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ABSTRACT:

In this work, we jointly process high spectral and high geometric resolution images and exploit their synergies to (a) generate a fused
image of high spectral and geometric resolution; and (b) improve (linear) spectral unmixing of hyperspectral endmembers at subpixel
level w.r.t. the pixel size of the hyperspectral image. We assume that the two images are radiometrically corrected and geometrically
co-registered. The scientific contributions of this work are (a) a simultaneous approach to image fusion and hyperspectral unmixing,
(b) enforcing several physically plausible constraints during unmixing that are all well-known, but typically not used in combination,
and (c) the use of efficient, state-of-the-art mathematical optimization tools to implement the processing. The results of our joint
fusion and unmixing has the potential to enable more accurate and detailed semantic interpretation of objects and their properties
in hyperspectral and multispectral images, with applications in environmental mapping, monitoring and change detection. In our
experiments, the proposed method always improves the fusion compared to competing methods, reducing RMSE between 4% and
53%.

1. INTRODUCTION

The aim of this paper is the integrated processing of (a) high spec-
tral resolution images (HSRI) with low geometric resolution, and
(b) high geometric resolution images (HGRI) with low spectral
resolution. From a pair of one HSRI and one HGRI, the in-
tegrated processing (a) generates a fused image with both high
spectral and geometric resolution (Figure 1). This can be thought
of as a sort of hyperspectral pan-sharpening, improved through
the use of spectral unmixing constraints; and (b) a better spectral
unmixing of the HSRI, through integration of geometric informa-
tion from the HGRI.

Hyperspectral imaging, often also called imaging spectroscopy,
delivers images with many (up to several hundreds) contiguous
spectral bands of narrow bandwidth, typically in the order of a
few nm. These bands may cover different spectral ranges, e.g.
0.4-2.5µm, 0.4-1.0µm or 0.4-0.7µm. The geometric resolution
(or ground sampling distance GSD) of HSRI is low, on the one
hand due to physical constraints (i.e. with a narrow bandwidth the
signal is weak, so GSD has to be increased to yield an acceptable
SNR), and on the other hand due to the possible constraints of the
platform (satellites) for storing and/or transmitting a large amount
of data, making it necessary to sacrifice geometric resolution in
favour of spectral resolution. The HGRI are typically multispec-
tral images with often only 3 to 4 bands in the RGB and NIR
bands, with a wide bandwidth of several tens of nm. Theoreti-
cally, HGRI could also be panchromatic images, although we cur-
rently do not handle this case. HSRI are increasingly available,
especially from airborne and satellite platforms, but lately also
UAVs and terrestrial photography (for a list of some sensors see
e.g. Varshney and Arora, 2004). HGRI are widely acquired from
all kind of platforms. These two types of images are complemen-
tary to some degree, but have rarely been processed jointly. Merg-
ing them into a single, enhanced image product is, especially in
the computer vision literature, sometimes termed “hyperspectral
image fusion” or “hyperspectral super-resolution”. The images
can be acquired (quasi) simultaneously from the same platform
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Figure 1. Hyperspectral images have high spectral resolution but
low geometric resolution, whereas the opposite is true for multi-
spectral images. In this paper, we aim at fusing the two types of
imagery.

(e.g. sensors Hyperion and ALI on the EO-1 satellite), or with
a time difference. The latter case is more frequent – HSRI and
HGRI sensors are rarely used simultaneously – but also more
difficult, because multitemporal differences (e.g. different illumi-
nation, atmospheric conditions, scene changes) introduce errors.
We currently assume that the images have already been radiomet-
rically corrected, that the bands of each image and the two images
are geometrically accurately co-registered, and that a dimension-
ality reduction of the hyperspectral bands has been performed, if
needed.

The proposed integrated processing shall serve as basis for more
accurate and detailed semantic information extraction. HSRI can
distinguish finer spectral differences among objects. Thus, not
only more objects can be localized and classified, e.g. for land-
cover mapping, but also biophysical/biochemical properties of
objects can be better estimated (for a list of some applications see
e.g. Varshney and Arora, 2004). Since HSRI have a large GSD,
mixed pixels occur more often, especially in settlement areas.
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The task of unmixing is to determine for each pixel the “endmem-
bers” (so called “pure” material spectra) and the proportional
contribution of each endmember within the pixel (called “frac-
tional abundance”, or simply “abundance”). The abundances an-
dendmembers are subject to several physical constraints, like that
the abundances for all endmembers in a pixel must be non-negative
and sum to 1, while the number of endmembers present within
each pixel, is rather low. To the best of our knowledge, though,
there is not yet a fusion method which simultaneously uses all
available constraints.

Regarding unmixing, there are two main classes of models, the
linear mixing model (LMM) and different nonlinear ones (see e.g.
Keshava and Mustard, 2002). In the first case, one assumes only
direct reflections, and abundances represent areas of endmembers
within a pixel. In the non-linear case, multiple reflections are
taken into account and multiple endmembers can be overlayed in
the radiometric signature of a single surface location (see Heylen
et al., 2014, for a nonlinear unmixing review). Most research
uses the simpler LMM, which we also do here. The reason to in-
clude HGRI in the unmixing lies in the higher geometric resolu-
tion. Geometric information, e.g. homogeneous segments, edges
and texture boundaries at a resolution higher than the GSD of the
HSRI can help to achieve a more accurate unmixing, and also
to spatially localize abundances: rather than only estimating the
contribution (%) of one endmember within a pixel, one can de-
termine the corresponding regions (i.e. the pixels at the higher
HGRI resoution).

This work makes the following contributions: At the conceptual
level we process HSRI and HGRI together to simultaneously per-
form image fusion and spectral unmixing. This coupled estima-
tion lets the two processes support each other and leads to bet-
ter results. At the level of modelling, one needs to adequately
couple the two processes, and we do this by imposing multiple
physically motivated constraints on the endmembers and abun-
dances in both input images. Thus, we treat LMM as a cou-
pled, constrained matrix factorization of the two input images
into endmembers and their abundances. On the technical level,
we employ efficient state-of-the-art optimization algorithms to
tackle the resulting constrained least-squares problem (Bolte et
al., 2014, Condat, 2014). Experimental results on several dif-
ferent image pairs show a consistent improvement compared to
several other fusion methods.

2. RELATED WORK

Here, due to lack of space we focus on research on hyperspectral
image processing. In recent years, hyperspectral imaging is ad-
vancing rapidly (Plaza et al., 2009, Ben-Dor et al., 2013). Both
geometric and spectral resolution have improved, which opens
up new applications in different fields, including geology and
prospecting, agriculture, ecosystems, earth sciences, etc. The
fine spectral resolution allows for fine material characterization
within one pixel, while the low geometric resolution is a limiting
factor. According to Bioucas-Dias et al. (2013) hyperspectral re-
mote sensing data analysis can be grouped into five main areas
of activity: hyperspectral unmixing, data fusion, classification,
target detection and estimation of land physical parameters. The
first two parts are most relevant for this research. The case of
the LMM (for a recent review see Bioucas-Dias et al., 2012) is
the best studied one, and sufficient for many purposes. To solve
it, the first step is to identify the number of endmembers as well
as their spectra. The so-called endmember extraction algorithms
can be categorized as follows.

Geometrical approaches exploit the fact that in a linear mixture
the observed spectral responses form a simplex. Among them,

pure pixel algorithms identify a set of “pure” pixels in the data
and assume that these are the vertices of the simplex. Well-known
examples include vertex component analysis (VCA) (Nascimento
and Bioucas Dias, 2005), AVMAX and SVMAX (Chan et al.,
2011). Minimum volume algorithms on the other hand do not as-
sume that pure pixels exist, but rather that some data points exist
on the facets of a simplex. Examples include SISAL (Bioucas-
Dias, 2009), MVC-NMF (Miao and Qi, 2007) and the sparsity-
promoting SPICE (Zare and Gader, 2007). Statistical approaches
are not limited to the surface of the simplex (e.g. DECA, Nasci-
mento and Bioucas-Dias, 2012), and can deal better with highly
mixed scenarios, at the cost of increased complexity. Finally
(sparse) regression approaches formulate unmixing as a sparse
linear regression problem, assuming that the “pure” spectral sig-
natures are given in advance. With this assumption, the observa-
tions are mixtures of a subset of given signatures available in a
“spectral library”.

The inversion step consists of solving for the fractional abun-
dances under additional constraints such as non-negativity and
sum-to-one. This can be done with direct least squares estima-
tion (Heinz and Chang, 2001) or basis pursuit, including variants
regularized with total variation (Iordache et al., 2012).

Hyperspectral data fusion denotes the problem of combining a
HSRI with another image of higher geometric resolution, usually
a multispectral one. Most methods rely on some form of matrix
factorization. Yokoya et al. (2012) first extract endmembers with
standard VCA and then apply a Non-negative Matrix Factoriza-
tion (NMF) to jointly estimate the abundances for both a HSRI
and a HGRI in an iterative manner. Akhtar et al. (2014) also ex-
tract reflectance spectra to form a spectral basis in advance, and
with the basis fixed use a non-negative OMP (Orthogonal Match-
ing Pursuit) to learn a sparse coding for the image. A related
approach (Kawakami et al., 2011) estimates the endmembers by
sparse dictionary learning and further enforces the multispectral
abundances to be sparse. However, results may not be physically
plausible, since non-negativity is not considered. Huang et al.
(2014) learn the spectral basis with SVD (Singular Value Decom-
position) and solve for the high spectral resolution abundances
via OMP. Wycoff et al. (2013) introduce a non-negative sparsity-
promoting framework, which is solved with the ADMM (Alter-
nating Direction Method of Multipliers) solver. Simoes et al.
(2015) formulated a convex subspace-based regularization prob-
lem, which can also be solved with ADMM, and estimate also the
spectral response and spatial blur from the data. However, they
used a fixed subspace for the spectral vectors, not considering any
physical interpretation. Bayesian approaches (Hardie et al., 2004,
Wei et al., 2014) additionally impose priors on the distribution of
image intensities and perform Maximum A Posteriori (MAP) in-
ference. Kasetkasem et al. (2005) also add a Markov Random
Field (MRF) prior to model spatial correlations. It has also been
suggested to learn a prior for the local structure of the upsampled
images from offline training data (Gu et al., 2008). Such blind
deblurring will however work at most for moderate upsampling.

3. PROBLEM FORMULATION

The goal of fusion is to combine information coming from a hy-
perspectral image (HSRI) H̄ ∈ Rw×h×B and a multispectral im-
age (HGRI) M̄ ∈ RW×H×b. The HSRI has high spectral reso-
lution, with B spectral bands, but low geometric resolution with
w, h, image width and height respectively. The HGRI has high
geometric resolution, with W , H , image width and height re-
spectively, but a low spectral resolution b. We want to estimate
a fused image Z̄ ∈ RW×H×B that has both high geometric and
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high spectral resolution. For this fused image we expect to have
the spectral resolution of the HSRI (a lot larger than the HGRI,
B � b) and the geometric resolution of the HGRI (a lot larger
than the HSRI, W � w and H � h).

To simplify the notation, we treat each image (“data cube”) as a
matrix, with each row holding all pixels of an image in a certain
spectral band, i.e. Nh = wh and Nm = WH pixels per row,
while each matrix column shows all spectral values for a given
pixel. Accordingly, the images are written Z ∈ RB×Nm , H ∈
RB×Nh and M ∈ Rb×Nm .

Following the LMM (Keshava and Mustard, 2002, Bioucas-Dias
et al., 2012), mixing accurs additively within each pixel and the
spectral response z ∈ RB of a given pixel of Z is approximated
as

z =

p∑
j=1

ejaj (1)

where ej ∈ RB denotes the spectral measurement (e.g. reflectance)
of the j ∈ {1, . . . , p} endmember, aj denotes the fractional
abundance of the respective endmember j, and p is the number of
endmembers used to explain this pixel. Eq. (1) can be rewritten
in matrix form:

Z = EA (2)

where E ≡ [e1, e2, . . . , ep], E ∈ RB×p, A ≡ [a1,a2, . . . ,aNm ],
A ∈ Rp×Nm and ai ∈ Rp are the fractional abundances for ev-
ery pixel i = {1, 2, . . . , Nm}. By using this expression, we are
able to represent the image Z in a basis spanned by the endmem-
bers, with the abundances as coefficients. Given that p < B, we
are able to describe Z in a lower dimensional space, thus achiev-
ing a dimensionality reduction. The assumption that p < B and
consequently that the data “live” in a lower dimensional space
holds in most the hyperspectral images and thus rank{Z} ≤ p.

3.1 Constraints

The basic idea of the proposed fusion and unmixing is to use the
fact that in (1) the endmembers and abundances have a physical
meaning and they can retain this meaning only under the follow-
ing constraints:

aij ≥0 ∀ i, j (non-negative abundance)

1>A = 1> (abundances sum to 1) (3)
0≤eij≤1 ∀ i, j (non-negative, bounded reflectance)

with eij and aij the elements of E, respectively A. 1 denotes a
vector of 1’s compatible with the dimensions of A.

The first two constraints restrict the solution to a simplex and
promote sparsity. The third constraint bounds the endmembers
from above and implies that a material cannot reflect more than
the incident radiation. Even if the image values do not represent
reflectance, we can rescale the values in the range [0 . . . 1], as-
suming that there are some materials in the scene that are higly
reflective in a part of the spectrum.

The low geometric resolution HSRI can be modelled as a geo-
metrically downsampled version of Z:

H ≈ ZS = EAS = EÃ , (4)

where S ∈ RNm×Nh is the downsampling operator that de-
scribes the spatial response of the hyperspectral sensor, and Ã ≡
AS are the abundances at the lower resolution. S can be approx-
imated by taking the (weighted) average values of the multispec-
tral image corresponding to one HSRI pixel.

Likewise, the low spectral resolution HGRI can be modelled as a
spectral downsampling of Z

M ≈ RZ = REA = ẼA , (5)

where R ∈ Rb×B is the spectral response function of the multi-
spectral sensor and each row contains the responses of each mul-
tispectral band. Ẽ ≡ RE are the spectrally transformed (down-
sampled) endmembers. For this work, we assume that S and R
are perfectly known.

4. PROPOSED SOLUTION

The fusion is solved if Z has been found, which is the same as
estimating E and A. Actually, by solving for E and A sepa-
rately we are solving first the spectral unmixing and then using
the result to generate the fused image Z. By taking into account
the constraints (3), we formulate the following constrained least-
squares problem:

argmin
E,A

‖H−EAS‖2F + ‖M−REA‖2F (6a)

subject to 0 ≤ eij ≤ 1, ∀ i, j (6b)
aij ≥ 0, ∀ i, j (6c)

1>A = 1> (6d)

with ‖ · ‖F denoting the Frobenius norm. The non-negativity
and sum-to-one constraints (6c, 6d) geometrically mean that the
abundances are forced to lie on the surface of a simplex whose
vertices are the endmembers. This property at the same time acts
as a prior sparsity term, which promotes that in each pixel only a
limited number of endmembers should be present.

Solving (6a) for E and A is rather tricky and suffers from the
following issues. The first term is ill-posed with respect to A,
because the downsampling operator S acts on the spatial domain
and any update coming to A from this term will suffer from the
low geometric resolution of the HSRI. In much the same way, the
second term is ill-posed with respect to E, because the HGRI has
broad spectral responses R and only coarse information about
the material spectra can be acquired. Consequently, we propose
to split (6a) into two subproblems and solve them by alternat-
ing between the (geometrically) low-resolution term for H and
the high-resolution term for M. This is somewhat similar to
Yokoya et al. (2012), although they omit constraints other than
non-negativity (but do a full matrix factorization in each step
rather than updating only endmembers or the abundances).

Solving the first term of (6a) subject to the constraints on E will
be referred to as the low-resolution step:

argmin
E
‖H−EÃ‖2F

subject to 0 ≤ eij ≤ 1, ∀ i, j .
(7)

Here, the endmembers E are updated based on the low-resolution
abundances Ã, which are kept fixed. The minimisation of the sec-
ond term of (6a) under the constraints on A is the high-resolution
step:

argmin
A
‖M− ẼA‖2F

subject to aij > 0, ∀ i, j

1>A = 1>

(8)

The high-resolution abundances A are updated and the spectrally
downsampled endmembers Ẽ acquired from the low-resolution
step are kept fixed.
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Algorithm 1 Solution of minimization problem (6a).

Require: H,M,S,R
Initialize E(0) with SISAL and Ã(0) with SUnSAL
Initialize A(0) by upsampling Ã(0)

k ← 0
while not converged do
k ← k + 1
// low-resolution step:
Ã← A(k−1)S ; Estimate E(k) with (9a, 9b)
// high-resolution step:
Ẽ← RE(k) ; Estimate A(k) with (10a, 10b)

end while
return Z = E(k)A(k)

4.1 Optimisation scheme

Problems (7, 8) are both constrained least-squares and we alter-
nate between the two. We propose to use a projected gradient
method to solve both, inspired by the PALM (Proximal Alternat-
ing Linearised Minimization) algorithm (Bolte et al., 2014). For
(7) the following two steps are iterated until convergence for a
number of iterations q = 1, 2, ...:

Uq = Eq−1 − 1

c
(Eq−1Ã−H)Ã

>
(9a)

Eq = proxE(U
q) (9b)

with c = γ1‖ÃÃ
>‖F a non-zero constant, and proxE a proximal

operator that projects onto the constraints of (7). The proximal
operator simply truncates the entries of U to 0 from below and to
1 from above. Parameter γ1 is explained below.

Similarly, (8) is minimised by iterating the following steps until
convergence:

Vq = Aq−1 − 1

d
Ẽ>(ẼAq−1 −M) (10a)

Aq = proxA(V
q) (10b)

with d = γ2‖ẼẼ
>‖F again a non-zero constant and proxA a

proximal operator that projects onto the constraints of (8). For
this simplex projection, a recent, computationally efficient algo-
rithm is available (Condat, 2014). We set γ1 = γ2 = 1.01 for
the experiments. These parameters only affect the speed of con-
vergence. An overview over the whole optimisation procedure is
given in Algorithm 1.

The problem described in (6a) is highly non-convex and the local
optimisation depends a lot on the initial values. To acquire good
initial values for the endmembers we use SISAL (Bioucas-Dias,
2009). SISAL is based on the principle that the simplex defined
by the endmembers must have minimum volume. It uses a se-
quence of augmented Lagrangian optimizations in a robust way
to return the endmembers. Once the inital endmembers E(0) are
defined, we then use SUnSAL (Bioucas-Dias and Nascimento,
2008) to get initial abundances. SUnSAL solves a least-squares
problem for Ã(0) via ADMM and can incorporate many con-
straints, but we only use the constraints (6c, 6d). Finally, we
initialize the high geometric resolution abundances A(0), by up-
sampling them with the pseudo-inverse of the downsampling op-
erator, A(0) = Ã(0)(S>S)−1S>. We observe that strict upsam-
pling produces to blocking artefacts, so we apply a low-pass filter
to A(0).

5. EXPERIMENTS

5.1 Datasets

Acquiring HSRI and HGRI simultaneously is not yet a standard
procedure, and even if such data were available extensive ground
truth would be needed to be able to evaluate the fusion method.
Consequently, in this study we make use of semi-synthetic data.
That means that as input we have only one real hyperspectral im-
age (which we call the “ground truth”), from which we generate a
HSRI and a HGRI by geometric, respectively spectral downsam-
pling. These HSRI and HGRI are synthetic, but since they are
based on a true HSRI and realistic spectral response functions,
we call them semi-synthetic data.

We use in total four publically available hyperspectral images to
validate our methodology. First, two well-known images, Cuprite
(in Figure 1) and Indian Pines1, were selected as ground truth.
These were acquired with AVIRIS, a sensor of NASA that deliv-
ers images with 224 contiguous spectral bands in the 0.4-2.5µm
range (Varshney and Arora, 2004). After removing the water ab-
sorption bands, the images had 195 and 199 spectral bands, re-
spectively. The Cuprite image has dimensions 512 × 608 pixels
and Indian Pines 145×145 pixels. The respective GSDs are 18 m
and 10 m.

Additionally, we use another standard hyperspectral image, Pavia
University2, which was acquired with ROSIS, a sensor of DLR 3

that has 115 spectral bands spanning the 0.4-0.9µm range. The
image has dimentions 610 × 340 pixels and 103 spectral bands
are available, with an approximate GSD of 1 m.

Finally, we choose to use an image from APEX (Schaepman et
al., 2015), developed by a Swiss-Belgian consortium on behalf
of ESA. APEX covers the spectral range 0.4-2.5µm. The im-
age has a GSD of about 2 m and was acquired in 2011 over
Baden, Switzerland (true color composite in Figure 4), as an
Open Science Dataset4. The cropped image we used has dimen-
sions 400 × 400 pixels and 211 spectral bands, after removing
water absorption bands.

All images described above serve as ground truth for our experi-
ments. To simulate the HSRI H from each image we downsample
them with a factor of 8, which is a realistic difference between ob-
served HSRIs and HGRIs. The downsampling is done by simple
averaging over 8×8 pixel blocks. The HGRI M can be simulated
using the known spectral responses R of existing multispectral
sensors. We choose to use a different spectral response R for
each hyperspectral sensor based on the geometric resolution of
the HSRIs. Thus, we take the spectral response of Landsat 8 to
combine with the scenes acquired with AVIRIS, because of the
moderate geometric resolution. Secondly, the IKONOS spectral
response is used for the ROSIS sensor scene, since the HSRI only
covers the VNIR spectrum. Finally we we choose the spectral re-
sponse of the Leica ADS80 for the scene acquired with APEX.
The last case will be treated as more challenging, since the two
spectra do not fully overlap. We take care that the area under the
spectral response for each band is normalized to 1, so that the
simulated HGRI has the same value range as the HSRI.

1Available from: http://aviris.jpl.nasa.gov/data/

free_data.html, https://engineering.purdue.edu/~biehl/

MultiSpec/hyperspectral.html
2Available from: http://www.ehu.eus/ccwintco/index.php?

title=Hyperspectral_Remote_Sensing_Scenes
3More information at: http://messtec.dlr.de/en/

technology/dlr-remote-sensing-technology-institute/

hyperspectral-systems-airborne-rosis-hyspex/
4Available from: http://www.apex-esa.org/content/

free-data-cubes
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APEX Pavia University Cuprite Indian Pines
Method RMSE ERGAS SAM RMSE ERGAS SAM RMSE ERGAS SAM RMSE ERGAS SAM
Wycoff 8.47 3.03 7.57 2.32 0.83 2.66 1.64 0.18 0.69 2.98 0.70 2.39
Akhtar 14.40 5.38 12.81 4.48 1.47 4.76 7.24 0.74 2.99 3.39 0.77 2.66
HySure 10.58 3.97 10.55 3.00 1.02 3.11 2.02 0.21 0.84 3.34 0.79 2.68
Ours 7.88 2.86 6.72 2.28 0.80 2.37 1.60 0.17 0.67 2.88 0.69 2.29

Table 1. Quantitative results for all tested images.

5.2 Implementation details and baseline methods

We run our method with the maximum number of endmembers
set to p = 30. Although lower numbers would be enough for
most of the images, we choose the number conservatively to adapt
to the big variability within the APEX scene. This might cause
the algorithm to overfit in some cases, but does not seem to affect
the quantitative results. The inner loops of the two optimisation
steps (9a), (10a) run quite fast and typically converge in ≈ 10
iterations in the early stages, dropping to ≈ 2 iterations as the al-
ternation proceeds. Inner loops stop when the update falls below
1%. We iterate the outer loop over (7, 8) until the overall cost
(6a) changes less than 0.01%, or for at most 2000 iterations. For
the APEX dataset the proposed method took≈ 10 min to run in a
Matlab implementation on a single Intel Xeon E5 3.2 GHz CPU.
Note, for a given image the processing speed depends heavily on
the chosen number p of endmembers.

We use three state-of-the-art fusion methods (Wycoff et al., 2013,
Akhtar et al., 2014, Simoes et al., 2015) as baselines to compare
against. Below, we will call the first two (nameless) methods
Wycoff and Akhtar and the third one HySure, the name coined
by the authors. The first two methods come from the computer
vision literature, where they reported the best results (especially
for close-range images), while the third one comes from recent
remote sensing literature. We use the authors’ original implemen-
tations, which are available for all three baselines. All methods
were run with the exact same spectral responses R. For HySure,
we use only the fusion part and deactivate the additional estima-
tion of the point spread function. We treat the latter as perfectly
known, so re-estimating it would give the method a disadvan-
tage. Since we used p = 30 endmembers for our method, we
also used a subspace of 30 for HySure. For the method of Akhtar
we adapted the number of atoms that is learnt in the dictionary
to k = 200, so that the dictionary can cover more spectral re-
sponses. Finally, for the method of Wycoff we could not increase
the number of scene materials from N = 10, the initial number
proposed. Even with N = 10 the method needed more than 100
GB of memory to perform the fusion.

5.3 Error metrics

As primary error metric, the root mean square error of the es-
timated high-resolution hyperspectral image Ẑ compared to the
ground truth Z is used, scaled to an 8-bit intensity range [0 . . . 255].

RMSE =

√
1

BNm

∑∑
(ẑij − zij)2 =

√
‖Ẑ− Z‖2F
BNm

(11)

To make the evaluation independent of intensity units, we ad-
ditionally use the Erreur Relative Globale Adimensionnelle de
Synthèse (Wald, 2000). This error measure is also supposed to be
independent of the GSD difference between the HSRI and HGRI.

ERGAS = 100S

√
1

B

∑ MSE(ẑi, zi)

µ2
ẑi

, (12)

where S is the ratio of GSD difference of the HGRI and HSRI
(S = GSDh/GSDm), MSE(ẑi, zi) is the mean squared error of
every estimated spectral band ẑi and µẑi is the mean value of
each spectral band. Finally, we used the Spectral Angle Mapper
(SAM, Yuhas et al., 1992), which is the average, among all pixels,
of the angle in RB between the estimated pixel ẑj and the ground
truth pixel zj .

SAM =
1

Nm

∑
arccos

ẑ>j zj

‖ẑj‖2‖zj‖2
(13)

where ‖ · ‖2 is the l2 vector norm. The SAM is given in degrees.

6. EXPERIMENTAL RESULTS AND DISCUSSION

Table 1 shows the error metrics (in bold best results) that each
method achieved for all four images. The proposed fusion ap-
proach with joint unmixing performs better than all other meth-
ods, across all three error measures. The improvement can be
seen especially in terms of RMSE and SAM. The effect of resolu-
tion difference (i.e. the ratio S) in ERGAS reduces the differences
of the methods. Among the other methods, the method of Wycoff
performs the best. The method of Akhtar, proposed mainly for
close-range computer vision images, performs worse for remote
sensing images. Mostly the best performance is achieved for
Cuprite, while for APEX all methods perform worst.

Complementary to the tabulated results, we visualize the per-
pixel residuals for all four investigated images. In Figure 2 the
pixels are sorted in ascending order according to their per-pixel
RMSE, computed over all spectral bands. From this graph it can
be seen that our method in all cases has the largest amount of
pixels with small reconstruction errors. E.g. in images Pavia Uni-
versity and Cuprite most of the pixels are reconstructed with an
RMSE lower than 2 gray values in 8bit range. We also visualize
the RMSE per spectral band in Figure 3. Based on this figure, our
method achieves very similar results with the method of Wycoff,
except in the case of APEX, where the proposed method outper-
forms the baseline, especially in the wavelengths above 1000 nm.
The method of Akhtar shows big and rapid RMSE variations, de-
pending on the wavelength. It also shows a different shape of the
spectral response curves, compared to the other three methods
that have quite similar shapes. In APEX we note rapidly growing
RMSE for wavelengths above 900 nm. This is due to the fact that
ADS80 has no spectral bands in this range.

Moreover, we choose to visualize the error in two bands of the
APEX dataset for all methods. We choose APEX because it is
the most challenging scene, since contains many different mate-
rials in a mixed urban scene and also has the largest reconstruc-
tion errors. Moreover, this image gives bigger differences be-
tween the methods. In Figure 4, we visualize the differences (in
8 bit range) between the ground truth and reconstructed images
for wavelengths 552 nm and 1506 nm, corresponding to band
with low reconstruction error (spectral overlap with the HGRI),
respectively high reconstruction error (see Figure 3a).
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Figure 2. Per-pixel RMSE for all database images, sorted by magnitude.
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Figure 3. Per-band RMSE for every spectral image.

The evaluation shows that we were able to generate a fused image
that is 8×8 times improved in the geometric resolution compared
to the input HSRI. At the same time, by using the joint spectral
unmixing we are able to acquire a physically plausible explana-
tion of the scene’s endmembers and fractional abundances. Fig-
ure 5 shows the abundances for the APEX scene corresponding
to the endmembers (a) for the surface of a tennis court and (b) for
stadium tartan. On the top, on the left side is the abundance map
for the fused image as recovered by our method, while on the
right is the abundance map for the HSRI. Clearly the HGRI pro-
vides information about the spatial distribution of the endmem-
bers within a hyperspectral image pixel. This indicates that we
can improve unmixing results of the HSRI. However, we are not
able to quantitatively judge the unmixing quality, as no ground
truth exists. Note that in the true color image of Figure 4 the
tennis court and the stadium tartan have very similar color. How-
ever, the abundance maps in Figure 5 for the tennis court and the
stadium tartan endmembers show different values for these two
objects, which should be so, since these two objects consist of
different materials. In Figure 5 (bottom right) are the average
spectral responses of 30 representative pixels of each material,
taken from the ground truth image. Although these two materi-
als reflect similarly in the visible range, they have considerable
differences in the infrared range.

The method we proposed has only one essential user parameter,
namely the number p of endmembers. If fusion is the ultimate
goal, then preliminary tests have proven that it is better to choose
p larger than the actual number of endmembers in the scene. In
this case, probably some of the estimated endmembers corre-
spond to the same material, splitting the spectral response into
two parts (i.e., endmember is no longer synonymous with sur-
face material). Nevertheless this will not affect the fused image.
More endmembers may also help handling shadows and specular
reflections.

We believe that the most important ingredient for the success of
our method is the simplex constraint (6c, 6d), that greatly stabi-
lizes the model. Although these two constraints by themselves

are standard for spectral unmixing, we are not aware of any other
method that uses both of them together for image fusion.

In this paper, we used semi-synthetic, perfectly co-registered data.
Under these circumstances, most methods are able to reconstruct
the images with RMSE ≈ 1% of the intensity range, except for
APEX. In case that the HSRI and HGRI were acquired by dif-
ferent platforms, co-registration errors between the two images
would affect the fusion and the images would have to be cor-
rected. Furthermore, different sensors will have different offsets
and gains and the spectral response R must be modified so that
the value range for all images is the same. The situation gets
even more complicated if the images are not taken simultane-
ously, when multitemporal effects will influence the fusion, espe-
cially illumination differences.

As a closing remark, some images studied in this work have im-
portant deficiencies. Images from the AVIRIS sensor have a lot of
noise, especially the Indian Pines image. In Figure 3d the peaks
in graphs indicate that in those bands there is a lot of noise, which
cannot be explained by any method. Recent sensors like APEX
seem not to have unusually noisy bands and it is important that
new challenging hyperspectral test datasets are provided to the
community to help improve algorithms and applications.

7. CONCLUSIONS

In this work, we have descussed synergies between hyperspectral
fusion and unmixing, some investigated for the first time, to the
best of our knowledge. First, we perform an integrated process-
ing of both HSRI and HGRI to jointly solve the tasks of image
fusion and spectral unmixing. Thereby, the spectral unmixing
supports image fusion and vice versa. Second, in the joint esti-
mation, we enforce several useful physical constraints simultane-
ously, which lead to a more plausible estimation of endmembers
and abundances, and at the same time stabilize fusion. Third,
we adopt efficient recent optimization machinery which makes it
possible to tackle the resulting estimation problem. The validity
of the proposed method has been shown experimentally in tests
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with four semi-synthetic datasets, including a comparison to three
state-of-the-art fusion methods. In the tests our method improved
the RMSE of tyhe fusion result by 4% to 53% relative to the best
and worst baseline, respectively.

Future work will include several aspects: Processing of real HSRI
and HGRI data, and comparison to external ground truth; Scaling
to larger scenes, potentially with a locally varying set of endmem-
bers so as not to unnecessarily inflate the spectral basis; Better
modelling of multitemporal differences and shadows, which ac-
count for an important part of the error in the current processing;
Extension to multi-layer unmixing that occurs in vegetation ap-
plications when tree canopies interact with each other and with
the ground.

ACKNOWLEDGEMENTS

We thank N. Yokoya, A. Iwasaki, J. Bioucas-Dias, M. Kneubühler
and A. Hueni for useful discussions.

REFERENCES

Akhtar, N., Shafait, F. and Mian, A., 2014. Sparse spatio-
spectral representation for hyperspectral image super-resolution.
In: Computer Vision–ECCV 2014, Springer, Heidelberg, pp. 63–
78.
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