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ABSTRACT: 

 

The applicability of Visible, Near-Infrared and Short Wave Infrared (VNIR/SWIR) hyperspectral imagery for soil property mapping 

decreases when surfaces are partially covered by vegetation. The objective of this research was to develop and evaluate a 

methodology based on the “double-extraction” technique, for clay content estimation over semi-vegetated surfaces using 

VNIR/SWIR hyperspectral airborne data. The “double-extraction” technique initially proposed by Ouerghemmi et al. (2011) consists 

of 1) an extraction of a soil reflectance spectrum  from semi-vegetated spectra using a Blind Source Separation technique, and 2) 

an extraction of clay content from the soil reflectance spectrum , using a multivariate regression method. In this paper, the 

Source Separation approach is Semi-Blind thanks to the integration of field knowledge in Source Separation model. And the 

multivariate regression method is a partial least squares regression (PLSR) model. This study employed VNIR/SWIR HyMap 

airborne data acquired in a French Mediterranean region over an area of 24 km².  

Our results showed that our methodology based on the “double-extraction” technique is accurate for clay content estimation when 

applied to pixels under a specific Cellulose Absorption Index threshold. Finally the clay content can be estimated over around 70% 

of the semi-vegetated pixels of our study area, which may offer an extension of soil properties mapping, at the moment restricted to 

bare soils.  

 

 

1. INTRODUCTION 

 

The use of hyperspectral imagery in Soil Science, have been 

widely developed over the last years, but still limited to the bare 

soil surface (e.g. Lagacherie et al., 2010). In particular, the soil 

properties estimation is inaccurate over vegetated surfaces. To 

overcome this limitation, a “double-extraction” of information 

from VNIR/SWIR hyperspectral imagery was proposed by 

Ouerghemmi et al. (2011) and consists of: 1) a first extraction of 

an estimated soil spectrum , using a blind source separation 

(BSS) technique from mixed VNIR/SWIR spectra , and 2) a 

second extraction of the soil property content applying classical 

chemometric methods on the estimated soil spectrum . In 

this study we adapted this “double-extraction” technique 

proposed by Ouerghemmi et al. (2011) in developing a Semi-

Blind source separation (SBSS) method using prior knowledge 

about our context (presence of soil and green vegetation). 

Moreover the source separation method used in this study is a 

Non-Negative Matrix Factorization (NMF) method based on a 

data positivity assumption (spectra and proportions) which is 

suitable to our case study. As in Ouerghemmi et al. (2011), the 

multivariate regression method used for the extraction of the 

soil property content is a partial least squares regression (PLSR) 

model. The soil property tested was the clay content, the 

VNIR/SWIR hyperspectral data were acquired by the HyMap 

sensor and the study area is mainly composed by vineyards 

fields.  

 

2. DATA 

 

2.1 Study area and HyMap airborne data 

 

The study area is located on the southern part of the La Peyne 

catchment (43°29′ N and 3°22′ E), 60 km west of Montpellier in 

France. The acreage of the study area is approximately 24 km² 

and the area is largely devoted to vineyards. A HyMap image 

was acquired over the study area on July 13, 2003, with a spatial 

resolution of 5 m (Figure 1). The HyMap airborne imaging 

spectrometer measures the reflected radiance in 126 

noncontiguous bands covering the 400–2500 nm spectral 

domain. Noisy and atmospheric absorption bands were removed 

and 114 spectral bands from 450 to 2468 nm were retained. The 

data and study area were described in details in Gomez et al., 

(2012). 

 

2.2 Field data 

 

In total, 135 soil samples were collected on the study area in 

2009. The soil samples were composed of five sub-samples that 

were collected within a 10 m wide square centered on the 

geographical position of a sampling plot. A subset of data 

including 95 of these soil samples (further denoted by 

CalibSet), were sampled in fields that were bare during the 

hyperspectral data acquisition (Figure 1). A second database 

(further denoted by TestSet) includes the remaining 40 samples, 

which were collected in fields that were partially covered by 

vineyard during the hyperspectral data acquisition (Figure 1). 

Clay content was determined using classical routine soil 

analysis. The clay content of CalibSet and TestSet varied 

respectively between 73 and 397 g/kg and between 111 and 348 

g/kg. Both sets followed a normal distribution.  

 

In addition, vineyard leaves were collected over the study area 

and were measured in the laboratory with an ASD FieldSpecpro 

spectroradiometer (350–2500 nm). These Lab spectra were 

averaged and the resulting vineyard spectrum was resampled to 

the 114 spectral of HyMap data.  

 

The pixels corresponding to the 40 semi-vegetated soil samples 

(TestSet) were characterized by a Normalized Difference 
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Vegetation Index (NDVI) and a Cellulose Absorption Index 

(CAI) respectively between 0.28 and 0.72 and between -236 and 

32, both following a normal distribution. 

 

 
Figure 1: HyMap hyperspectral image (in red the 95 soil 

samples, in green the 40 soil samples). 

 

 

 

3. METHODOLOGY 

 

The approach of “double-extraction” of information was tested 

on the 40 semi-vegetated sites corresponding to the TestSet 

database. For each semi-vegetated site, the methodology 

considered a grid of 3x3 pixels, supposed to be homogeneous in 

terms of vegetation type and clay content, and centered on the 

location of the field sample (Figure 2). 

 

 
Figure 2: Illustration of a grid of 3 x 3 pixels centered on a 

sampled semi-vegetated site. Green crosses are the central pixel 

for which clay content is known and a neighbour pixel. 

 

 

For each site, two spectra including the one of central pixel 

(Figure 2a) were used in input of the Semi-Blind source 

separation (SBSS) method to estimate two new spectra 

including an estimation of the soil spectrum (Figure 3a). After 

identification of the estimated soil spectrum among outputs of 

the SBSS method (Figure 3b), the clay content was predicted 

using a Partial Least Square Regression (PLSR) method (Figure 

3c). This process was repeated for the eight couples of each site 

(Figure 2a). So eight clay content predictions for each semi-

vegetated site were obtained and so averaged and attributed to 

the central pixel (Figure 3c). 

 

 
Figure 3: Procedure overview. 

 

3.1 Blind Source Separation approach 

 

The goal of the Blind Source Separation (BSS) technique is to 

recover the original signals from their mixtures. The term 

“blind” refers to the fact that we have no knowledge of how the 

sources are mixed or about the sources themselves. Considering 

a linear mixture, m observed signals xi are linear combinations 

of n signals sj  (with m≥ n), which can be written in matrix 

notation following: 

                        (1) 

where λ is the index of the spectral band, X(λ)=[x1(λ)...xm(λ)]T 

are the reflectance spectra of a mixture, S(λ)=[s1(λ)...sn(λ)]T are 

the reflectance spectra of the original components, A is an m x n 

mixing matrix and α(λ)=[α1(λ)... αm(λ)]T is the noise component. 

The aim of the BSS method is to solve (1) when S and A are 

unknown, where S=A-1X. The noise term α is neglected in order 

to consider a simple model. 

 

3.2 Semi-Blind Source Separation algorithm 

 

In this study the Lee & Seung’s multiplicative algorithm (Lee 

and Seung, 2001) was used to solve the BSS problem. This 

algorithm is a Non-Negative Matrix Factorization (NMF) 

method based on the assumption of the positivity of the data 

(spectra and proportions). This assumption is suitable to our 

case study and motivates our choice for the NMF based method. 

The goal of the NMF is to approximate 2 positives matrices A 

and S that best fit the mixing matrix X, so that X≈AS. The NMF 

was popularized since the multiplicative Lee & Seung algorithm 

which can estimate simultaneously S and A using a 

multiplicative scheme (Lee and Seung, 2001). 

 

The NMF algorithm is known to be sensitive to initial 

conditions Sinit and Ainit and gives non-unique solution (Cichocki 

et al., 2009). To overcome these limitations we have modified 

the random initial conditions, into a supervised one close to the 

one used in (Meganem et al., 2014). Thanks to this supervised 

initialization, the NMF method became a Semi-Blind Source 

Separation (SBSS) technique.  
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We considered the existence of 2 components in the mixtures 

(n=2), so the matrix Sinit will be initialized with 2 spectra, Sinit 

=[s1_init, s2_init]
T, where s1_init is a soil spectrum and s2_init is a 

vegetation one. Ainit is identified by a Non Negative Least 

Square method. The outputs of our SBSS method are 2 spectra 

1 and 2 corresponding to the components existing in the 

studied pixels. The stop criteria is supervised via the quadratic 

error . 

 

The identification of the soil spectrum among the estimated 1 

and 2 spectra was done by computing the coefficient of 

correlation  between the estimated spectrum  (j=1,2) and a 

reference soil spectrum  (Figure 3b). The estimated 

spectrum  with the higher  is identified as the estimated soil 

spectrum. 

 

3.3 Partial Least Squares Regression (PLSR) 

 

The PLSR method is used to establish relationship between the 

soil property content and the VNIR/SWIR spectra (Tenenhaus, 

1998). The PLSR reduces the number of variables, by 

projecting the X-variables (the VNIR/SWIR spectra) and Y-

variables (the soil property content) on latent structures. This 

approach seeks linear combinations of the predictors, that 

explain both response and predictor variation.  

 

A PLSR model was built using the 95 VNIR/SWIR soil spectra 

associated to their clay content corresponding to the CalibSet 

database. Prior to the quantitative statistical analysis, the 

reflectance was converted into a “pseudo absorbance” (log 

[1/reflectance]). Noise reduction was achieved through standard 

pre-treatments, including a Savitzky–Golay filter with second-

order polynomial smoothing and window widths of 30 nm 

(Savitzky and Golay, 1964) for noise removal and a standard 

normal variate correction (Barnes et al., 1993) for additive and 

multiplicative effect removal. Moreover an analysis was 

performed to detect the spectral outliers in the calibration 

dataset (Chiang et al., 2003; Pearson, 2002) using the principle 

of the Mahalanobis distance (Mark and Tunnell, 1985) and 

applied it to principal component analysis reduced data. The 

samples with a Mahalanobis distance greater than 3 were 

identified as outliers. A leave-one-out cross-validation 

procedure was adopted to verify the prediction capability of the 

PLSR model for the calibration set (Wold, 1978). The number 

of latent predictor variables was set to 6, determined using the 

Predicted Residual Sum of Squares (PRESS) statistic, taking 

care to avoid under- and over-fitting.  

 

This PLSR model has good performances with a Root Mean 

Square Error (RMSECV) of 44.5g/kg and a coefficient of 

determination of 0.62 (Gomez et al., 2012). This PLSR model 

was used to estimate the clay content from each estimated soil 

spectrum  (Figure 3.c). 

 

3.4 Performance criteria 

 

The SBSS performances for soil spectrum extraction were 

evaluated using the index  which is the coefficient of 

correlation between the estimated soil spectrum  and a 

reference soil spectrum . This reference soil spectrum  

belongs to the CalibSet database and is one of the most 

correlated with all the soil spectra of the database.  

 

The PLSR performances for clay content estimation were 

evaluated using the Root Mean Square Error of Prediction 

(RMSEP) of the Testset database. The expected RMSEP should 

be higher than RMSECV (see section 3.3) and should not 

exceed the standard deviation of the clay contents of the TestSet 

(denoted RMSEPMax) which is equal to 72.54 g/kg. The ratio of 

the performance to the deviation (RPD), which is the ratio 

between the standard deviation in the TestSet and the RMSEP, 

was used. RPD value has to be superior to 1.4 to consider the 

PLSR model performance as correct (Chang and Laird, 2001). 

 

4. RESULTS 

 

4.1 Preliminary results (without applying the Double-

Extraction) 

 

The prediction of clay content directly by the PLSR model over 

the 40 semi-vegetated sites was unsuccessful (RMSEP > 

RMSEPMax). The RMSEP and RPD were respectively of 71.27 

g/kg, and 1.03. So a clay content mapping cannot be done using 

only a PLSR model calibrated on bare soil spectra and applied 

to semi-vegetated spectra. 

 

4.2 Extraction of soil spectrum  by SBSS method 

 

To evaluate the accuracy of the estimated soil spectra obtained 

for the 40 test sites, we have calculated the mean coefficient of 

correlation  for each site. The soil spectra estimation 

was accurate, with a  between 0.66 and 0.99, and 

having a mean of 0.96. The accuracy of the estimated soil 

spectra is shown on figure 4 and we can notice that the 

estimated spectrum  is similar to the reference one . 

 

 
Figure 4: The reference soil spectrum  (in black points) and 

a soil spectrum  estimated by SBSS method (brown points) 

  

 

4.3 Estimation of clay content by PLSR, using soil spectrum 

 

 

The prediction of clay content by the PLSR model over the 40 

semi-vegetated sites, after the SBSS method was still 

unsuccessful (RMSEP > RMSEPMax). The RMSEP and RPD 

were respectively of 69.19 g/kg and 1.06 (Figure 5). Finally, the 

double extraction using the SBSS method leads to a slight 

increase in the performance of clay content estimation, 

compared to results obtained directly from the spectra X (see 

section 4.1). 
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The SBSS method combined with PLSR seems not efficient in 

clay estimation; however the scatter plot between the observed 

clay content and the predicted clay content shows some outliers 

that affect the global performance of clay prediction (Figure 5). 

The elimination of theses outliers could considerably enhance 

the performance of clay prediction. 

 

 
Figure 5: Predicted clay content versus observed clay content, 

using soil spectra . 

 

To filter these outliers we have studied the relation between the 

predicted clay values and two perturbation factors that are the 

green vegetation rate (measured with the NDVI), and the dry 

vegetation index (measured with CAI). These perturbation 

factors were calculated from the central pixel of each site. The 

CAI seemed more suitable against the NDVI (results not 

shown). Thus, in each grid of (3 x 3) pixels we have filtered the 

pixels with a CAI superior to -50, which correspond to the 

pixels having a high rate of dry vegetation (which represent 

28% of the semi-vegetated sites). The prediction of clay has 

now a moderate accuracy with RPD >1.4 and a RMSEP < 

RMSEPMax (Figure 6). 

 

4.4 Clay mapping over a HyMap Test image 

 

We applied the SBSS method and the PLSR model on a portion 

of the HyMap image (0.46 km x 0.67 km). Only the semi-

vegetated pixels with a CAI inferior to -50 were considered. 

The obtained map seems fluent, with a low variability in clay 

content inside the parcels, and a good identification of the 

parcels bound (Figure 7a). Moreover the spatial structure of 

semi-vegetated fields seems to be consistent with the 

neighboring bare soil fields (Figure 7b). 

 

 
Figure 6: Scatter plot between predicted clay content and 

observed clay content after outliers filtering. 

 

 

 
Figure 7: Clay mapping over HyMap test image, a) white pixels 

correspond to bare soil pixels, b) bare soil pixels are fulfilled 

using clay content estimated by the PLSR model [1]. Black 

areas correspond to filtered pixels (CAI > -50). 

 

5. DISCUSSION 

 

The results obtained show that it was not possible to accurately 

predict a soil property using only a classical multivariate model 

applied to mixed spectrum. This illustrates the crucial 

importance of developing appropriate methods for isolating the 

soil signal from the mixed surfaces to extend the application of 

imaging spectrometry.  

 

The use of a “double-extraction” technique which combines an 

NMF-SBSS algorithm to isolate the soil spectra and a PLSR 

model to predict the clay content over semi-vegetated surfaces, 

offered lower performances than those observed in the literature 

over bare soil surfaces (e.g., Gomez et al., 2012). An alternative 

to better taking into account non-linear and complex 

contributions in the mixtures and to improve prediction 

performances, could be the use of a non-linear BSS algorithm 

instead of a linear one; the linear-quadratic model developed by 

Meganem I. et al., (2014) could be tested in this context. 

 

This procedure allows acceptable prediction of clay content 

(RMSEP around 52 g/kg, Figure 6) for 72 % of the semi-

vegetated surfaces. The main limitation of the procedure 

occurred when the dry vegetation cover reach a given level 

(CAI > -50). As we used only two pixels in NMF-SBSS input, 

only two sources can be extracted. As we know that the 40 

studied semi-vegetated sites were covered by vineyard (green 

vegetation), one of the extracted source is a green vegetation 

spectra and the other source is the soil. So a third component 

(e.g. dry vegetation) cannot be extracted by the procedure. 

Improving the performance of the “double-extraction” of 

information would require an adaptation of this “double-

extraction” technique to the case of more than two components 

in mixed pixels. In particular, for pixels with CAI superior to -

50, the “double-extraction” technique could be tested with three 

pixels of the grid (including the central pixel, Figure 2a) in 

input. 

 

6. CONCLUSION 

 

The double extraction technique based on a Semi-Blind 

algorithm gives encouraging results, for soil spectrum extraction 

and clay prediction using a threshold based on dry vegetation 

index (CAI). In spite of a reduction of studied pixels (28% in 

our case), the performances of clay prediction is acceptable and 

an interesting clay content maps can be obtained. 

 

Further tests are planned to validate the predicted clay map over 

the entire study area, using variograms to study spatial 

structures of the predictions. The experiments presented in this 
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paper were the first step of a research which has to lead to a 

successful soil property mapping over all the mixed surfaces of 

this vineyard region covered by the hyperspectral image. 
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