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ABSTRACT: 
 
Geodetic survey data are typically analysed using the assumption that measurement errors can be modelled as noise. The least 
squares method models noise with the normal distribution and is based on the assumption that it selects measurements with the 
highest probability value (Ghilani, 2010, p. 179f). There are environment situations where no clear maximum for a measurement can 
be detected. This can happen, for example, if surveys take place in foggy conditions causing diffusion of light signals. This presents 
a problem for automated systems because the standard assumption of the least squares method does not hold. A measurement system 
trying to return a crisp value will produce an arbitrary value that lies within the area of maximum value. However repeating the 
measurement is unlikely to create a value following a normal distribution, which happens if measurement errors can be modelled as 
noise. In this article we describe a laboratory experiment that reproduces conditions similar to a foggy situation and present 
measurement data gathered from this setup. Furthermore we propose methods based on fuzzy set theory to evaluate the data from our 
measurement. 
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1. INTRODUCTION 

Methods for geodetic observations are typically designed in a 
way that the resulting errors are small in relation to the 
observed value and bias is eliminated. Thus the assumption is 
that the resulting error (the noise) is normally distributed with 
an expectation value of zero. This requires not only carefully 
developed equipment but also controlled environmental 
conditions. With human observers it is possible to perform the 
observations only under reasonable conditions and postpone 
observations otherwise. This is not possible with automated 
systems. Such systems are typically installed if fast response 
times are essential, for example in case of landslides. Problems 
occur if the environmental conditions are bad. 
 
If only some of the automatically determined measurements are 
affected by poor environmental conditions, then the application 
of robust estimation may be able to identify observations with 
poor quality and provide good results by eliminating 
observations with a bad quality. However, if the observed 
situation changes during the poor environmental condition, 
these changes will only become visible after the environmental 
conditions improve and this could be already too late. This 
paper is based on a different method of analysis: Fuzzy logic. 
We present an experiment that is designed to reproduce foggy 
conditions and discuss possible approaches for the analysis of 
observations. Peter Fisher states that fuzzy set theory is a 
method to deal with vague, poorly defined objects (Fisher, 
1999). In the situation discussed here, the object itself is clearly 
defined but the environmental conditions, which affect the path 
that the light takes, is not. Thus we assume that fuzzy set theory 
is a promising approach to this kind of problem. 
 

The remainder of the paper is organized as follows: In section 2 
we give a brief introduction into fuzzy numbers and vectors and 
their analysis. In section 3 we present the experimental setup 
and show the resulting data. Section 4 contains some results and 
a discussion of two ideas for other approaches. Section 5 
concludes the paper by providing directions for future work. 
 

2. FUZZY NUMBERS AND FUZZY VECTORS 

In statistics, an imprecise (fuzzy) number x* is defined by its 
one dimensional characterizing function (·), which is a real 
function of a real variable x with values between 0 and 1 
(Menger, 1951, Zadeh, 1965 as quoted by Viertl, 2006a). The 
value represents the degree of membership. Fuzzy numbers are 
represented by -cuts for numerical treatment, where  is a real 
number from the interval (0,1] (see Fig. 1). Each interval for a 
-cut contains any interval with for a larger value of .  

 
Figure 1. Fuzzy number and -cut 
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Data analysis then requires that the necessary functions are 
applied to the fuzzy numbers, i.e., y* = f(x1*, … xn*). The result 
is again a fuzzy number and can be described by -cuts (Viertl, 
2006b). 
When moving from one dimensional fuzzy numbers to n-
dimensional fuzzy vectors, different representations are possible 
(Liang et al., 2009). An n-dimensional fuzzy vector requires an 
n-dimensional characterizing function : RnR in the interval 
(0,1]. A 2-dimensional fuzzy vector : R2R provides a 
membership value for each point in a plane. If the vector 
describes the horizontal extent of a mountain, then each point 
with =1 is definitely part of the mountain and each point with 
=0 is definitely not part of the mountain. In the area between 
these extremes, the point may be part of the mountain and the 
likelihood of the membership increases with the value of . It 
is important to note, hat a 2-dimensional fuzzy vector is not a 
vector of two fuzzy numbers because this would only be true if 
the two parameters of the characterizing function can be 
separated to =min((x),(y)). 
 
Combination of fuzzy numbers or fuzzy vectors can then be 
done by using the -cuts. Fig. 2 shows an example of the 
combination of two fuzzy numbers with the minimum 
combination rule. The overlap of the -cuts is the result of the 
combination of the two fuzzy numbers. The same can be done 
with fuzzy vectors.  

  
Figure 2. Combination of two fuzzy numbers 

 
3. EXPERIMENTAL SETUP 

The experiment was performed by Elsa Heer at TU München. 
The setup consists of a video theodolite, which was located at 
two different (known) positions (Fig. 3) and a light emitting 
target (Fig. 4). The results of a video theodolite observation are 
crisp and precise measurements and an image. Thus the system 
had to be disturbed for the experiment. This was done by setting 
focus and exposure of the video theodolite deliberately wrong. 
The result of the measurement does not have a clear maximum 
of intensity. A similar (and more realistic) effect could have 
been achieved by producing fog in the laboratory. However, 
this was not possible due to other experimental setups in the 
room that could have been affected. Fig. 5 shows one of the 
final images which is similar to an image is taken in a slightly 
foggy situation. Fig. 6 shows the image of a light source in 
foggy conditions. The foggy conditions show a similar pattern 
than the experiment but there are two differences: The area 
between light and darkness is bigger in Fig. 6 and the radiating 
pattern from Fig. 5 is missing. The advantage of the results 

from the experiment is that the conditions can be easily 
reproduced. 
 
The goal of this experiment is to compute the coordinates of the 
target using the directions determined by the theodolite. The 
theodolite was a Leica Geosystems TPS 1201with an attached 
CMOS camera. 
Geometrically, the setup is a forward intersection. From two 
known points, the directions to a point with unknown 
coordinates are determined. The setup results in two lines that 
need to be intersected. Due to inevitable measurement 
deviations, the lines are skew lines and the intersection is 
typically computed by correcting the observations according to 
the least squares method. The size of the necessary corrections 
provides an estimate for the quality of the solution. In the setup 
the angle of intersection is 33 gon. This is not an optimal 
intersection angle but a realistic approach. 
 
The basic setup thus consisted of four locations: 

 2 positions where the video theodolite was placed for 
the measurement (instrument positions), 

 the position of the target, and 
 a reference point to orient the video theodolite (this 

point is irrelevant for the further discussion because it 
is only used to align the measurements done with the 
video theoolite). 

 
The reference point is necessary because theodolites measure 
horizontal directions with respect to an arbitrary starting 
direction. In order to use the observations for the determination 
of coordinates in a given reference frame, the observations need 
to be oriented, i.e., they need to be rotated such that the 
reference direction corresponds with the x-axis of the reference 
frame. This is done by observing the direction to a point where 
the coordinates are known (the reference point). In our setup the 
coordinates of all locations were also determined by classical 
measurements using a theodolite. Therefore, not only the 
coordinates of the instrument positions and the orientations are 
known, but also the coordinates of the target position. This 
guarantees that the quality of the final result can be determined. 
 

  
Figure 3. Experimental setup: Instrument positions with the 

target in the background (pictures taken by Elsa Heer) 

 
The intensity of the image can be used to determine the 
characterizing function. It is obvious, that the typical 
simplification for the shape of the characterizing function, 
which is shown in Figures 1 and 2, does not apply for this 
example. The real shape is more complex and less regular. The 
circular patterns may even lead to situations where the -cuts 
are not connected areas. 
 
The result of the measurement is now modelled by a fuzzy 
vector in 3D space. In order to model it, two parameters are 
necessary to determine the direction of the vector. These 
parameters can either be modelled as vertical and horizontal 
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angles as observed from the projection centre of the theodolite 
or as horizontal and vertical displacement in a defined distance 
from the projection centre (the focal length of the optical 
system). 
 

 
Figure 4. Experimental setup: Target position (picture taken by 

Elsa Heer) 

 
Figure 5. Image as taken by the video theodolite from point 2 

 

 
Figure 6. Image of a light source in foggy conditions 

 

4. PRELIMINARY RESULTS 

In this section we discuss advantages and disadvantages of three 
methods that can be used to calculate the coordination of the 
light source.  
 
4.1 Simple Method 

In a first step, a simple method has been tested: In order to 
make decisions based on fuzzy information, the information is 
usually defuzzied (the area of the characterizing function is 
reduced to a point) and then further calculations are applied. 
The defuzzification can be based on the centroid of the 
characterizing function. Theoretically, this works if the 
uncertainty is purely random and thus the centroid is a 
reasonable approximation of the expectation of the distribution. 
 
The -cuts of the characterizing function require a 
characterizing function in to range of [0,1]. Therefore the  
intensity of the images (e.g. Fig. 5) has to be normalized. One  
normalization result is included in Fig. 7. This characterizing 
function can then be used to compute the -cuts.  

 
Figure 7. Characterizing function for the direction from point 2 

(Heer, 2014) 

 

An open question is, which -cuts should be used. In the 
following, the values 0.25, 0.5, 0.75, and 1 are used for . Each 
of these intersections results in a different area. The centroid of 
the area is then used to determine the line from the instrument 
positions to the target position. Once this is done for both 
instrument positions, the most likely intersections can be 
computed. 
 
The intersections for the selected -cuts are summarized in 
Table 1. The x- and y-coordinates differ significantly from the 
results computed with the undisturbed observations (using the 
full precision of the theodolite) since the distance is short, the 
atmospheric conditions are controlled, and the theodolite is of 
high quality, any deviation of more than a few centimetres is a 
failure. The results made it obvious that this approach is not 
suitable for the analysis of fuzzy observations, because of 
differences of max. 1 meter in x direction and of max. 7 meters 
in y direction. 
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 x [m] y [m] z [m] 
=0.25 101.286 117.040 49.749 
=0.5 99.113 110.455 49.869 
=0.75 99.428 113.649 49.821 
=1 100.047 123.086 49.668 
undisturbed result 101.303 117.754 49.643 

Table 1. Estimated point coordinates for different -cuts and the 
accurate result from the undisturbed measurement 

 
4.2 Cone Boundary Intersection Method 

Another approach would be intersecting the cones defined by 
the -cuts. The centre of the optical system of the theodolite is 
known (typically by the coordinates of the point and the vertical 
offset of the theodolite). The angular readings of the theodolite 
determine the direction in which the telescope is pointing. Since 
the video camera is attached to the telescope and the mutual 
orientation is known, the orientation and position of the image 
in relation to the centre point is known. A -cut consists of 
pixels with value 1 (the interior of the vector) and 0 (the 
exterior of the vector). The boundary of the cone is determined 
by the boundaries between pixels with different values. Each 
instrument position provides a cone and the intersection of these 
two cones is the volume of space that agrees with both 
observations. 
 
A property of the cone intersection is that the direction of 
highest uncertainty is recognizable. Fig. 8 shows that the 
intersection area has a small lateral extent and a much larger 
longitudinal extent. 
 
A problem of the cone intersection is the complexity of the -
cuts. As shown in Fig. 5, the data are not clearly structured. The 
rays with high intensity and the concentric circles may lead to 
disconnected areas of -cuts and therefore to complex volumes. 
Methods to determine the boundaries need to be carefully 
programmed to avoid numerical problems. 
 
 

 
Figure 8. Concept of cone boundary intersection method; the 
position of the target is somewhere in the intersection area 

 

Another problem is the result itself. Surveyors typically work 
with random variables, which can be modelled as crisp values 
with an attached standard deviation. All computational 
algorithms have been optimized for this kind of input and it 
may require significant changes to include volumetric point 
information. Defuzzification of the resulting volume is not a 
good solution either. The volume is connected to a specific -
cut. There is no information in the model providing probability 
of specific values. Typically, the volume will get smaller if the 
value for  increases with the smallest volume for =1. 
However, only using =1 for the computation is dangerous 
because there may be situations where these cones do not 
overlap. Then lower numbers for  have to be used in order to 
obtain a result. Therefore, in larger evaluations different -cuts 
need to be used for the whole project since it may be difficult to 
assess the optimal -cut at the beginning. 
 
4.3 Grid Ray Intersection Method 

Another method represents the cones as a bundle of rays. In 
order to calculate ray the characterizing function is stored as an 
image. Thus each pixel belonging to a specific -cut could be 
used to define a ray from the projection centre of the theodolite 
through the centre of the pixel. When using different -cuts, 
each ray belongs to a specific -cut. It may even be argued, that 
it belongs to any -cut with a  lower than the value used to 
create the ray. If, for example, the pixel is part of the 0.5-cut but 
not part of the 0.75-cut, then it definitely is part of the 0.25-cut 
too, because the area of the 0.25-cut is at least as large of the 
area of the 0.5-cut and includes the 0.5-cut. 
 
Fig. 9 illustrates the concept of the grid ray intersection method. 
Each cone is represented by a bundle of rays. These bundles are 
intersected and the resulting intersection points form the area of 
intersection, or in 3D the volume of intersection. 
 

 
Figure 9. 2D-representation of the grid ray intersection method 

 
In 3D, the rays will not intersect because they will be skew 
lines. This is true for any two lines from different bundles but 
some lines will pass each other at a close distance such that they 
can count as intersecting. It is necessary to identify these lines. 
It is possible to compute a midpoint between two arbitrary rays 
(the point in the middle of the closest connection between the 
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two rays). The intersection volume can be generated by 
computing the midpoints for any two rays that ‘almost 
intersect’ (pass each other at a close distance). The criterion to 
determine that two rays are too far apart to be classified as 
‘almost intersecting’ is critical for the evaluation. A too large 
space will be filled with points if the criterion is too weak and 
an insufficient number of points or no points at all will be found 
if the criterion is too strong. The criterion needs to be based on 
the approximate distance between projection centre and a 
reasonable starting value could be the lateral distance between 
two neighbouring rays from one bundle. 
 
Since the basis for the bundle of rays is a regular raster, the 
following idea could be used: The lateral distance between two 
rays increases with the distance from the projection centre. The 
raster has an equally horizontal and vertical resolution and thus 
neighbouring points have a distance of d in the 4-
neighbourhood and a maximum of d·sqrt(2). Half this maximum 
distance could be used to identify nearby rays. The 
identification of one pair of nearby rays (a,b) does not preclude 
the existence of another ray c that is also nearby the ray a. Thus 
all possible combinations have to be checked. 
 
The result of the process is a set of points in space for each -
cut. Since a -cut includes all rays for -cuts with a higher value 
for , the set of intersection points with shrink with an 
increasing value of . The space filled by the set of points is the 
-cut of the intersection. 
 
The image size of the used CMOS camera is 1280x960 pixels. 
The -cut for =1contains approximately 160,000 pixel. Thus 
25 billion combinations have to be checked for the smallest 
cone only. Assuming orthogonal rays and characterizing 
functions with a square extent of 400x400 pixels, then each ray 
from bundle 1 is nearby 400 pixels from the other ray. As a 
result, the point cloud consists of 64 million points. The 
limiting factor is not the large number of intersections or points, 
it is the fact that this is only a simple example and the numbers 
are already quite high. 
 

5. CONCLUSIONS AND OPEN QUESTIONS 

During the experiment and analysis it became obvious that the 
analysis of fuzzy observation data is not simple. The quality of 
the simple solution is unacceptable. Therefore, other strategies 
need to be developed and tested. Two strategies have been 
presented: The first approach uses the boundaries of the -cuts 
for the two observations. The intersection of these boundaries 
then defines the -cut of the final result. The second approach 
represents the -cuts by the contained points instead of their 
boundary and models the volume of the cones as a bundle of 
rays thorough these points. 
 
Both solutions have advantages and disadvantages. The cone 
boundary intersection produces the boundary of the cone this 
provides a clear topological structure with an interior and an 
exterior for each -cut. However, computations may be 
demanding due to glancing intersections. The grid ray 
intersection, on the other hand, has a quite simple 
computational model. Apart from parallel rays there are not 
much computational pitfalls. The major problem in this 
approach is the huge number of computations and the size of 
the resulting data set. A possible solution could be the reduction 
of grid resolution. If each 10x10 square is represented by a ray 
then there are only 1,600 rays left in each bundle and only 2.56 

million intersections need to be checked. However, applying 
this kind of strategy needs further investigation. Especially the 
dependency between reduction of the resolution and the 
deterioration of the quality needs to be analysed. 
 
Another open question is the relation to the standard method to 
compute the result for the forward intersection. It is assumed 
that random error (noise) affects the observational data. The 
least squares approach provides best estimates for the noise and 
thus determines self-consistent measurement data, in this case 
two lines in 3D which intersect in a point. Is it possible to 
combine this approach with one of the strategies developed in 
this paper? Can we achieve better results if—in analogy to what 
happens to observation values in a least squares approach—we 
slightly move the cones? 
 
The intersection of two cones has the largest volume if the axes 
of symmetry of the two cones meet. Thus larger overlapping 
areas do mean higher consensus between the symmetry axes but 
this may not necessarily be a sign of better quality in general. 
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