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ABSTRACT:

In our study we classified grassland vegetation types of an alkali landscape (Eastern Hungary), using different image classification
methods for hyperspectral data. Our aim was to test the applicability of hyperspectral data in this complex system using various
image  classification  methods.  To  reach  the highest  classification  accuracy,  we  compared  the performance  of  traditional  image
classifiers, machine learning algorithm, feature extraction (MNF-transformation) and various sizes of training dataset.  Hyperspectral
images were acquired by an AISA EAGLE II hyperspectral sensor of 128 contiguous bands (400–1000 nm), a spectral sampling of 5
nm bandwidth and a ground pixel size of 1 m. We used twenty vegetation classes which were compiled based on the characteristic
dominant species, canopy height, and total vegetation cover. Image classification was applied to the original and MNF (minimum
noise fraction) transformed dataset using various training sample sizes between 10 and 30 pixels. In the case of the original bands,
both SVM and RF classifiers provided high accuracy for almost all classes irrespectively of the number of the training pixels. We
found that SVM and RF produced the best accuracy with the first nine MNF transformed bands. Our results suggest that in complex
open landscapes, application of SVM can be a feasible solution, as this method provides higher accuracies compared to RF and
MLC. SVM was not sensitive for the size of the training samples, which makes it an adequate tool for cases when the available
number of training pixels are limited for some classes.

1. INTRODUCTION

Hyperspectral  data  is  widely  applied  for  monitoring  of  the
environment (Thenkabail,  2011; Adam et al.,  2010). Airborne
hyperspectral  imagery  can  provide  multiple  narrow  and
contiguous  spectral  bands  of  less  than  10 nm  with  a  high
geometric  resolution  (0.5–1 m).  Hyperspectral  imagery  was
proven  to  be  a  suitable  method  for  a  detailed  vegetation
classification based on the dominant or subdominant genera or
species  (Huang  and  Asner,  2009;  Mirik  et  al.,  2013).  For
processing hyperspectral data it is important to reduce the high
dimensionality  and  inherent  multi-collinearity  of  datasets.
Several  advanced  feature  extraction  techniques  (e.g.,  MNF,
PCA) can be applied for this purpose (Plaza et al., 2009, Green
et al., 1988; Landgrebe, 2003).

Alkali habitats of the Pannonian Biogeographical region are one
of  the  most  extended  semi-natural  open  landscapes  of  the
European  Union.  Given  their  complexity,  open  alkali
landscapes  provide  an  excellent  possibility  for  testing  the
potential of remote sensing in mapping extended areas with a
high spatial complexity (Alexander et al., 2015; Zlinszky et al.,
2015).  Alkali  landscapes  are  characterized  by  a  fine-scale
mosaic of different vegetation types. The most typical ones are
open  alkali  grassland  vegetation,  dry  alkali  grasslands,  tall-
grass meadows, and sedge vegetation together with alkali and
non-alkali  marshes (Deák et al., 2014a, 2015; Kelemen et al.,
2013, 2015). Alkali landscapes are characterised by a fine-scale
mosaic of various vegetation types with similar characteristics

(biomass,  vegetation  structure  and  environmental  conditions;
Deák et al., 2014b, Valkó et al., 2014), thus their classification
using remote sensing data is often challenging. Our aim was to
test  the  applicability  of  hyperspectral  data  in  this  complex
system using various image classification methods. To reach the
highest classification accuracy,  we compared the performance
of  traditional  image  classifiers,  machine  learning  algorithm,
feature  extraction  (MNF-transformation)  and  various  sizes  of
training dataset.

2. METHODOLOGY

2.1 Study area

Our study area is located in Pentezug-puszta (N 47°34' E 21°
6').  Pentezug  -  which  is  an  integral  part  of  the  Hortobágy
National Park (East-Hungary) – has the area of 23.49 hectares
(Figure 1).  It  harbours  a  diverse  landscape,  which  represents
most of the typical alkali vegetation types: alkali steppes, open
alkali grasslands, alkali meadows and marshes. In our study we
excluded the roads, buildings, and woody vegetation.
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2.2 Airborne and Field Data Collection

For collecting hyperspectral  data we used an Aisa EAGLE II
type  hyperspectral  sensor  with  OxTS  RT  3003  GPS/INS
system. The sensor provided images with 128 contiguous bands
(400-1000 nm), a spectral sampling of 5 nm bandwidth, and a
ground pixel size of 1 m. The flight took place in good weather
conditions from 09:11 to 09:53 GMT, on 7th July 2013. 

Figure 1. Overview map of the study site. We indicated the
positions of field measurement plots in the RGB mosaic of the

hyperspectral image with red cross marks

Reference  data  was  collected  from  all  characteristic  and
representative vegetation types of the study site in a one-week
interval after the flight. Given the fact that in alkali landscapes
both  the  total  area,  distribution  and  patch  size  of  different
vegetation types generally show a high variability,  before the
field campaign, we carried out a preliminary survey. During the
field  survey  we  enlisted  the  typical  vegetation  types  and
estimated their average patch size and proportion in the study
area.  During  the  field  survey  we  surveyed  98  homogenous
vegetation patches using a differential GPS. For the calculations
based  on  their  relative  cover  we  categorised  the  species  as
dominant (>50%) and subdominant (10-50%).

2.3 Vegetation Classes

Our aim was to classify the herbaceous vegetation (grasslands
and wetlands) as these vegetation types are the best represented
(~ 99.5% of the total area) in our study site. Furthermore these
vegetation  types  have  the  highest  importance  for  nature
conservation and site managers in our study region. We built up
twenty  vegetation  classes  (Table 1)  for  which  we  used  the
dominant  species,  the canopy height  and the total  vegetation
cover of different vegetation types. When it was necessary we
used  the  subdominant  species  as  well  for  creating  distinct
classes.

Abbreviation Plant association

CYN Cynodonti-Poëtum angustifoliae

FAC Achilleo-Festucetum pseudovinae

FAR Artemisio-Festucetum pseudovinae

CAM Camphorosmetum annuae

PHO Pholiuro-Plantaginetum

ART secondary alkali open grasslands

ELY Agrostio-Alopecuretum with Elymus

ALO Agrostio-Alopecuretum

BEC Agrostio-Beckmannietum

ACI weedy Agrostio-Alopecuretum

CAR Carex spp.

GLY Glycerietum maximae

TYP Typhaetum angustifoliae

SAL Salvinio-Spirodeletum

BOL Bolboschoenetum maritimae

SCH Schoenoplectum tabernaemontani

PHR Phragmitetum communis

FMM mown Agrostio-Alopecuretum

ARA* fallow

MUD muddy surface

Table 1. Abbreviations of vegetation classes and the name of
the studied plant association

For testing the effect of pixel numbers on image classification
we selected reduced training datasets of 10, 15, 20, 25 and 30
pixels  from each vegetation  class.  We used four  categories  -
corresponding to the available number of field samples (pixels)
-  for  calculating  validation  datasets  (Burai  et  al.  2015).  We
aimed to have a ratio of 50-50% of field samples and validation
dataset. Pixels were selected randomly from the field samples.
The same validation dataset was used for all analyses.

2.4 Image Classification

ENVI/IDL 5.0 (Exelis,  Inc.,  Boulder,  CO, USA) and EnMap
Box  (Rabe  et  al.,  2013)  softwares  were  used  to  classify
hyperspectral  images.  We  tested  the  efficiency  of  three
supervised classification methods (MLC, RF and SVM) which
are frequently used for vegetation mapping (Mirik et al. 2013,
Huang & Asner, 2009, Lawrence et al., 2006).

We did not specified the thresholds for the probability in case
of the MLC classification. In case of the RF classification 100
trees  were  computed  using  Gini  coefficient  for  the  node
impurity function; the minimum number of samples in a node
was 1. SVM classification was performed with Gaussian Radial
Basis Function kernel. SVM parameters (C = 100 and γ = 0.11)
were selected by fivefold cross validation.
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3. RESULTS

3.1 Image Classification Using Original Spectral Bands

We used SVM and RF with the original dataset for supervised
classification. We did not apply MLC on original bands, as it
would  need  at  least  n+1  training  data  per  class.  Image
classification  was  repeated  five  times  with  random sampling
methods. Given the limited availability of training pixels (from
the classes poorly represented in the field) the maximum size of
randomly  selected  training  pixels  was  30.  The  overall
accuracies  provided  by  SVM  and  RF  classifiers  increased
slightly with increasing number of training pixels (Table 2 and
Figure  2).  We  found  that  the  standard  errors  of  overall
accuracies were similarly low irrespectively from the number of
training pixels.

Classes
Producer’s Accuracy (%)1 Producer’s Accuracy (%)2

SVM RF SVM RF

CYN 28.00 22.00 38.00 40.00
FAC 50.00 68.00 58.00 70.00

FAR 92.50 70.00 87.50 67.50

CAM 80.00 60.00 72.00 58.00

PHO 80.00 20.00 26.00 30.00

ART 16.67 56.67 63.33 66.67

ELY 78.00 79.00 79.00 81.00

ALO 58.00 63.00 89.00 79.00

BEC 89.00 73.00 63.00 56.00

ACI 57.50 52.50 57.50 66.67

CAR 65.00 97.00 78.00 100.00

GLY 70.00 60.00 80.00 84.00

TYP 40.00 0.00 13.33 0.00

SAL 100.00 94.29 100.00 93.33

BOL 2.00 70.00 62.00 36.00

SCH 77.50 42.50 52.50 55.00

PHR 78.00 74.00 74.00 100.00

FMM 100.00 100.00 100.00 100.00

ARA 96.00 94.00 98.00 98.00

MUD 100.00 100.00 100.00 100.00

OA (%) 70.95 70.00 82.41 74.66

Table 2. Classification accuracies in respect to the SVM and RF
classifiers using original bands (128) and random training

samples, (1) 10 and (2) 30 pixels.

Both classifiers provided their best performance using original
bands  with  30  training  pixels  (SVM: 72.84%;  RF:  72.89%).
SVM  classifier  using  30  training  pixels  provided  high
accuracies for several classes:  CYN, FAR, ELY, ALO, BEC,
CAR, GLY, SAL, FMM, ARA and MUD (Figure 2).

Figure 2. Overall accuracies of RF and the SVM classifiers.
Original bands and different number of random training pixels

(N = 10; 15; 20; 25 or 30) were used from each vegetation class
(mean ± SD).

3.2 Image Classification Using MNF-Transformed Bands

Application of the MNF 1–9 transformed bands provided the
highest  overall  accuracies  for  both  SVM  and  RF  classifiers
(SVM: 82.06%; RF: 79.14%); additional features over the first
9 MNF bands did not significantly improve the accuracy.  We
found that when using MLC additional  features  over  the 1-5
MNF bands could not improve the accuracy. Even though each
classifier provided considerably high overall accuracies with 30
random  training  pixels  (SVM:  82.06%;  RF:  79.14%;  MLC:
80.78%) (Figure 3 and Figure 4), we found that only the SVM
and RF classifiers  had a  good performance  even  with  a  low
number of training pixels. SVM provided an overall accuracy of
79.57%  and  RF  provided  76.55%  when  using  10  random
training  pixels,  while  the  accuracy  of  the  MLC  classifier
decreased  considerably  (Table  3).  MLC  classifier  using  less
than 20 training pixels  provided low classification accuracies
(with high standard error).

Figure 3. Overall accuracies of SVM, RF and MLC classifiers
using nine MNF-transformed bands and different number of
random training pixels (N = 10; 15; 20; 25 or 30) from each

vegetation class.
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Figure 4. Vegetation map (A) of the study site produced using
SVM classification with 30 random training pixels per class.

Classes
Producer’s Accuracy (%)1 Producer’s Accuracy (%)2

SVM RF MLC SVM RF MLC

CYN 84.00 48.00 26.00 82.00 52.00 22.00

FAC 50.00 52.00 50.00 56.00 70.00 70.00

FAR 95.00 70.00 42.50 90.00 37.50 52.50

CAM 54.00 56.00 62.00 54.00 52.00 48.00

PHO 26.00 30.00 42.00 24.00 10.00 36.00

ART 63.33 93.33 80.00 56.67 83.33 60.00

ELY 95.00 91.00 93.00 94.00 92.00 3.00

ALO 99.00 96.00 100.00 95.00 93.00 86.00

BEC 99.00 91.00 87.00 99.00 100.00 94.00

ACI 57.50 62.50 80.00 57.50 65.00 30.00

CAR 97.00 94.00 100.00 89.00 97.00 81.00

GLY 100.00 98.00 98.00 90.00 94.00 30.00

TYP 8.00 4.00 28.00 24.00 16.00 0.00

SAL 100.00 100.00 100.00 100.00 100.00 0.00

BOL 42.00 46.00 66.00 44.00 40.00 26.00

SCH 72.50 80.00 87.50 47.50 42.50 60.00

PHR 68.00 64.00 80.00 70.00 58.00 44.00

FMM 100.00 100.00 100.00 100.00 100.00 85.00

ARA 100.00 100.00 90.00 100.00 92.00 100.00

MUD 100.00 100.00 100.00 100.00 100.00 0.00
OA
(%)

82.06 79.14 80.78 79.57 76.55 52.56

Table 3.  Producer’s accuracy (%) of the classes using SVM,
MLC and RF classifiers with 9 MNF-transformed bands and 30
(1) and 10 (2) random training pixels.

We  found  that  ELY,  ALO,  BEC,  CAR,  GLY,  SAL,  FMM,
ARA and MUD classes were classified with a high accuracy by
all classifiers, when using 30 random training pixels. We found
that  the  tested  classifiers  provided  considerably  different
accuracies for the CYN, FAR, ACI and TYP classes.

4. DISCUSSION

We tested  the  applicability  of  SVM and  RF  classifiers  with
original  bands  on  reduced  training  samples  between  10-30
pixels.  Even  though  both SVM and RF provided  a  similarly
high  accuracy  for  most  classes,  we  detected  considerable
difference  between their  performance  when using 30 random
training pixels. In this case the SVM had a considerably higher
overall  performance (82.41%) compared to the RF (74.66%).
However  classification with original  bands resulted in a high
Producer's  accuracy  for  most  classes,  in  certain  cases  (PHO,
TYP and BOL) we detected low accuracies. In these cases most
of  the  pixels  were  assigned  to  another  class  with  similar
attributes (ratio of open soil surface or the amount of biomass).
In order to select the optimal number of transformed features,
we used SVM classification on 2-15 MNF-transformed bands.
We found that  the SVM algorithm with  the first  nine MNF-
transformed bands produced the best accuracy. Further features
did  not  increase  the  classification  accuracy  considerably.
Classification  accuracies  of  SVM and RF were  considerably
higher compared to the MLC classification when using smaller
training  datasets  due  to  the  instability  of  the  estimated
covariance matrix of MLC. Based on our results, in complex
landscapes application of SVM can be a feasible solution, as it
provided the highest accuracies compared to the RF and MLC.
SVM was  not  sensitive  for  the  size  of  the  training  samples,
which makes it an adequate tool for cases when the available
number of training pixels are limited for some classes.
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