffler et al.,
2009). EnMAP is designed as an imaging pushbroom hyperspec-
tral sensor mainly based on modified existing or pre-developed
technology. EnMAP offers a spectral range provided by two in-
struments from 420 nm to 1000 nm (VNIR) and from 900 nm to
2450 nm (SWIR). One important property is the high radiometric
resolution and stability in both instruments. Its swath width is
30 km at a spatial resolution of 30 m × 30 m, which of course is
high for a spaceborne hyperspectral instrument but low in com-
parison to airborne instruments. EnMAP will have a fast target re-
visit of only 4 days (Stuffler et al., 2007; Kaufmann et al., 2006).

Since the launch of EnMAP has not been realized yet, data simi-
lar to those expected to be produced by EnMAP have to be sim-
ulated. Sophisticated approaches to simulate EnMAP data have
been published by Guanter et al. (2009) and Segl et al. (2010,
2012). One dataset simulated by these approaches is the En-
MAP Alpine Foreland dataset, showing the Ammersee region in
Bavaria, Germany.

Due to these properties, EnMAP data will differ from other hy-
perspectral data available to users of remote sensing datasets. En-
MAP will be the first instrument to provide a radiometric quality
largely comparable to airborne instruments (especially in terms
of signal-to-noise values) but with a spatial resolution compa-
rable to Landsat data. Since EnMAP will neither be similar to
airborne hyperspectral sensors (like HyMap, for instance) nor to
other spaceborne instruments (like Hyperion, for instance), it can-
not be generally assumed that classification methods appropriate
for such instruments will work well for EnMAP too (Braun et al.,

2012). Hence, research is needed to develop appropriate classifi-
cation techniques even before the launch of EnMAP.

In order to stimulate research on high performance classifica-
tion, this paper provides a simulated EnMAP benchmark dataset
– derived from the EnMAP Alpine Foreland data, which cover
900 km2 in a 1000 × 1000 pixel image. The dataset comprises
20 land use classes which are spectrally relatively similar and in-
tricate to classify. Evaluation is performed on the basis of overall
accuracy, completeness, correctness and quality. Besides describ-
ing the benchmark dataset, two results using state-of-the-art clas-
sifiers are presented. The results are based on the use of a Support
Vector Machine (Cortes and Vapnik, 1995) and a Random Forest
(Breiman, 2001).

After presenting the data and results on the conference, the bench-
mark dataset will be made available on the homepage of the au-
thors. From there, it can be downloaded by further researchers,
who will develop their approaches, compare them among one an-
other and publish the results in future publications. This EnMAP
contest will provide insight into best practices for EnMAP data
classification. It will be helpful to the sensors developers and
operators, because the datasets can be delivered with helpful in-
formation on data exploitation to interested users. It will further-
more be helpful to users in order to extract better results from
their data. Finally, the EnMAP contest will be scientifically inter-
esting by showing common points and differences between tradi-
tional hyperspectral classification and classification specifically
designed for EnMAP data.

2 RELATED WORK

Few approaches have been published which provide classification
results on simulated EnMAP data. This research gap is especially
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deplorable, since intense efforts are being undertaken to develop
an EnMAP box which could integrate such approaches and make
them readily available to future users (Held et al., 2012). Braun
et al. (2012) compare three different state-of-the-art kernel-based
classifiers (Support Vector Machine, Import Vector Machine, Rel-
evance Vector Machine) on simulated EnMAP data, concluding
that Import Vector Machine and Relevance Vector Machine out-
perform the Support Vector Machine. They furthermore outline
the particular differences of the three methods and point out, why
a combination of the three methods could even enhance perfor-
mance1. Dörnhöfer and Oppelt (2015) produce a bio-optical model
to analyse profundity and benthos of the coast of Helgoland, Ger-
many. They use simulated EnMAP scenes to produce and test the
model, concluding that EnMAP reliably detects micro-variations
of structures and that water remote sensing will benefit from En-
MAP’s properties. Schwieder et al. (2014) use simulated En-
MAP data for mapping shrub cover fraction in Southern Portugal,
comparing three machine learning techniques (Support Vector
Regression, Random Forest, Partial Least Squares Regression).
Support Vector Regression performed best and thus, EnMAP and
Support Vector Regression is attributed a great potential in quan-
tifying fractional vegetation cover and monitoring gradual land
use change processes. Bracken (2014) used EnMAP data to esti-
mate soil erosion in semi arid Mediterranean environments. The
Ph.D. thesis is one of the first to fully document the benefits of the
new mission for a relevant environmental problem. Faßnacht et
al. (2011) present a method to automatically extract tree covered
areas from several hyperspectral datasets, including EnMAP. This
method is based on the extended Normalized Difference Vegeta-
tion Index (NDVI).

In order to stimulate further research on classifying EnMAP data,
a benchmark dataset will be introduced in the following. The
dataset will be made available to the research community and
published results will be regularly compared.

3 DATASET

This section introduces the EnMAP contest dataset. The dataset
is based on the simulated EnMAP Alpine Foreland image, pro-
vided by Guanter et al. (2009). The colleagues produce a 1000
× 1000 pixel datasets, covering 30 × 30 km regions. Hence, the
ground sampling distance is 30 m. The datasets cover the 420 to
2450 nm spectral range at a varying spectral sampling of 6.5-10
nm. The images consist of 244 simulated spectral channels. Fig-
ure 1 shows a near natural color visualization of the 244 channel
simulated EnMAP dataset Alpine Foreland. The image depicts
the area around the Ammersee in Bavaria, Germany. Note the di-
versity of different agricultural, vegetation, urban and industrial,
and water classes (cf. Guanter et al. (2009)).

This diversity is represented in the EnMAP contest dataset. The
EnMAP contest dataset comprises 20 different land use classes,
and it represents a typical scenario for modern remote sensing:
high accuracy is aimed for, whereas only small training data sets
are provided. The NC = 20 classes are defined to be spec-
trally very similar and thus, provide a dataset which is difficult
to classify, cf. Figure 2. The mean spectra are shown in Figure 3
to visualize spectral similarity. More specifically, classes have
been defined on the screen by focussing on visual differences in
the images (considering several channel combinations) but also
by checking pixels’ individual spectra. Then, typical areas have
been assigned a class label l ∈

{
l1, . . . , lNC

}
, where NC repre-

sents the number of classes and NC = 20 for this dataset. From
1In Braun et al. (2014), such a combination is presented, albeit on

other data than on EnMAP.

these areas, a random subsample has been drawn for each class,
since the number of pixels within the entire areas was too large to
be exploited conveniently with state-of-the-art classifiers (which,
while in the developing phase, tend to be time consuming given
larger training numbers). The pixels from this subsample within
these areas have afterwards been randomly split a second time,
this time into a training set X and a test set Y (see also, Sec-
tion 5). The splitting for each class is similar, 70% of the pixels
are in X and 30% are in Y . In total, X comprises 2617 pixels
and Y 1124 pixels.

Figure 1. Near natural color visualization of the 244 channel sim-
ulated EnMAP dataset Alpine Foreland, showing the area around
the Ammersee in Bavaria, Germany. Dataset produced by Guan-
ter et al. (2009), courtesy of Dr. K. Segl. Larger image available
at: www.ipf.kit.edu/code.php

Figure 2. Location of labelled data within the simulated
EnMAP dataset from Figure 1. Larger image available at:
www.ipf.kit.edu/code.php
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(a) Water classes
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(b) Forest/meadow classes
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(c) Agriculture classes
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Figure 3. Average spectra for the 20 land use classes of the EnMAP contest dataset: (a) water classes, (b) forest/meadow classes, (c)
agriculture classes, (d) other classes.

4 EVALUATION

Our evaluation focuses on a comparison of the performance of
different approaches for classifying the provided dataset. For
each approach, the test set is classified, and the resulting labels
are compared to the reference labels on a per-pixel basis. We
determine the respective confusion matrices and derive a mea-
sure indicating the overall performance as well as per-class mea-
sures indicating the class-wise performance. More specifically,
the confusion matrix C = [cij ] is defined in a way that the ref-
erence is given in row direction, while the prediction is given in
column direction. Based on the confusion matrix, we consider
the overall accuracy

overall accuracy =

∑
i cii∑

i

∑
j cij

(1)

in order to argue about the overall effectiveness of a specific ap-
proach. For the class-wise considerations, we assign the i-th class
the following measures:

• True Positive (TP):
TPi = cii (2)

• False Positive (FP):

FPi =
∑
j,j 6=i

cij (3)

• False Negative (FN):

FNi =
∑
j,j 6=i

cji (4)
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• True Negative (TN):

TNi =
∑
i,j

cij − TPi − FPi − FNi (5)

Based on these measures, we derive the completeness (recall)
given by

completenessi =
TPi

TPi + FNi
(6)

as well as correctness (precision) given by

correctnessi =
TPi

TPi + FPi
(7)

and we furthermore derive the measure of quality which rep-
resents a compound metric indicating a good trade-off between
omission and commission errors (Heipke et al., 1997):

qualityi =
TPi

TPi + FPi + FNi
(8)

=
1

completeness−1
i + correctness−1

i − 1
(9)

Further evaluation measures, that better capture the topological
properties of the classified regions (see e.g. (Weidner, 2008)),
could be introduced at a later stage.

5 CLASSIFICATION

In the scope of this paper, we focus on a supervised classifica-
tion of individual pixels by using the training data in order to
train a classifier which should afterwards be able to generalize
to new, unseen data. Introducing a formal description, the train-
ing set X = {(xi, li)} with i = 1, . . . , NX consists of NX
training examples. Each training example encapsulates a fea-
ture vector xi ∈ Rd in a d-dimensional feature space and the
respective class label li ∈

{
l1, . . . , lNC

}
, where NC represents

the number of classes. In contrast, the test set Y = {xj} with
j = 1, . . . , NY only consists of NY feature vectors xj ∈ Rd. If
available, the respective class labels lj ∈

{
l1, . . . , lNC

}
may be

used for evaluation (this is the case for the test set of the EnMAP
contest dataset, see Section 3). For multi-class classification, we
involve two classifiers represented by a Support Vector Machine
(Cortes and Vapnik, 1995) and a Random Forest (Breiman, 2001).

5.1 Classification Based on a Support Vector Machine

Given the training set X , the Support Vector Machine – just as
comparable kernel-based models like the Import Vector Machine
or Relevance Vector Machine – optimizes a linearly solvable clas-
sification problem depending only on the input features xi, a
weight vector w and a bias b. Kernel-based methods introduce
non-linear functions φ(xi) to easily find a linear solution in a
Reproducing Kernel Hilbert Space (RKHS), these higher dimen-
sional feature spaces are induced implicitly by kernel functions
K(xi,xj) = 〈φ(xi), φ(xj)〉. Finally, all methods look for a
subset V ⊂ X of training samples to sparsely induce these spaces.

The Support Vector Machine was designed to solve large margin
classification problems as an implementation of statistical learn-
ing theory. It establishes a separating hyperplane and a maxi-
mal margin free of training data by choosing a subset SV ⊂ X
called support vectors (SVs). The optimization problem is given
by Equations 10 and 11. The SVs are used to calculate the normal
vector w on the hyperplane and the bias b to fulfil the constraint

on the optimization problem.

min
||w||2

2
+ C

n∑
i=1

ξi (10)

subject to: li(w · xi + b) ≥ 1− ξi (11)

It can be shown that minimizing Equation 10 is equal to maximiz-
ing the margin. The slack variables ξi allow for falsely assigned
training data in favour of generalization.

5.2 Classification Based on a Random Forest

A Random Forest (Breiman, 2001) is an ensemble of randomly
trained decision trees. In the training phase, a pre-defined number
NT of individual decision trees are trained on different subsets of
the given training data, where the subsets are randomly drawn
with replacement. Thus, the decision trees are all randomly dif-
ferent from one another which results in a de-correlation between
individual tree predictions. In the classification phase, the feature
vectors xi are classified by each tree, i.e. each tree casts a vote
for one of the class labels lk with k = 1, . . . , NC . Thus, the pos-
terior probability p

(
li = lk|xi

)
of a class label li belonging to

class lk given the feature vector xi may be expressed as the ratio
of the number Nk of votes cast for class lk across all decision
trees and the number NT of involved decision trees:

p
(
li = lk|xi

)
=
Nk

NT
(12)

Instead of a probabilistic consideration, the assignment of a re-
spective class label li to an observed feature vector xi is typi-
cally based on the majority vote across all decision trees which
results in an improved generalization and robustness (Criminisi
and Shotton, 2013).

6 RESULTS

The data described in Section 3 have been classified by a Support
Vector Machine and a Random Forest. For the Support Vector
Machine, a one-against-one approach and a Radial Basis Func-
tion (RBF) kernel have been used. The kernel parameter γ has
been optimized in the range between γ = 10−15, . . . , 105 and the
cost parameter C in the range between C = 10−5, . . . , 1015 by
cross validation with five fold grid search and exponent 5 incre-
ments in each parameter, for fully comprehensive instructions cf.
Braun et al. (2010, 2012). The Random Forest has been trained
using a maximum of 500 trees. For each classifier, the entire
dataset X = {(xi, li)} with all 244 channels has been used.

The classification results of the Support Vector Machine and the
Random Forest are presented in Figure 4, a near-natural color vi-
sualisation is also given in order to facilitate visual comparison.
Obviously, both classifiers produce visually rather similar results.
It should be kept in mind though, that an area of 900 square kilo-
metres is observed and that both classifiers are state-of-the-art
methods not expected to fail on large numbers of pixels. Hence,
such similar results had to be expected beforehand. The largest
failure of both classifiers is that they over-estimate the appearance
of class 9, which relates to urban and industrial areas and confuse
them with agricultural areas.

When preparing this paper, the authors have evaluated several
other classifiers, like Import Vector Machines, Relevance Vector
Machines, AdaBoost, Neural Networks, Gaussian Mixture Mod-
els, but also more traditional techniques like Spectral Angle Map-
per and Maximum Likelihood (see webpage for details). Some
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(a) SVM Result (b) View (c) RF Result

Figure 4. Results of the classified EnMAP contest dataset with two state-of-the-are classifiers. Left: Support Vector Machine (SVM);
Centre: view for visual evaluation; Right: Random Forest (RF). Larger image available at: www.ipf.kit.edu/code.php

Table 1. Confusion matrix values for Support Vector Machine
and Random Forest. Average, minimum and maximum values of
class-specific measures represented by quality (QLT), correctness
(COR) and completeness (CMP).

Classifier avrg.QLT avrg.COR avrg.CMP
Support Vector Machine 75.23% 84.54% 85.02%
Random Forest 75.11% 83.44% 84.10%

Classifier min.QLT min.COR min.CMP
Support Vector Machine 38.35% 66.66% 46.66%
Random Forest 37.72% 52.72% 48.33%

Classifier max.QLT max.COR max.CMP
Support Vector Machine 100.00% 100.00% 100.00%
Random Forest 100.00% 100.00% 100.00%

of those produced obvious visual differences. However, the main
goal of this report is to concentrate on quantitative figures. Thus,
two of the most high ranking techniques in terms of overall accu-
racy have been selected for this report.

On the basis of the results visible in Figure 4, confusion matrices
have been computed for both results, they are found in Figure 5.
With an overall accuracy of 84.6% for Support Vector Machine,
and 83.2% for Random Forest, both classifiers performed partic-
ularly well on the EnMAP contest dataset. For comparison, val-
ues of class-specific quality figures are provided in Table 1. As
can be seen, the Support Vector Machine outperforms the Ran-
dom Forest approach for the average and minimum class-specific
quality figures also. The slight exception for minimum complete-
ness does not neglect the general trend. Of course, there are some
individual classes for which Random Forest values were higher
than Support Vector Machine values, however, since there were
no interpretable trends, comparing classes individually is omitted
here.

Hence, in total, it can be concluded that both classifiers are well
suited for hyperspectral EnMAP data, with Support Vector Ma-
chine being slightly superior to Random Forest, a finding con-
firmed by Pal (2006), Waske et al. (2010) and Chi et al. (2008)
for other hyperspectral data.

7 THE ENMAP CONTEST

This contribution has described the dataset for the EnMAP con-
test and some first results. Now, it encourages the scientific com-

munity to take part in the EnMAP contest to promote scientific
cooperation on producing high performance algorithms even be-
fore the launch of EnMAP. Therefore, it is required to provide
some details about how scientist can take part in the contest. Fully
instructive information will be given in a Portable Document File
at www.ipf.kit.edu/code.php. Interested scientists will have to re-
alize the following steps.

1. Go to www.ipf.kit.edu/code.php and read the instructions
(PDF)

2. Download the training data X and the test data Y (provided
as *.mat and *.txt (ASCII) data)

3. Download the entire image I (provided as *.mat and *.txt
(ASCII) data)

4. Develop a classification algorithm A : f(xi)→ li

5. Train the algorithm A on X = {(xi, li)}

6. Apply the algorithm A to Y

7. Calculate the quality figures overall accuracy, completenessi,
correctnessi and qualityi based on Y

8. Apply the algorithm A to I

9. Report the quality figures to the corresponding author and
provide the classified image I (for control)

The authors of this paper will evaluate the quality figures reported
for Y by checking them on the provided results for I2. The first
EnMAP contest will go until 31st of December 2015. Then, the
results will be submitted to the ISPRS Journal of Photogramme-
try and Remote Sensing in a condensed manner. Scientist whose
results are among the ten highest overall accuracy values con-
firmed will be invited as co-authors in the ranking of their results.

2The authors posses an image with the X and Y pixels’ positions in
the image. These positions are not available to contestants and cannot be
made available. Thus, falsification of results is avoided.
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8 DISCUSSION AND CONCLUSION

This contribution has elaborated a benchmark dataset for hyper-
spectral simulated EnMAP data. The benchmark is made avail-
able at www.ipf.kit.edu/code.php, where results will also be avail-
able at higher resolution for a more detailed comparison. Thus,
the paper aims to promote research on classifying EnMAP data
before its launch. Given a set of comprehensive studies compar-
ing classification approaches, the authors believe that the EnMAP
mission will be an even greater success, since confusion of future
users about which algorithm to use is reduced. Similar bench-
marks have been provided for other hyperspectral datasets, for
instance, the ROSIS Pavia dataset, the AVIRIS Indian Pines and
Salinas datasets, or the HYDICE Washington D.C. dataset. These
datasets have provided some objective insights into the perfor-
mance expected from individual algorithms.

Although its main goal is to introduce the dataset, this paper
has also presented two results of state-of-the-art classifiers for
the simulated EnMAP data. It has shown that classifiers know
to perform well on other hyperspectral data, i.e. kernel-based
and ensemble techniques are also applicable to EnMAP. A find-
ing which is not necessarily expected in the first place as argued
above. The Support Vector Machine performed slightly better
than the Random Forest in both global and (generally) class-
specific figures. More classifiers have been evaluated by the au-
thors and the respective results will be published in future work.
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SVM C01 C02 C03 C04 C05 C06 C07 C08 C09 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 QLT COR CMP

C01 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100,00 100,00 100,00

C02 0 55 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 91,67 100,00 91,67

C03 0 0 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 92,31 92,31 100,00

C04 0 0 0 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100,00 100,00 100,00

C05 0 0 0 0 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100,00 100,00 100,00

C06 0 0 0 0 0 33 5 18 0 0 3 0 0 0 0 1 0 0 0 0 43,42 67,35 55,00

C07 0 0 0 0 0 5 55 0 0 0 0 0 0 0 0 0 0 0 0 0 84,62 91,67 91,67

C08 0 0 0 0 0 10 0 50 0 0 0 0 0 0 0 0 0 0 0 0 64,10 73,53 83,33

C09 0 0 0 0 0 1 0 0 56 0 2 0 1 0 0 0 0 0 0 0 80,00 84,85 93,33

C10 0 0 0 0 0 0 0 0 0 54 1 4 0 0 0 0 0 0 0 1 70,13 76,06 90,00

C11 0 0 0 0 0 0 0 0 2 2 56 0 0 0 0 0 0 0 0 0 82,35 87,50 93,33

C12 0 0 0 0 0 0 0 0 0 13 2 40 0 0 1 0 0 0 2 2 62,50 90,91 66,67

C13 0 0 0 0 0 0 0 0 7 0 0 0 28 18 0 0 1 6 0 0 38,36 68,29 46,67

C14 0 0 0 0 0 0 0 0 1 0 0 0 9 49 0 0 0 1 0 0 61,25 71,01 81,67

C15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 19 0 0 1 0 50,00 66,67 66,67

C16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 42 0 0 1 0 51,85 66,67 70,00

C17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 60 0 0 0 98,36 98,36 100,00

C18 0 0 0 0 0 0 0 0 0 0 0 0 3 2 0 0 0 43 0 0 76,79 84,31 89,58

C19 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 1 37 0 80,43 90,24 88,10

C20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 13 76,47 81,25 92,86

(a) SVM Result

RF C01 C02 C03 C04 C05 C06 C07 C08 C09 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 QLT COR CMP

C01 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100,00 100,00 100,00

C02 0 56 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 93,33 100,00 93,33

C03 0 0 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 93,75 93,75 100,00

C04 0 0 0 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100,00 100,00 100,00

C05 0 0 0 0 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100,00 100,00 100,00

C06 0 0 0 0 0 29 6 21 0 0 2 0 0 0 0 1 0 0 0 0 33,72 52,73 48,33

C07 0 0 0 0 0 7 53 0 0 0 0 0 0 0 0 0 0 0 0 0 80,30 89,83 88,33

C08 0 0 0 0 0 19 0 41 0 0 0 0 0 0 0 0 0 0 0 0 50,62 66,13 68,33

C09 0 0 0 0 0 0 0 0 54 0 4 0 1 0 0 0 0 0 0 0 81,82 90,00 90,00

C10 0 0 0 0 0 0 0 0 0 52 2 4 0 0 0 0 0 0 0 1 66,67 74,29 86,67

C11 0 0 0 0 0 0 0 0 0 2 55 3 0 0 0 0 0 0 0 0 78,57 84,62 91,67

C12 0 0 0 0 0 0 0 0 0 14 2 39 0 0 1 0 0 0 2 2 58,21 84,78 65,00

C13 0 0 0 0 0 0 0 0 4 0 0 0 31 18 0 0 1 6 0 0 44,29 75,61 51,67

C14 0 0 0 0 0 0 0 0 1 0 0 0 9 49 0 0 0 1 0 0 58,54 68,57 80,00

C15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 19 0 0 1 0 52,38 64,71 73,33

C16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 42 0 0 1 0 49,35 69,09 63,33

C17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 60 0 0 0 96,77 96,77 100,00

C18 0 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 43 0 0 77,19 83,02 91,67

C19 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 1 37 0 84,44 92,68 90,48

C20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 13 82,35 82,35 100,00

(b) RF Result

Figure 5. Confusion matrices of the Support Vector Machine (above) and Random Forest (below) result. Rows: known
classes, Columns: predicted classes. Overall accuracy and class-specific quality measures included. Larger image available at:
www.ipf.kit.edu/code.php
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