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ABSTRACT:  
 
Tehran, the capital of Iran, is surrounded by the North Tehran fault, the Mosha fault and the Rey fault. This exposes the city to possibly 
huge earthquakes followed by dramatic human loss and physical damage, in particular as it contains a large number of non-standard 
constructions and aged buildings. Estimation of the likely consequences of an earthquake facilitates mitigation of these losses. 
Mitigation of the earthquake fatalities may be achieved by promoting awareness of earthquake vulnerability and implementation of 
seismic vulnerability reduction measures. In this research, granular computing using generality and absolute support for rule extraction 

is applied. It uses coverage and entropy for rule prioritization. These rules are combined to form a granule tree that shows the order 
and relation of the extracted rules. In this way the seismic physical vulnerability is assessed, integrating the effects of the three major 
known faults. Effective parameters considered in the physical seismic vulnerability assessment are slope, seismic intensity, height and 
age of the buildings. Experts were asked to predict seismic vulnerability for 100 randomly selected samples among more than 3000 
statistical units in Tehran. The integrated experts’ point of views serve as input into granular computing. Non-redundant covering rules 
preserve the consistency in the model, which resulted in 84% accuracy in the seismic vulnerability assessment based on the validation 
of the predicted test data against expected vulnerability degree. The study concluded that granular computing is a useful method to 
assess the effects of earthquakes in an earthquake prone area. 

 

1. INTRODUCTION 
 
Earthquakes are among the most hazardous natural disasters. 
They are unpredictable in time, location and intensity. They 
seriously affect the population, building constructions and 
infrastructure, especially in urban areas. They often occur close 
to geological faults and plate boundaries. The city of Tehran is 

located on several faults that have had a long period of inactivity. 
The faults thus contain a high risk for releasing a large amount of 
seismic energy, thus exposing the city to a catastrophic 
earthquake followed by destruction of thousands of buildings, its 
infrastructure, a number of fatalities and leaving many injured 
inhabitants. The city has suffered huge earthquakes in cycles of 
approximately every 150 years. Since there have not been any 
large earthquakes (greater than 6 at the scale of Richter) in Tehran 

in the past 185 years, seismologists expect a large earthquake to 
happen in Tehran soon (JICA, 2000). This confirms the need to 
estimate the expected damage and the associated loss caused by 
an earthquake in order to effectively mitigate its consequences.  
 
Several institutions have carried out risk assessment in Tehran, in 
particular the International Institute of Earthquake Engineering 
and Seismology (Zare et al., 1999, Zaré and Memarian, 2003, 
Boustan and Shafiee, 2011) that classified potential Tehran 

earthquake damage from a geotechnical point of view and the 
Japan International Cooperation Agency (JICA, 2000) that 
produced seismic micro-zoning maps for the city. 
 
Defining earthquake physical vulnerability as a multi-criteria 
decision making depends upon various parameters including 
building properties such as the material, the number of floors and 

earthquake characteristics such as intensity, surface topography 
attributes like slope and expert’s judgments. All of these contain 
large uncertainties (Aghataher et al., 2005, Silavi et al., 2006, 
Amiri et al., 2008, Samadi Alinia and Delavar, 2011, Jahanpeyma 
et al., 2007, Khamespanah et al., 2013a,b, Panahi et al., 2013, 

Moradi et al., 2014a,b).  
 
Abundant research efforts were carried out to address the 
earthquake modelling problem. Examples are coseismic 
displacement modelling (Yaseen et al., 2013a,b), hybrid models 
(Kappos et al., 1998) and spatio-temporal models (van Lieshout 
and Stein, 2012).  
 

In this context, several researchers have focused on utilizing 
multi-criteria evaluation methods to define the seismic 
vulnerability of buildings in Tehran and handle the associated 
uncertainty aspects. For instance, Aghataher et al. (2005) 
implemented a fuzzy logic and analytical hierarchical process 
(AHP) approach to obtain weights of vulnerability factors to 
perform human loss probabilities in Tehran. Silavi et al. (2006) 
considered an AHP improved with intuitionistic fuzzy to obtain 
pessimistic and optimistic maps to assess human and physical 

seismic vulnerability assessment in the city. Amiri et al. (2008) 
used dominance-based rough sets to approximate the partition of 
a set of predefined and preference-ordered of the vulnerability 
grades. In this framework, Tehran metropolitan areas have been 
sorted with respect to their vulnerability degrees by the means of 
decision rules in the form of “IF–THEN” statements including 
both exact and non-exact rules. Majority voting in spatial group 
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multi-criteria decision making supported by density induced 
ordered weighting average operator was applied to the problem 
by Moradi et al. (2014a). 
 
In this study we turn towards Granular Computing (GrC) to 

extract compatible and accurate rules from a training data set to 
classify the whole study area (Samadi Alinia and Delavar,2011). 
GrC uses granules of information to find appropriate solutions 
(Zadeh, 1998,Yao, 2001, 2004). This model was implemented in 
the basic form by Samadi Alinia and Delavar (2011) and in an 
integrated form with Dempster-Shafer theory (Shafer,1992) by 
Khamespanah et al. (2013b) to assess Tehran seismic 
vulnerability.  

 
Here, a new model for rule extraction process by GrC is proposed. 
It uses generality and absolute support for rule extraction and 
coverage as well as entropy to determine quality of the rules to be 
used in forming the granular tree. In the past, attention was 
focused on determining Tehran seismic vulnerability in the case 
of activation of the North Tehran fault (Samdi Alinia and Delavar, 
2011, Khamespanah et al., 2013a), or activation of the three faults 

separately (Moradi et al., 2014a). In this paper, seismic 
vulnerability is assessed against aggregated activation of the 
North Tehran fault, the Mosha fault and the Rey fault 
simultaneously. In this way, the maximum seismic vulnerability 
imposed by the three faults is obtained and used to determine the 
physical seismic vulnerability of Tehran as the worst case 
scenario of the simultaneous activation of the three faults. 
 
Geospatial information system (GIS) has been used as a spatial 

modelling and fusion framework, where GrC has been applied. 
Tehran urban statistical units have been considered as objects and 
six physical vulnerability criteria are taken into account as 
attributes of the objects forming an information table.  
The rest of the paper is organized as follows. The theory of GrC 
and the customized model used in this paper is presented in 
Section 2. Data characteristics and obtained results are presented 
in Section 3. Section 4 finally presents the discussion and 

conclusions of the paper. 
 

2. GRANULAR COMPUTING ALGORITHM 

GrC is the science of processing data in different granularity 

levels (Bargiela and Pedrycz, 2003, Pawlak, 1982, Hobbs, 1985, 
Zadeh and Kacprzyk, 1999, Nguyen et al., 2001, Miao and Fan, 
2002, Keet, 2008, Yao, 2008). In order to do so, information is 
divided into subsets, which are called granules of 
information (Yao, 2001, Lin, 2003, Yao, 2008). 
 
The basic idea of information processing in GrC presents the 
information table, which is a finite set of objects commonly 

named the universe described by a finite set of describing 
attributes presented by Equation (1) (Pawlak, 1982): 
 

       ,  ,  ,   ,   ( { |       } { | )t a t a tS U A L V a A F a A            (1)  

                                         
where U is a finite non-empty set of objects, At is a finite non-
empty set of attributes, L is a language defined by using attributes 

in At, Va is a non-empty set of values of a  At, Ia: U → Va is an 

information function mapping an object from U to exactly one 
possible value of attribute a in Va (Pawlak, 1982). To classify a 
data set by means of GrC, a set of rules is extracted. In a number 
of studies of machine learning and data mining, an IF–THEN 
statement paraphrases a rule, “If an object satisfies Φ, then the 

object satisfies Ψ.”. In this way, a rule can be expressed in the 

form of Φ Ψ, where Φ and Ψ are intensions of the two concepts 

(Gupta et al., 1979, Pawlak, 1982). The interpretation suggests a 

cause and effect relationship between Φ and Ψ (Yao, 2001). GrC 
applies several measures for a single-granule properties, a 
relationship between two granules, and a relationship between a 
granule and a set of granules.  
 

2.1  Generality 

The generality of concept  displays the relative size of 

constructive granule of the concept , as defined in Equation (2). 

It confirms that a larger granule will result in the greater 
generality index (Pawlak, 1982): 
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where |𝑚()| is the size of granule that constructs the concept  

and |U| is the size of constructive granule of the whole universe. 
 

2.2 Absolute Support  

For the two given concepts  and , the absolute support (AS) 

or confidence that  provides to the , is defined by Equation (3) 

displaying the conditional probability of a situation that a 

randomly selected object satisfying , also satisfies  (Yao, 

2001): 
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where |𝑚()| is the size of granule which supports both 

concepts  and . The quantity AS is between 0 and 1 and 

expresses the degree to which  implies  (Yao, 2001).  

 
2.3 Coverage 

The coverage of concept  provided by concept   is defined by 

Equation (4) (Yao, 2001):  
 

CV (→) =
|𝑚()|

|𝑚()|
                                                (4)                                            

 
where |𝑚()| is the size of constructive granule of concept , 

and |𝑚()| is the size of granule constructing both concepts 

 and . This quantity displays the conditional probability of a 

randomly selected object to satisfy , when satisfies  and shows 

the coverage of  upon   (Yao, 2001, 2008). 

 
2.4 Conditional Entropy 

For formulas  a family of formulas of Ψ = {Ψ1, Ψ2, . . . , Ψn} is 

considered that induces a partition π(Ψ) = {m(Ψ1), . . . ,m(Ψn)} of 

the universe. The conditional entropy H (|) that reveals the 

uncertainty of formulas  based on formulas Ψ, is defined by 

Equation (5) (Yao, 2008): 
 

  H (|) = - ∑ 𝑝(𝑖|) 𝑙𝑜𝑔  (𝑝(𝑖|))𝑛
𝑖=1                            (5)    

                                                          

where: 𝑝(𝑖 |) = 
|𝑚( 𝑖)|

|𝑚()|
. 

 
2.5 Mining association rules 

In this research, generality and absolute support are used as the 

effective criteria for extracting confident rules. Entropy and 
coverage are then used to prioritize the extracted rules to build the 
granule tree. The procedure for extracting association rules is 
illustrated in Figure 1. This procedure comprises of extracting 
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rules and constructing granules from training data set, until 
algorithm extracts the best rule set for the predictions. 
 
2.6 Mining exception rules 

According to Yao (2001), a major drawback of the association 
rules extracted by the original GrC is the possibility of existing 
rules relating some concepts in the data that may not exist in 
reality, or rules that are not extractable by applying this model, 
making association rules incomplete to classify the dataset 

appropriately. 
 
For example, based on the association rule extraction principles, 
for the two concepts Φ and Ψ, the rule Φ→Ψ may have a high 
absolute support, whereas it has not been extracted as an 

association rule. However, if Ψ is a concept with high generality, 
considering the absolute support formula, it could be concluded 
that in reality Φ supports Ψ negatively and association does not 
exist (Yao, 2001, Khamespanah et al., 2013a). Existing of 
suitable rules for classifying data that may not have a high 

generality but not extracted by the association rules is also 
possible (Yao, 2001).  
Exception rules can be extracted for a rule like Φ →Ψ if the 
formula Φ' is found and added to the initial rule and a converse 
result to initial rule is obtained for instance, Φ'^Φ ¬ → Ψ;  in which 
it has  high absolute support,  no matter how low the generality is 
(Yao, 2001). 
 
 

  

Figure 1: Schema of obtaining classification rules by the GrC algorithm 
 
 
 

3. EXPERIMENTAL RESULTS 

In this section, the procedure of data preparation, model 

implementation and the obtained results are discussed. 
 
3.1 Data preparation 

The physical vulnerability of Tehran against earthquake is based 

on the activation of the three major faults, i.e. the North Tehran 
fault, the North and South Rey faults and the Mosha fault as 
presented in Figure 2. 

 
The North Tehran Fault is 90 Km long located at the 
southernmost piedmont of Central Alborz. It has an E–W to 
ENE–WSW strike, a dip of less than 75o, and a thrust mechanism 
(Berberian and Yeats, 1999). It proved the major active fault 

threatening directly the city due to several historical earthquakes 
recorded. The shape of this fault does not have a distinct scarp 
(Berberian and Yeats, 1999). Some authors suspect that events in 
the past, such as the 855 A.D and 856 A.D earthquakes, could be 
associated to this fault (Berberian and Yeats, 1999, 2001). The 
Mosha Fault is located at the northeast side of Tehran with a 
length of 150 Km. It has experienced several earthquakes with 
magnitude greater than 6.5 in the past (Berberian and Yeats, 

1999). The South and North Ray Faults are located south of 
Tehran (JICA, 2000). The North Ray Fault has a length of 16.5 
Km, in the W–E direction and a dip towards the north. The South 

Ray Fault is 18 km long with ENE–WSW direction (Berberian 
and Yeats, 2001). 

 
Census data of 2000 were used because of data availability, 
although the most recent Tehran census data was carried out in 
2010. This data set contains 3175 statistical units in the Tehran 

metropolitan area.  
 
The average slope of the land, the intensity of earthquake in MMI 
and building parameters are considered as effective seismic 
parameters (Aghataher et al., 2005, Silavi et al., 2006, Amiri et 
al., 2008, Samadi Alinia and Delavar, 2011, Khamespanah et al., 
2013). Material and the number of floors of building are taken as 
the most important building parameters in assessing the seismic 

vulnerability. The percentage of materially weak-constructed and 
less-than-or-equal-to-four-floors buildings and the percentage of 
weakly founded buildings of more than four floors in any given 
urban statistical unit are taken as the two major parameters in 
building seismic vulnerability (Aghataher et al., 2005, Silavi et 
al., 2006, Amiri et al., 2008, Samadi Alinia and Delavar, 2011, 
Khamespanah et al., 2013a,b). 
 

Since Iranian regulations for building designs have been 
approved in 1966, buildings constructed before this date are 
considered as non-standard constructions. Moreover, fortification 
regulations against earthquakes were applied for the first time in 
1988. In this regard, the percentage of buildings constructed 
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before 1966 and the percentage of buildings constructed between 
1966 and 1988 are considered as effective parameters 
(Khamespanah et al., 2013a). 
To determine physical seismic vulnerability for each statistical 
urban sample unit, experts were asked to rank the degree of 

vulnerability for 100 randomly selected units, using numbers 
from one to five, corresponding to the classes of ‘very low 
vulnerability’, ‘low vulnerability’, ‘intermediate vulnerability’, 
‘high vulnerability’ and ‘very high vulnerability’, respectively. 
The effective parameters were divided into four intervals of equal 
length and output vulnerabilities were divided into five classes. 
Views for 15 selected samples are shown in Table 1. 

 

 
Figure 2: Position of North Tehran fault, Mosha fault and Rey 

faults 
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132 1 2 1 1 4 1 2 

256 3 1 2 1 2 2 1 

33 2 1 1 1 3 1 2 

456 1 2 2 1 4 1 2 

2335 1 2 2 1 2 1 2 

6 1 2 1 1 4 2 2 

745 1 2 1 1 2 1 1 

678 4 2 1 1 1 1 1 

1129 1 1 1 1 4 1 3 

103 3 1 3 1 4 1 5 

11 4 2 2 1 3 2 2 

2799 1 2 1 1 4 1 2 

1342 1 2 4 1 4 3 5 

144 3 2 1 1 2 1 1 

335 1 2 4 1 4 1 3 

Table 1: Classified vulnerability information for 15 out of 100 
randomly selected building with Slop: Slope, MMI: MMI, 

Build_less4: Percentage of weak buildings having less than or 
equal to 4 floors, Build_more4:  Percentage of buildings having 
more than 4 floors, Bef-66: Percentage of buildings built before 
1966 and Bet-66-88: Percentage of buildings built between 1966 

and 1988 (Samadi Alinia and Delavar, 2011). 

3.2 Extracting rules  

The rules satisfying maximum generality and absolute support 
parameters were selected as the effective rules. These rules were 
assessed by maximum coverage and minimum entropy to ensure 
that rules of the highest quality for the classification of seismic 
physical vulnerability of Tehran were extracted. The extracted 
rules employing the granular tree to determine the seismic 
vulnerability of Tehran are illustrated in Figure 3. In this tree, 
extracted rules are placed in prioritized order from left to right, 

showing confidence accounted for each rule based on minimum 
entropy and maximum coverage. Attributes are abbreviated as 
delineated in Table 1. This tree is used to assign seismic physical 
vulnerability class to the Tehran urban statistical units. 
 

 
Figure 3. The granule tree of the extracted rules from training 

data set for classifying statistical units of Tehran with respect to 

their seismic physical vulnerability 
 
 

3.3 Applying granular tree  

The extracted granular tree was used to classify Tehran statistical 
units into the seismic vulnerability classes. The seismic physical 

vulnerability maps resulted for Mosha fault, Rey fault and North 
Tehran fault using GrC are illustrated in Figures 4, 5 and 6, 
respectively. These maps present the degree of vulnerability 
imposed to each statistical urban unit by the considered faults. It 
can be interpreted that activation of the North Tehran fault will 
have the highest destructive impact among the three faults, 
whereas activation of the Mosha fault will have the least 
destructive impact on Tehran, due to its distance to the city 
compared to that of the other two faults.  

 

 
Figure 4. Tehran seismic physical vulnerability map against 

Mosha fault activation using GrC 
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Figure 5. Tehran seismic physical vulnerability map against Rey 

fault activation using GrC 
 
 

 
Figure 6. Tehran seismic physical vulnerability map against 

North Tehran fault activation using GrC 
 
 

3.4 Aggregated value of Tehran seismic vulnerability 

Next, we considered the aggregated value for Tehran’s seismic 
physical vulnerability. We aimed to identify the effects at the 
areas with the highest seismic vulnerability. For all statistical 
urban units of Tehran, vulnerabilities from the North Tehran fault, 
the Mosha fault and the Rey fault have been determined using the 
extracted granular tree. For each unit, the highest resulted seismic 
physical vulnerability is considered as the aggregated measure of 
vulnerability. Aggregated vulnerability therefore shows the worst 

case scenario that may happen for a particular statistical unit in 
Tehran.  
 
Table 2 demonstrates the aggregated seismic vulnerability value 
for the 15 statistical urban sample units presented in Table 1, 
indicating the imposed vulnerability from the three major faults 
and the maximum value that considered to be the worst case for 
that sample. Figure 7 illustrates Tehran physical seismic 

vulnerability map considering the worst case scenario using GrC, 
which shows the maximum possible vulnerability for the 
statistical units. In addition, Figure 8 demonstrates percentage of 
Tehran statistical units allocated to each vulnerability degree for 
different scenarios considered. According to Figure 8, activation 
of the Mosha fault and the Rey fault, will result in more than 70% 
of the units falling into the medium and low vulnerability classes. 
Activation of the North Tehran fault, however, will result in more 

than 50% of the units to have a high or very high degree of 
vulnerability. In the worst case model, therefore, more than 90% 
of the statistical units occur in the high and very high vulnerability 
classes. 

 

 

Statistical 
unit 

number 

Physical seismic vulnerability Maximum 
Value North 

Tehran 
fault 

Mosha 
fault 

Rey 
fault 

132 3 2 1 3 

256 3 1 2 3 
33 2 1 1 2 

456 2 3 5 5 
2335 5 4 4 5 

6 2 2 2 2 
745 1 2 1 2 

678 4 2 1 4 
1129 3 2 1 3 
103 5 4 4 5 
11 3 3 2 3 

2799 2 2 1 2 
1342 5 4 3 5 
144 3 4 3 4 
335 3 1 1 3 

Table 2. Selected samples of Tehran statistical units and their 
aggregated seismic physical vulnerability 

 

 
Figure 7. Tehran seismic physical vulnerability map considering 

the worst case scenario using GrC  
 

 
Figure 8. Comparison of Tehran seismic physical vulnerability 

imposed by the four scenarios of the fault activation 
 

3.5 Validation of the results 

Since there is no large earthquake happened in Tehran within 
about last 150 years of a magnitude above 6 at the scale of 
Richter, the only way to validate the model output is to assess the 
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accuracy of the classification based on the data used to extract the 
classification rules. The model is therefore assessed to realize the 
number of the units correctly assigned to the degree of 
vulnerability as defined by the experts. The overall classification 
accuracy of the seismic physical vulnerability is calculated using 

𝑘

𝑘+𝑛
 , where k is the statistical urban sample unit correctly 

classified and n is the number of incorrectly classified units, based 
on the available data set and experts’ remarks (Yao, 2005, 
Pedrycz et al., 2008). The final accuracy for the North Tehran 

fault is estimated as 84% which confirms the reliability of the 
algorithm in comparison with previous GrC algorithms 
implemented by Samadi Alinia and Delavar (2011) an 
Khamespanah et al. (2013a), which resulted in 72% and 60% 
accuracy for the North Tehran fault, respectively. 

 
4. DISCUSSION 

The seismic physical vulnerability of Tehran has been assessed 
by historical proofs (Berberian and Yeats, 2001) where precise 
prediction of time, intensity and location of possible earthquakes 
is restricted by technological and scientific advances. Thus, it is 
imperative to produce seismic physical vulnerability maps to 

enable planners in order to develop risk reduction plans, which is 
the aim of this paper. In this regard, a new classification model 
based on the GrC algorithm was applied. Moreover, an 
aggregated seismic vulnerability value estimated the impact of 
the three major threatening faults around Tehran. 
 
Seismic vulnerability maps showed that Tehran is highly 
vulnerable against earthquakes arising from the three major faults 
around the city. The effect of the Mosha fault was the least among 

the three faults, because the fault is located farthest from Tehran. 
Activation of the Rey fault, however, will impose a medium 
destructive impact on the city. Finally, the North Tehran fault is 
the most threatening fault because there are more statistical urban 
units associated to it at a high degree of vulnerability. The worst 
case scenario happens when these three faults are simultaneously 
activated, because earthquakes are not always related to a specific 
fault and it is possible for the three major Tehran faults to become 

active in response to a regional stress (Mucciarelli et al., 2001, 
Ashtari et al., 2005). The model developed in this study verified 
that for all of the three major faults of Tehran, most of the 
statistical urban units that have a high vulnerability are located in 
the south of Tehran. This corresponds with the actual building 
conditions in Tehran, because most of the aged buildings and non-
standard constructions exist in the southern part of the city. 
 

The new GrC algorithm implemented in this paper uses generality 
and absolute support for rule selection and prioritizes the 
extracted rules by entropy and coverage. Since there is no real 
earthquake happened in Tehran in the past 185 years, the only 
way to validate the results is to compare the acquired results with 
the experts’ judgments. This algorithm led to 84% accuracy in 
classification of Tehran statistical units into seismic physical 
vulnerability classes, which exceeds previous attempts on Tehran 

seismic vulnerability classification by GrC algorithm 
implemented by Samadi Alinia and Delavar (2011) and 
Khamespanah et al. (2013a), resulting in 72% and 60% accuracy, 
respectively.  

 
5. CONCLUSION 

Natural disasters have always been imposed catastrophic 
casualties and devastations to the human society, and even today, 
precise prediction of the disaster is not adequately addressed by 
scientific and technological advancements. However, 
prognostication of the natural disasters seems insufficient to 

shield the peoples and their holdings from disaster consequences. 
Improving resistance of the urban environments by 
comprehensive planning can be regarded as the solution to the 
problem.  Earthquake, is one of the most calamitous disasters 
endangering human kind all over the world, mostly because of its 

abrupt nature. Tehran, capital of Iran, is a highly populated city 
with numerous non-standard construction and aged buildings, 
surrounded with several known and unknown faults exposing the 
city to possibly huge earthquakes. In order to enable the urban 
managers to develop seismic damage reduction plans, this paper 
aimed at evaluating the seismic physical susceptibility of Tehran 
in the form of vulnerability classification maps. 
 

This paper proposed a new granular computing algorithm which 
uses generality and absolute support for rule extraction, and 
utilizes coverage and entropy for rule ordering, to obtain the 
seismic physical vulnerability considering the effects of the three 
major known faults of Tehran, namely North Tehran fault, Mosha 
fault and Rey fault. Slope, seismic intensity in term of MMI, 
height and age of the buildings were considered to be the effective 
criteria in the classification procedure, accompanied with expert 

knowledge. 
 
The new granular algorithm led to a higher accuracy in seismic 
vulnerability classification than precedent algorithms applied to 
the problem. Moreover, an aggregated model of seismic 
vulnerability is implemented to investigate the worst possible 
situation imaginable for Tehran.  

 
 

6. REFERENCES 

Aghataher, R., M. Delavar and N. Kamalian. 2005. Weighing of 
contributing factors in vulnerability of cities against earthquakes. 
Map Asia Conference Jakarta, Indonesia, Aug. 13 2005, pp. 22-

25. 
 
Amiri, A., M.R Delavar, S. Zahrai and M. Malek. 2008. 
Earthquake Risk Assessment in Tehran Using Dominance-Based 
Rough Set Approach. Proc. the ISPRS Workshop on 
Geoinformation and Decision Support Systems, Tehran, Iran, 
Jan. 14 2008. pp. 13-26. 
 

Ashtari, M., D. Hatzfeld and N. Kamalian. 2005. Microseismicity 
in the region of Tehran. Tectonophysics 395(3), pp 193-208. 
 
Bargiela, A. and W. Pedrycz. 2003. Granular Computing: an 
Introduction. Kluwer Academic Publishers, Boston. 452p. 
 
Berberian, M. and R. S. Yeats. 1999. Patterns of historical 
earthquake rupture in the Iranian Plateau. Bulletin of the 

Seismological Society of America 89(1), pp 120-139. 
 
Berberian, M. and R. S. Yeats. 2001. Contribution of 
archaeological data to studies of earthquake history in the Iranian 
Plateau. Journal of Structural Geology 23(2), pp 563-584. 
 
Boustan, E. and A. Shafiee. 2011. Fuzzy-Probabilistic seismic 
hazard assessment of Tehran region. Journal of the Earth 6(20), 
pp 17-29. 

 
Gupta, M. M., R. K. Ragade and R. R. Yager. 1979. Advances in 
Fuzzy Set Theory and Applications, North-Holland Publishing 
Company. 770p. 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015 
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.  
Editors: S. Zlatanova, G. Sithole, M. Nakagawa, and Q. Zhu 

doi:10.5194/isprsarchives-XL-3-W3-187-2015 

 
192



Hobbs, J. R. 1985. Granularity. Proc. the Ninth International Joint 
Conference on Artificial Intelligence, University of British 
Columbia, Vancouver, Canada, Aug 6-7 1985, pp. 432-435. 
 
Jahanpeyma, M.H., Delavar, M.R.,  Malek, M.R.,  Kamalian, N., 

2007, Analytical evaluation of propagation of uncertainty in 
assessment of seismic vulnerability of Tehran using geospatial 
information system , Proc. the 5th International Symposium on 
Spatial Data Quality, June 13-15 2007, Enschede, The 
Netherlands, pp. 25-32. 

JICA. 2000. The study on seismic microzoning of the Greater 
Tehran Area in the Islamic Republic of Iran. Pacific Consultants 
International Report, OYO Cooperation, Japan 01, 390p. 

Kappos, A., K. Stylianidis and K. Pitilakis. 1998. Development 
of seismic risk scenarios based on a hybrid method of 
vulnerability assessment. Natural Hazards 17(2), pp. 177-192. 
 
Keet, C. M. 2008. A Formal Theory of Granularity, PhD Thesis, 
KRDB Research Centre, Faculty of Computer Science, Free 

University of Bozen-Bolzano, Italy. 298p. 
 
Khamespanah, F., M. Delavar and M. Zare. 2013a. Uncertainty 
management in seismic vulnerability assessment using granular 
computing based on covering of universe. ISPRS-International 
Archives of the Photogrammetry, Remote Sensing and Spatial 
Information Sciences 1(1), pp. 121-126. 
 

Khamespanah, F., M. R. Delavar, H. S. Alinia and M. Zare. 
2013b. Granular Computing and Dempster–Shafer Integration in 
Seismic Vulnerability Assessment. Intelligent Systems for Crisis 
Management. S. Zlatanova, Peters, R., Dilo, A., Scholten, H., 
Springer, pp. 147-158. 
 
Lin, T. Y. 2003. Granular computing. Rough Sets, Fuzzy Sets, 
Data Mining, and Granular Computing, Springer, pp 16-24. 

 
Miao, D.Q. and S.D. Fan. 2002. The Calculation of Knowledge 
Granulation and its Application. Systems Engineering-theory & 
Practice 1, pp. 7-14. 
 
Moradi, M., M. Delavar, B. Moshiri and F. Khamespanaha. 
2014a. A novel approach to support majority voting in spatial 
group MCDM using density induced OWA operator for seismic 

vulnerability assessment. ISPRS-International Archives of the 
Photogrammetry, Remote Sensing and Spatial Information 
Sciences 1, pp. 209-214. 
 
Moradi, M., M. R. Delavar and B. Moshiri. 2014b. A GIS-based 
multi-criteria decision-making approach for seismic vulnerability 
assessment using quantifier-guided OWA operator: a case study 
of Tehran, Iran. Annals of GIS 22(3), pp 1-14. 
 

Mucciarelli, M., P. Contri, G. Monachesi, G. Calvano and M. 
Gallipoli. 2001. An empirical method to assess the seismic 
vulnerability of existing buildings using the HVSR technique. 
Pure and Applied Geophysics 158(12), pp. 2635-2647. 
 
Nguyen, S. H., A. Skowron and J. Stepaniuk. 2001. Granular 
computing: A rough set approach. Computational Intelligence 
17(3), pp. 514-544. 

 
Panahi, M., F. Rezaie and S. Meshkani. 2013. Seismic 
vulnerability assessment of school buildings in Tehran city based 
on AHP and GIS. Natural Hazards and Earth System Sciences 
Discussions 1(5), pp. 4511-4538. 

Pawlak, Z. 1982. Rough sets. International Journal of Computer 
& Information Sciences 11(5), pp 341-356. 
Pedrycz, W., S. Bassis and D. Malchiodi. 2008. The Puzzle of 
Granular Computing, Springer. 
 

Samadi Alinia, H. and M.R. Delavar. 2011. Tehran’s seismic 
vulnerability classification using granular computing approach. 
Applied Geomatics 3(4), pp. 229-240. 
 
Shafer, G. 1992. The Dempster-Shafer theory. Encyclopedia of 
Artificial Intelligence, pp. 330-331. 
 
Silavi, T., M. Delavar, M. Malek, N. Kamalian and K. 

Karimizand. 2006. An integrated strategy for GIS-based fuzzy 
improved earthquake vulnerability assessment. ISPRS 
International Symposium on ‘‘Geo-information for Disaster 
Management (Gi4DM), Goa, India, pp , Sep. 25-26 2006. 16-26. 
 
van Lieshout, M. and A. Stein. 2012. Earthquake modelling at the 
country level using aggregated spatio-temporal point processes. 
Mathematical Geosciences 44(3), pp. 309-326. 

 
Yao, Y. 2004. A partition model of granular computing. 
Transactions on Rough Sets I, Springer, pp 232-253. 
 
Yao, Y. 2005. Perspectives of granular computing. IEEE 
International Conference on Granular Computing, Beijing, 
China, 25-27 July 2005, pp. 85-90. 
 
Yao, Y. 2008. A Unified Framework of Granular Computing. 

Handbook of Granular Computing. W. Pedrycz, A. Skowron and 
V. Kreinovich (Eds), John Wiley & Sons, pp. 401-410. 
 
Yao, Y. Y. 2001. On Modeling data mining with granular 
computing. 25th Annual IEEE International Conference on 
Computer Software and Applications, Chicago, US, Oct. 8-12 
2001, pp. 638-643. 
 

Yaseen, M., N. A. Hamm, V. Tolpekin and A. Stein. 2013a. 
Anisotropic kriging to derive missing coseismic displacement 
values obtained from synthetic aperture radar images. Journal of 
Applied Remote Sensing 7(1), pp. 1-18. 
 
Yaseen, M., N. A. Hamm, T. Woldai, V. Tolpekin and A. Stein. 
2013b. Local interpolation of coseismic displacements measured 
by InSAR. International Journal of Applied Earth Observation 

and Geoinformation 23, pp. 1-17. 
 
Zadeh, L. A. 1998. Some reflections on soft computing, granular 
computing and their roles in the conception, design and utilization 
of information/intelligent systems. Soft Computing-A Fusion of 
Foundations, Methodologies and Applications 2(1), pp. 23-25. 
 
Zadeh, L. A. and J. Kacprzyk. 1999. Computing with words in 

Information/Intelligent systems 1: Foundations, Springer. 518p. 
 
Zare, M., P.-Y. Bard and M. Ghafory-Ashtiany. 1999. Site 
characterizations for the Iranian strong motion network. Soil 
Dynamics and Earthquake Engineering 18(2), pp. 101-123. 
 
Zaré, M. and H. Memarian. 2003. Macroseismic intensity and 
attenuation laws: A study on the intensities of the Iranian 
earthquakes of 1975–2000. Fourth International Conference of 

Earthquake Engineering and Seismology, Tehran, Iran, April 4-6 
2003, pp. 12-14.

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015 
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.  
Editors: S. Zlatanova, G. Sithole, M. Nakagawa, and Q. Zhu 

doi:10.5194/isprsarchives-XL-3-W3-187-2015 

 
193




