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ABSTRACT: 

 

With the rapid development of sensor networks and Earth observation technology, a large quantity of disaster-related data is 

available, such as remotely sensed data, historic data, cases data, simulation data, disaster products and so on. However, the 

efficiency of current data management and service systems has become increasingly serious due to the task variety and 

heterogeneous data. For emergency task-oriented applications, data searching mainly relies on artificial experience based on simple 

metadata index, whose high time-consuming and low accuracy cannot satisfy the requirements of disaster products on velocity and 

veracity. In this paper, a task-oriented linking method is proposed for efficient disaster data management and intelligent service, with 

the objectives of 1) putting forward ontologies of disaster task and data to unify the different semantics of multi-source information, 

2) identifying the semantic mapping from emergency tasks to multiple sources on the basis of uniform description in 1), 3) linking 

task-related data automatically and calculating the degree of correlation between each data and a target task. The method breaks 

through traditional static management of disaster data and establishes a base for intelligent retrieval and active push of disaster 

information. The case study presented in this paper illustrates the use of the method with a flood emergency relief task. 
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1. INTRODUCTION 

The number of incidents and magnitude of natural disasters 

worldwide have increased significantly due to climate changes 

in recent years (Ding et al., 2014; Iwata et al., 2014; Neumayer 

et al., 2014). A number of natural disasters (e.g., South Asia 

Tsunami, China Earthquake, Haiti Earthquake and Tohoku 

Earthquake) stroke across the globe, killing hundreds and 

causing billions of dollars in property and infrastructure damage 

(Grolinger et al., 2013). 

Facing the urgent need for disaster mitigation, 

understanding how to enhance the capacity of effective 

monitoring, early warning and emergency response have 

become major challenges all around the world. On one hand, 

the amount of information and types of data related to disaster 

has increased greatly. Disaster data, including remote sensing 

images, history data, previous incidents records, simulation data, 

basic geographic data and disaster assessment products possess 

velocity, variety and veracity features converted from singleness 

and small amount. They put forward a higher requirement for 

integration, processing and analysis (Grolinger et al., 2013). On 

the other hand, government agencies in different levels and 

individual organizations master various data resources and take 

different disaster relief functions. In order to achieve good 

cooperation and collaboration in disaster management, the most 

effective data should be sent promptly to the most needed actors 

(Borkulo et al., 2006). In recent years, various types of sensors 

widely deployed in disaster monitoring network make it 

possible to continuously access disaster big data with high 

spatial-temporal resolution and increasingly rich attribute 

information, which provides important support for enhancing 

capabilities of disaster emergency response. However, fast and 

easy acquisition and generation of heterogeneous data has 

exceeded existing ability of data management. The main reasons 

are as follows: 1) most existing disaster management systems 

operate in a typical passive data-centric mode (Ding et al., 

2014). The functions and purpose of disaster information 

service are typically singular and direct, which could rapidly 

satisfy specific user needs, but will not fit the needs of the 

actual disaster management tasks of other user communities. 

The functions also do not generate products with high accuracy 

and veracity when the needed data source is limited or not 

accessible. 2) Current efforts to integrate geographic 

information data have been restricted to keyword-based-

matching Spatial Information Infrastructure (SII) (Li et al., 

2007). SII supports the discovery and retrieval of distributed 

geospatial data sources and geographic information services by 

providing catalogue services and syntactic interoperability 

standards (Lutz, 2007), but spatial-temporal characteristics of 

data (e.g., the spatial distribution of the cloud in a multispectral 

remote sensing image) are hidden inside the data file. Moreover, 

lack of a semantic association among multi-source 

heterogeneous data brings a passive result that the knowledge 

and discipline of the disaster are hardly found automatically. 3) 

Recent disaster data retrieval mainly relies on querying with 

keywords of metadata passively. The artificial experience plays 

an important role in finding available data because there is short 
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of mechanism of automatically discovering related data and 

disaster knowledge for computer reasoning (Fan and Zlatanova, 

2011). In practice, trivial and time-consuming operations to 

integrate various resources have cost most the manual resources 

rather than improving the decision-making (Laniak et al., 2013). 

This is why most existing disaster management systems have 

been of limited use (Leskens et al., 2014) and resources cannot 

be fully utilized (Demir and Krajewski, 2013; Zhishan et al., 

2012). This paper proposes a task-oriented disaster information 

link method, in which disaster emergency tasks are regarded as 

a key semantic factor to restrain, associate and aggregate 

spatial-temporal data. 

Here, we discuss the challenge of managing disaster data to 

support various task processing in emergency response contexts. 

The paper is organized as follows: “Related Work” section 

presents related work on applying semantic-related technology 

and ontology for spatial data and emergency response. The 

section titled “Task and data ontologies for disaster 

management” firstly analyzes types and features of emergency 

tasks in disaster management and puts forward an ontology 

model describing them. Then it describes the semantic features 

of disaster data in regards to attribute, space-time and statistics. 

“Semantic mapping of task and data” discusses a map between 

characteristics of emergency tasks and disaster data in scale, 

attribute and spatial-temporal level and proposes task-oriented 

multi-dimensional data characteristics to analyse task preference 

to different data sets. The “Implementation” section introduces 

a case study illustrating how to aggregate data in a multilevel 

way to find the right data for a specific emergency task in 

storm-flood disaster chain. Finally, we conclude the article in 

“Conclusions and future work” section. 

 

2. RELATED WORK 

2.1 Related work on the semantic technology in disaster 

data management 

As mentioned earlier, the existing disaster-related data is 

extremely heterogeneous and different vocabulary could be 

used in different sources. The reason why semantic-related 

technology is employed is that they can be used to identify and 

associate semantically-corresponding concepts with disaster-

related information so heterogeneous data can be integrated and 

ingested (Hristidis et al., 2010). Many previous studies have 

discussed the importance of semantic-related technology for 

solving problems in geographical information systems (Cohn, 

1997; Guarino, 1998). Cohn (1997) proposed that the human-

computer interaction in GIS should be more concise and 

accurate than it is currently. Currently, aiming at resolving 

semantic diversity generating adverse effect on data 

management and achieving semantic interoperation among 

heterogeneous data, spatial semantic description has been used 

in disaster data management (Fan and Zlatanova, 2011; Li et al., 

2007; Zhu et al., 2009; Schulz et al., 2012; Silva et al., 2013). 

Schulz (2012) and Silva (2013) established description of data 

by Linked Open Data (LOD). Based on semantic web 

knowledge, they adopted RDF (Resource Description 

Framework) to define standard and exchangeable data format 

for semantic annotation of disaster knowledge. LOD is 

considered an effective tool that could convert data relations to 

information computers could process, promoting automatic 

finding and reasoning of disaster knowledge (Foster and 

Grossman, 2003; Lausch et al., 2014). Michalowski (2004) also 

applied the Semantic Web technology to develop a Semantic 

Web-enabled management system. Such a system allows 

efficiently querying distributed information and effectively 

converting legacy data into more semantic representations 

(Michalowski et al., 2004). Zhu (2009) analysed challenges of 

intricate semantics in remote sensing information systems and 

proposed a hierarchical semantic restrain model as a uniform 

semantics description model. The connection between user 

semantics, data and processing services is established as basics 

of semantic reasoning in discovery, selection and composition 

of data and service. 

 

2.2 Related work on ontology in disaster data management 

Compared with the semantic methods mentioned, ontology has 

stronger semantic integrity and supports uniform description 

from data definition to operation. This is useful for automatic 

finding and mining of data (Babitski et al., 2009; Klien et al., 

2006). Guarino (1998) analyzed the importance of the ontology 

concept in GIS system. However, he only proposed a possible 

ontology structure without attempting to implement it. Some 

researches provided conceptual structures of ontology in 

disaster management (Chatterjee and Matsuno, 2005; Li et al., 

2009; Xu et al., 2009). Chatterjee and Matsuno (2005) 

discussed the necessity of using the ontology to solve the 

linguistic differences. Li (2009) proposed an ontology-based 

architecture for geo-objects in disaster systems. Xu (2009) also 

suggested building an ontology-based emergency response plan. 

Some researchers have studied specific ontology methods for 

semantic description (Huang and Yan, 2013; Wang et al., 2007; 

Yang et al., 2013). Huang (2013) proposed disaster domain 

ontology including hazard-affected body, disaster-inducing 

factors, inducing environment, disaster events and built 

connections among them by ontology. The model was 

experienced in disaster processing estimation and prediction. 

Babitski (2009) defined ontology of disaster damage, resource 

and the relations between them, so that available data resource 

could be quickly found while facing a certain assessment task. 

Wang (2007) put forward a spatial geographic ontology by 

analysing objects, relation and data in space. Such a description 

effectively presents hierarchical structure and semantic relation 

of spatial information. Yang (2013) developed a kind of task 

ontology, dividing task process from aspects of function, 

organization, spatial-temporal scale and complexity of 

calculation. 

Although current semantic methods resolve problems of 

integration in disaster data management, most of them manage 

limited types of data and the semantic restraints or correlation 

on heterogeneous data are simple. Thus, a mature ontology-

based data correlation method is required so that can both 

integrate heterogeneous data from different sensors and support 

automatic querying and reasoning functions. 

 

3. TASK AND DATA ONTOLOGIES FOR DISASTER 

MANAGEMENT 

3.1 A task ontology for emergency workflow 

The need for up-to-date geospatial data in emergency situations 

is now widely recognized. Emergency responders may not be 

familiar with data standards or the appropriateness of certain 

data sets for a particular task. However, due to the critical 

nature of emergency response, responders rarely have time to 

sift through extensive query results and will not re-think what 

data sources and specific data characteristics are needed each 

time they face a task. Thus, it is worthwhile to formally 

delineate tasks and their relationships to types of data sources 

(Wiegand and García, 2007). 
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Figure 1. Structure of a task ontology in an emergency response workflow 

 

Ontology is a description, in a formal, machine-readable 

format, that expresses concepts including the types of entities, 

attributes, relationships, and values found in a domain. 

Ontology can represent the semantics of emergency tasks and 

disaster data, thus helping create connections between them for 

emergency response processes. Therefore it contributes to the 

knowledge of workflow processing and task demand. In this 

paper, the task ontology in supporting emergency response is 

abstracted as a quintuple: 

  

 , , , ,TO C R S P I      (1) 

 

C represents task basic information based on functional 

and non-functional properties; R represents the relationships 

between a task entity and others in an emergency workflow; S 

represents the semantic restraints of a task demand. P represents 

the priority of task execution and data retrieval in the 

emergency workflow; I represents the instances of tasks. 

Taking a flood response workflow of the National Disaster 

Reduction Center in China (NDRCC) as an example, Figure 1 

shows the ontological entities and relations of disaster tasks. A 

set of connections composes a directed graph that specifies how 

the task works. The whole emergency workflow contains a 

group of tasks such as charter mechanism based acquisition of 

satellite imageries, geo-processing of data, information 

extraction, collaborative judgment, remote sensing assessment 

and integrated assessment. Each task is an instance of an 

ontology entity. The relations including sequence, parallel, 

interaction and fork rules the logic order of task execution 

process. As the process is developing, the priority of a task is 

changing dynamically in real time, which further influences the 

queue of data retrieval and preparation. For instance, when the 

task of collaborative judgment following geo-processing 

proceeds, its execution priority is higher than its successors 

(such as remote sensing assessment) but the same as 

information extraction because they are parallel. The semantic 

restraints describing the feature of task demand are composed 

by three parts: data information, requirement attributes and 

satisfaction. Data information confines the basic feature of input 

data including resolution, timeliness, types of sensors and 

spatial system. Requirement attributes describe preference and 

selection rules to data in the background of a certain disaster. 

Satisfaction represents the quality of task output influenced by 

data quality, environmental factors, response speed and overlap 

extent of data with the target area. The task ontology 

representing the function, attributes, process and need of tasks 

is a precondition to link task and data. It is presented as a 

RDF/OWL (Web Ontology Language) file 

(http://www.semanticweb.org/dell/ontologyies/tasks/task.owl). 

Some snippets of the file are listed in Table 1. Hereafter, 

ontologies are presented in protégé for clarity. 

 

Table 1. Snippets of the task ontology file in Turtle 

<!--http://www.semanticweb.org/dell/ontologies/task#Atomic--> 

<owl:Class rdf:about="&task;Atomic"> 

    <rdfs:subClassOf rdf:resource="&task;TaskType"/> 

</owl:Class> 

<!-- http://www.semanticweb.org/dell/ontologies/task#AtomicTask 

--> 

<owl:Class rdf:about="&task;AtomicTask"> 

    <rdfs:subClassOf rdf:resource="&task;Task"/> 

</owl:Class> 

<!-- 

http://www.semanticweb.org/dell/ontologies/task#CompositTask --

> 

<owl:Class rdf:about="&task;CompositTask"> 

    <rdfs:subClassOf rdf:resource="&task;Task"/> 

</owl:Class> 

<!-- http://www.semanticweb.org/dell/ontologies/task#Composite -

-> 

<owl:Class rdf:about="&task;Composite"> 

    <rdfs:subClassOf rdf:resource="&task;TaskType"/> 

</owl:Class> 
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3.2 An ontology of disaster data 

A success of disaster data management could be described as 

“getting the right resources to the right place at the right time; to 

provide the right information to the right people to make the 

right decisions at the right level at the right time (Xu and 

Zlatanova, 2007).” However, semantic heterogeneity of the 

spatial data remains one of the biggest challenges in disaster 

data management. Especially, as acquisition of multi-source 

data including remote sensing images, history data, case data, 

simulation data, basic geographic data and disaster assessment 

product has become increasingly easy and fast, metadata 

catalogs based data management can neither unify 

heterogeneous semantics nor explicitly represent correlation of 

various data. So data ontology is designed to solve the problem 

through the integration of disaster data and a triple is 

constructed for its description: 

  

 , ,DO T F I      (2) 

 

T represents the type classification of disaster data by 

defining a two-tuples composed of category and format. 

Category describes the conceptual classification, like observed 

data and history data, while format denotes specific file pattern, 

such as geotiff, img and shpfile (as shown in Figure 2). F 

represents the apparent and potential features of data from three 

aspects: attribute, space-time and statistics. Attribute contains 

inherent nature of data, which is obtained from data itself 

including spatial and temporal resolution, spatial reference and 

spectrums. Space-time describes spatial-temporal information 

including velocity of data acquisition and scope of the area 

covered by data. Such information is commonly obtained from 

record or calculation. Statistics show the rules and knowledge 

about data usage, such as the operating frequency of the data 

while facing a specific task. Then I represents the instances of 

data. 
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Figure 2. Disaster data classification 

 

The relations of different data instances can be described in 

two aspects. For the data with disparate types, the correlation of 

them is described by statistics features in a common application 

environment, like the co-occurrence of heterogeneous data 

adopted in similar history cases. For data of the same type, the 

correlation is built by calculating the similarity of spatial and 

temporal features. The similarity is calculated by the following 

formula: 

  
( , )

ln
| | ( , )

( , )

i j

j i i j

Min Area Area

D D Max Area Area

case i j t sSim w w 



      (3) 

 

tw  is the weight of temporal similarity while sw  is the 

weight of spatial similarity. The sum of 
tw  and 

sw  equals 1, 

but their specific values rely on the task need. For example, tw  

in temporal series analysis is higher than that in other tasks. α 

and β are two decay factors ranging from 0 to 1.
 

| |j iD D  

represents the absolute interval value of two dates. Min and 

Max respectively means the overlap area of two sets of data and 

union area of minimum bounding box containing them. When 

the calculation is close to or equals 1, the degree of connection 

between two data sets are strong while if the value approximates 

0, they have a weak connection. So the data ontology not only 

unifies the semantic description of heterogeneous data, but also 

offers the correlation method to automatically find other related 

data resources in the searching process. 

 

4. SEMANTIC MAPPING OF TASK AND DATA 

Due to a lack of semantic association between tasks and data in 

traditional disaster data management, the determination of 

which data source is the most appropriate for a specific task, as 

implicit knowledge, could not be commonly applied. However, 

a unified description containing task and data is complex and 

unnecessary because they belong to different domains and their 

own respective composition. Thus expressions with common 

semantic terms could neither highlight each feature 

characteristic nor help the system increase automatic 

understanding and analysis to disaster knowledge. Clearly, one 

should be able to connect tasks with data. Based on the 

ontologies, in order to build connections between task and data 

and further, convert task needs to specific data query filters, a 

mapping from semantics constraints of task ontology to that of 

data ontology is designed, which is expressed as: 

  

 ( ) ( )T DO S O F     (4) 

 

As shown in Figure 3, the mapping relation contains 

almost all the task needs and features of disaster data, and there 

are several mapping types, including one-to-one, one-to-many 

and many-to-many between them. A further classification 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015 
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.  
Editors: S. Zlatanova, G. Sithole, M. Nakagawa, and Q. Zhu 

doi:10.5194/isprsarchives-XL-3-W3-179-2015 

 
182



 

including attribute, space-time and scale is built on the base of 

mapping relations. The attribute level describes some indicators 

showing which data set is more suitable for a specific task by 

analysing the statistics of data usage in similar historical cases. 

For instance, the high co-occurrence and adopting frequency 

represents the importance of a data source to a task. So mapping 

relations in the attribute level could describe what kind of data 

source is the most suitable to current emergency process and 

help the system analyse the feature for automatic retrieval. The 

spatial-temporal level contains the direct correlation of tasks 

and data like task requirement on coordinate system, spatial 

reference and coverage area of data, which could filter the 

inappropriate data source and choose the potential source when 

the attribute-based retrieval does not find default suitable targets. 

The scale offers some flexible relevance factors like resolution 

of data. Such factors support analysing the correlation of task 

and potential data sets by calculating the degree of satisfaction 

and finally, a list of data based on quantitative estimation of 

correlation could be provided for task operators. 
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Figure 3. Semantic mapping between task and data  

 

 

So far, the task-oriented disaster data link method 

proposed in this paper contains three parts. Firstly, the relation 

of tasks mentioned in section 3 builds the correlation of 

different tasks in a workflow, so the system could query and 

compose a workflow with needed tasks by itself. This sets a 

goal and order for automatic data preparation. Secondly, the 

similarity of data with the same category is calculated in spatial 

and temporal aspects. So while a data set well satisfying the 

running task is found, continuously some other related data 

could be searched by the system actively, accompanied with a 

quantitative analysis on relevance between potentially useful 

data and the target. Such operation helps users find more 

suitable resources for a specific task in advance. Thirdly, a 

classified mapping from task semantics to data semantics is set 

up for connecting emergency task and disaster data. Then the 

mapping drives a multi-level-based searching and filtering 

process to actively offer users the most suitable data satisfying 

target task quickly and precisely. 

 

5. IMPLEMENTATION 

A prototype system for building custom task flow and searching 

suitable data is developed and integrated in a SOA (Service-

Oriented Architecture) based business-operation monitoring and 

management platform deployed in NDRCC, which is used for 

monitoring and managing disaster mitigation in whole 

emergency response period. Once users establish a new disaster 

task (as shown in Figure 4 (a)), by comparing factors like type, 

level and location of disaster with historical cases, the prototype 

system could set up a series of executable workflow and support 

man-machine manner (drag, drop and compose) to modify the 

process chain (as shown in Figure 4 (b)). We used the real-time 

emergency response task of the flood in Fushun, China in 2013 

as an example. There are more than 40 typical flood events from 

the year of 2000 stored in the history database of NDRCC. 

Therefore, through selecting atomic tasks frequently used in 

similar history tasks, the system first composes a new workflow. 

Users could change it on the interface shown if necessary. Then 

the priority of each task is distributed relying on its location in 

the process chain. After that, data preparation including 
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retrieval and selection process starts according to the priority 

rank. 

Firstly, the system loads and parses RDF file of current 

task ontology using Jena and a list of related data type is created. 

Taking integrated assessment process for instance, the type list 

of its needed data includes raster (post-disaster urban image of 

Fushun, flood figure), vector (administrative map, flooding 

extraction figure, distribution diagram of damaged 

infrastructures and houses) and text (yearbook of population 

statistics and economy statistics in Fushun, reported data from 

disaster area). Then system starts to traverse the list to find the 

most suitable data for each type. Secondly, according to the 

correlation of task and data in attribute level, the data with the 

most frequency usage in history case will be searched. For 

example, the post-disaster raster image is used as a background 

to show information of disaster area as rich as possible, the 

images of ZY-3 satellite was often chosen in this application, 

then the information will be obtain from RDF file directly. But 

if the ZY-3 images could not find it in the database, a further 

analysis to find potential right data proceeds. The system parses 

factors in spatial-temporal level to build a query condition, then 

images that can not satisfy Fushun flood in spatial reference, 

area and other conditions will be filtered and an available image 

set will be selected. Further, using formula (3), the system 

calculates the similarity of integrated assessment and each 

images in the data set in space, time and resolution and ranks 

them according to the correlation degree. Finally, a series of 

images labeled with relevance to the task will be arranged in 

data selection interface (shown as Figure 4 (c)) so users could 

choose the most suitable data for the assessment. 

 

 
Figure 4. The graphic interface of the prototype system 

 

 

6. CONCLUSION AND FUTURE WORK 

Compared to existing disaster data managing methods, there are 

several advantages to creating a task-oriented information link 

method using ontologies. Currently, searching for geospatial 

data can be overwhelming when one does know exactly which 

keywords to use. It can also be time-consuming to sift through 

undesirable results due to either poor keyword selection or 

bounding coordinate discrepancies within metadata. The 

method described here offers an innovative correlation method 
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and lowers the complexity of man-machine interaction to find 

data. 

In this study, ontologies for tasks and data sources are 

created independently and semantic mapping is set up between 

their features. The effort to create such a knowledge base is 

worthwhile because the independent ontologies and their 

association support semantic-related operations on spatial data, 

and helping users extract task-related information accurately. 

Then the analysis process of data searching is elaborated 

through introducing an emergency task scenario. The presented 

work is at an early stage and further research will focus on 

studying refining the statistical factors to take full advantage of 

historical cases and offering formulas to quantify the similarity 

between statistical factors and tasks. 
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