
VISUALIZATION OF MARINE SAND DUNE DISPLACEMENTS UTILIZING MODERN
GPU TECHNIQUES

T. Gierlingera, b, A. R. Brodtkorbc, A. Stumpfd, e, M. Weilera, b, F. Michela, b∗

a Fraunhofer IGD, Darmstadt, Germany - Frank.Michel@igd.fraunhofer.de
b TU Darmstadt, Darmstadt, Germany

c SINTEF ICT, Oslo, Norway
d LDO - CNRS UMR 6538, University of Western Brittany, Brest, France
e IPGS - UMR 7516 CNRS, University of Strasbourg, Strasbourg, France

Commission II, WG II/6

KEY WORDS: interactive visualization, modern GPU techniques, geological displacements

ABSTRACT:

Quantifying and visualizing deformation and material fluxes is an indispensable tool for many geoscientific applications at different
scales comprising for example global convective models (Burstedde et al., 2013), co-seismic slip (Leprince et al., 2007) or local slope
deformation (Stumpf et al., 2014b). Within the European project IQmulus (http://www.iqmulus.eu) a special focus is laid on the efficient
detection and visualization of submarine sand dune displacements. In this paper we present our approaches on the visualization of the
calculated displacements utilizing modern GPU techniques to enable the user to interactively analyze intermediate and final results
within the whole workflow.

1. INTRODUCTION

Advances in stereo-photogrammetry, laser scanning and multi-
beam echo sounding (MBES) continuously increase the availabil-
ity of multi-temporal measurements of the land- and sub-marine
topography opening new possibilities to study the dynamics of
geomorphological and geological processes. In particular sub-
marine dunes and sand banks are among the most dynamic geo-
morphological formations in coastal waters. They play an impor-
tant role in the sediment transfer and their movement can have
significant impacts on the benthic ecosystem, marine transport in
coastal waters, and infrastructure such as pipelines and commu-
nication cables. While in the past it has been difficult to observe
the dune dynamics directly recent advances in MBES now en-
able increasingly frequent observations of the sea floor morphol-
ogy. Currently, the prevailing standard for the analysis of multi-
temporal MBES surveys is, however, visual analysis by trained
experts delineating the crest line of the dunes at several time steps
using commercial or open-source GIS software (Xu et al., 2008,
Van Landeghem et al., 2012).

A few studies have demonstrated the feasibility of using image
correlation techniques for measuring dune migration (Franzetti et
al., 2013, Duffy and Hughes-Clarke, 2005) but to the best of our
knowledge integrated workflows that enable the derivation and
interactive visualization of sub-marine dune migration are not yet
available. To fill this gap a new workflow for the automatic detec-
tion of marine sand dune displacements was implemented within
the IQmulus project utilizing a cloud infrastructure to process the
large input data and GPU technology for efficient interactive vi-
sualization.

2. DISPLACEMENT MEASUREMENT WORKFLOW

Measuring vertical deformation from multi-temporal point cloud
datasets is generally a straight forward operation for globally flat

∗Corresponding author

surfaces, whereas the derivation of 2D displacement comprises
greater ambiguity and requires a robust matching technique.

The overall implemented workflow is presented in Figure 1 and
includes several processing steps that are available as services in
the cloud IQmulus cloud infrastructure.

Preceding the bi-temporal matching Locally Refined B-Splines
(Skytt et al., 2015, Dokken et al., 2013) are used to approximate
the point cloud with a continuous surface representation (Service
09). Since the LR B-Splines also extrapolates a surface beyond
the extent of the input point clouds the surface is trimmed in a
subsequent step to the spatial extent of the input (Service 90).
The generated surface is than sampled at regular intervals (the
target resolution can be defined by the user) to produce a regularly
gridded digital elevation model (DEM, Service 91).

In the final step both grids are analyzed jointly using an image
correlation technique (Service 60) which is based on the open-
source library MicMac (Deseilligny et al., 2015). The technique
has been developed with a focus on optical image correlation
(Rosu et al., 2015) and was demonstrated to provide be more ro-
bust and faster matching results than comparable tools for mea-
suring dune migration from multi-temporal DEMs (Stumpf et al.,
2014a).The underlying algorithm implements a coarse-to-fine hi-
erarchical correlation scheme where a template patch from one
DEM is matched within a certain search range to all possible posi-
tions in the second DEM. The matching cost among the patches is
evaluated using the normalized cross-correlation coefficient and
an extra regularization term which imposes a constraint on the
smoothness of the derived displacement field. Sub-pixel preci-
sion is achieved by oversampling of the input data. The algo-
rithm is parallelized and can therefore exploit all available cores
of a single virtual machine within the IQmulus cloud. During the
workflow the outputs of the LR B-Spline interpolation can be vi-
sualized interactively to optimize free algorithm parameters for
the particular application.

Similarly the outputs of the image correlation technique can in
principle be readily visualized once the computation of a partic-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.
Editors: S. Christophe and A. Cöltekin

doi:10.5194/isprsarchives-XL-3-W3-503-2015

503

Figure 2: Details illustrating the LR B-Spline rendering technique. The surface consists of a set of elements, outlined in black (left).
These elements are rendered using tessellated patches outlined in green (center). The number of triangles used to render each patch
varies depending on the screen size of the elements within that patch. The right figure shows an exaggeration of the interactive level
of detail, constructed by setting an artificially high error tolerance when computing the number of triangles per patch. Notice that the
resulting triangle mesh is water tight. The dataset shown is from the Barringer Crater, Arizona.

Figure 1: Marine Sand Dunes displacement: Complete workflow
from original point clouds (top) over LR-spline surfaces (middle)
to final result visualization (bottom)

ular hierarchical level has finished and while the the computation
continues on the next finer level. The complete workflow is im-
plemented as a series of modular services which can be called in
isolation or as a sequence sharing the same HDFS storage and
cloud infrastructure. All illustrations are based on processing re-
sults derived from two MBES surveys of the Banc de Four dune
field (offshore Western Britanny, France) covering approximately
10 km2.

3. VISUALIZATION

To interactively analyze the intermediate and final results of the
workflow we use visualization techniques utilize modern GPU
based methods to achieve interactive rates which are described in
the next sections.

3.1 Smooth surface representations

Most real-world terrains can be represented as smooth surfaces at
a given scale, and this is today utilized by many regular storage
formats such as Digital Elevation Models (DEMs). DEMs are
raster-based and represent the altitude at a certain spatial location
as an elevation above a datum. Unfortunately, reconstructing the
real terrain from this DEM is non-trivial and requires knowledge
from its construction: should the DEM be interpreted as a col-
lection of point values, a collection of piecewise planar cell aver-
ages, a bilinear surface, a bicubic surface, or something along the
lines of a regular triangular mesh (and if so: how to choose the
diagonals that splint each quadrilateral into two triangles)? Even
after this reconstruction we know that the model of the terrain,
and the terrain itself will differ, especially where the terrain has
large changes in altitude in neighboring DEM cells.

A major drawback of DEMs is that they are very poor at adapt-
ing to changes in smoothness over the terrain: a flat salt lake will
require just as many points to represent as a rocky hillside. An
alternative is to use triangulated irregular networks in which the
size of each triangle will vary over the terrain: Where there are
abrupt changes the triangles can be made small to capture the
high frequencies in the terrain, and similarly the triangles can be
made larger where the terrain is smooth. However, the terrain is
still represented as a piecewise planar surface. An improvement
on this is to use a higher-order representation of the terrain. In
engineering and computer aided design non-uniform rational B-
splines (NURBS) are predominant to represent higher-order sur-
faces. NURBS surfaces are excellent at representing high-order
surfaces with a limited extent, but unfortunately do not adapt very
well to local changes in smoothness as the whole surface is a ten-
sor product of two NURBS curves.

LR B-Splines (Dokken et al., 2013, Skytt et al., 2015) improve on
NURBS surfaces by enabling local refinement, thereby creating a
continuous smooth surface that can approximate both smooth and
non-smooth parts of a terrain. The spline surface is locally refined
into elements of different shape in the parameter domain, so that
the surface can adapt to local changes without loss of continuity
between elements.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.
Editors: S. Christophe and A. Cöltekin

doi:10.5194/isprsarchives-XL-3-W3-503-2015

504

Figure 3: LR-Spline surface (left), combined with full input point cloud (middle) and showing only input points with high error
compared to the reconstructed surface (right). The thresholding of points according to their distance to the surface is interactive, and
enables a user to quickly inspect the quality of the spline surface.

Figure 4: Interactive dynamic glyphs: Usual static result image (left), using interactive glyphs (middle), zoomed in view using glyphs
(right)

3.2 Creating and rendering LR B-splines

An MBES survey can result in a point cloud with millions of
points for a limited area, and constructing an LR B-spline directly
is therefore a computationally demanding task. The LR B-Spline
adapts to the features of the terrain, with more elements close to
sharp features, and similarly fewer elements in smooth areas.

The rendering and visualization of raster and triangulated irregu-
lar networks has been well studied in the literature before. Ren-
dering of NURBS surfaces is also well established. However,
rendering of LR B-Splines has only recently been accomplished
(Hjelmervik and Fuchs, 2015).

GPUs support only polygonal meshes, and we therefore need to
convert the LR spline representation to a triangulation, referred
to as a tessellation. A classical approach is here to perform a uni-
form sampling of the surface in either the geometry or parameter
space, yet this will often either produce too many or too few tri-
angles. Too many triangles will severely impact the interactivity
when navigating a scene, whilst too few triangles will dramati-
cally reduce the quality of the visualization. The optimal num-
ber of triangles will furthermore vary as the camera navigates the
scene since an element close to the camera will cover more screen
area than an equally large element further away.

Hjelmervik et al. (Hjelmervik and Fuchs, 2015) demonstrated
how one can construct a pixel perfect visualization of an LR B-
spline based on these observations and through using the hard-
ware tessellator found in modern GPUs. First, the Bezier coef-
ficients of the LR B-Spline are extracted together with an accel-
eration datastructure. A set of patches are then rendered using

OpenGL to cover the full extent of the surface. Each patch con-
sists of a set of elements in the LR B-Spline surface, and is tessel-
lated according to a view dependent criteria that guarantees that
each triangle covers at most one single pixel. Unfortunately, this
is not sufficient to guarantee a pixel perfect rendering as cracks
will often appear on the border between two neighboring patches
when they do not agree on the tessellation level across the edge.
This can be addressed by forcing neighboring patches to use the
same tessellation level on the shared edge.

The tessellation is performed in its entirety on the GPU itself
for every single frame that is rendered. The patches are simi-
larly converted on-the-fly by the hardware tessellator to triangles,
yielding an interactive view-dependent level of detail with a per-
pixel-accurate rendering. On modern GPUs, this approach yields
highly interactive framerates (Hjelmervik and Fuchs, 2015).

To verify the results of this process the original input point cloud
can be visualized together with the LR B-Spline surface. The
distance between the LR B-Spline surface and the original point
cloud can easily be obtained by evaluating the spline surface at
the horizontal coordinates of each point and taking the difference
with surface elevation and the the original point elevation. To an-
alyze the errors a threshold can be interactively set to only show
points with a high error compared to the surface. The user is
thereby presented with an on-screen user interface to manipulate
the point cloud, by changing transparency, color mapping, and
other parameters interactively, and individual points can be in-
spected to see their specific distance.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.
Editors: S. Christophe and A. Cöltekin

doi:10.5194/isprsarchives-XL-3-W3-503-2015

505

3.3 Interactive GPU tessellated Glyphs

The results of the workflow are usually shown as static images
containing some of the derived variables like displacement, mag-
nitude, or direction. This means if the user wants to analyse a
certain subarea of the result, these images need to be manually
generated as simply zooming the image will decrease the density
of information. In order to interactively analyze the results we
developed a visualization system utilizing geometry and tessel-
lation shaders, which generate 3D glyphs directly on the GPU,
based on the data from the displacement detection. The shaders
not only generate the glyph, but also take the size of the glyph
in screen space into account to choose an appropriate level of
tessellation (view dependent tessellation). The bigger the glyph
would be on the screen the more it is tessellated, which allows
for a smooth visual display. In contrast to a static image, the vi-
sualization is interactive and can be zoomed to different points
of interest. The glyphs are automatically recalculated according
to the users viewpoint, e.g. size, number/density of glyphs, and
tessellation level (see Figure 4).

(a) Glyph length

(b) Data array

Figure 5: Color mapping glyph length (a) and color mapping data
array (b)

3.3.1 Glyph Properties The user interface of the visualiza-
tion system exposes the main properties of the glyph genera-
tion for interactive selection and adjustment. These properties
include:

Glyph spacing: The spacing property controls how the glyphs are
distributed on screen. The distribution is affected by two values:
Spacing Mode and the Goal Spacing. The Goal Spacing defines
a target value for the number of screen pixels separating the cen-
ter of two glyphs. If the Spacing Mode is set to Default, this is
the actual distance between the glyphs. Two additional spacing
modes are available, namely Power of 2, which creates the next
power of two number of glyphs that results in a spacing close to
the goal spacing, and Whole Fraction, which performs an analo-
gous spacifing based on arbitrary integers.

Arrow properties: These settings control the appearance of the
glyph. The LOD factor controls the GPU-based tessellation of
the arrow glyphs. It is a target value for the maximum number of

screen pixels an edge of the glyph mesh should span. Low values
lead to a finer tessellation of the glyph and let it appear smoother.
Larger values result in a coarser tessellation, which reduces GPU
load. The size of the glyphs mainly depends on their spacing.
However, it can be scaled by the Global scale factor. The direc-
tion and the length of a glyph tail on the other hand directly maps
to a vector (x, y)T , where x and y are the values of the x and y
displacement images at the glyph location. The length of the tail
is also scaled by the Length scale.

Color mapping settings: Each generated glyph is associated with
a scalar value for color mapping. The source of this value is either
the length of the aforementioned vector (x, y)T , which also de-
termines its length and direction, or a sample from an additional
data array. The result of the two different modes can be seen in
Figure 5.

3.3.2 Glyph Tessellation Details Depending on their on-screen
size and the current LOD factor value the glyphs are tessellated
with a different amount of detail. Each glyph starts out as two
cubes where the overlapping faces are removed. One of the cubes
will be tapered to form the arrow’s head, the other one will be
scaled along one axis to form the arrow’s tail. They are tessel-
lated, projected to a cylindrical shape and rendered to create the
arrow glyphs. The result for different tessellation resolutions are
shown in Figure 6.

Figure 6: Glyph tessellation resolution: low (left), middle (mid-
dle), and high (right).

Figure 7: Glyph generation process

Figure 7 illustrates the process of creating an arrow glyph from
two cubes which involves the following steps:

1. Start with two cubes on top of each other whose top face
is missing. The object is centered around the origin. All
cube faces are patches consisting of four vertices (quads).
The vertex indices for these patches are sorted so that the
first five patches form the head (green) and the last five form
the tail (red) of the arrow. Thus in the tessellation control
shader the ID of the currently handled patch can be used to
determine to which part of the arrow the patch belongs.

2. The vertices of the tail are scaled by 0.5 in x- and z-direction
and by the desired length of the glyph in y-direction. Fur-
thermore, the whole object is scaled by a global scale factor.
Afterwards, the whole glyph is rotated according to the de-
sired direction (not shown here) and translated to its final
position.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.
Editors: S. Christophe and A. Cöltekin

doi:10.5194/isprsarchives-XL-3-W3-503-2015

506

3. All vertices are transformed into window coordinates. The
patches are tessellated depending on the number of pixels
their edges span in screen space and a goal size for the tes-
sellated edges. This means that if the edge is 30 pixels large
in screen space but the goal size is 3 pixels, the edge has
to be subdivided 9 times to form 10 segments. Patches that
lie completely outside the view frustum are culled by setting
their tessellation factor to 0.

4. Both cubes are now projected onto cylinders. Note that this
results in an uneven spacing of vertices along its circumfer-
ence. In practice, this is no problem.

5. The head is tapered to be pointy and surface normals are
calculated for shading.

6. A simple Phong model is used to shade the arrow glyph.
The base color is determined by color mapping.

All these modifications are implemented in one shader program,
consisting of four shader stages. Their functionality is described
in the following paragraphs.

Vertex Shader: The vertex shader has four vertex attributes as
inputs: the positions of the cube vertices, the offset positions at
which the glyphs should be drawn, the scaled direction vector
of the glyph (dirAndScale) and the scalar value used for color
mapping. It also takes seven uniform variables into account: the
view and projection matrix, different scaling values and the min
and max values used for the normalization of the scalar value
for the color map. The length of the dirAndScale vector is used
to determine the length of the glyph tail. From its direction, a
rotation matrix is computed that will be used to rotate the arrow
accordingly.

Tessellation Control Shader: The task of the tessellation control
shader (TCS) is to calculate how each patch should be tessel-
lated. Shader inputs are the outputs of the vertex shader, aggre-
gated into arrays. For each vertex in the input patch, one array
entry is created. Other inputs are uniform variables for the LOD
and scaling. The layout specifier states that this particular TCS
will output four vertices as well, one for each corner vertex of
the input patch. For each output vertex, the TCS will be invoked
once. The ID of the current shader invocation can be accessed
with the variable gl InvocationID. Note that output arrays may
only be accessed using this variable. The first thing the TCS per-
forms is a pass-through of the input position. Even though the
positions will be transformed to detect whether the patch lies in-
side the view frustum and to determine its tessellation factor, it
will be finally transformed in the tessellation evaluation shader.
This is necessary to be able to perform any calculations in the lo-
cal coordinate system in which the original vertices are defined.
gl PrimitiveID is queried to evaluate whether the current patch is
part of the head or the tail of the glyph. Depending on the result,
different scaling is applied. The remaining part of the calcula-
tions is only performed by invocation 0 to avoid race conditions.
Each input vertex is scaled, rotated and moved according to the
glyph’s target location. The vertices are projected into screen
space and tested against the view frustum. If all vertices lie out-
side of the frustum, the patch can be discarded. This is done by
setting all tessellation factors to zero. For all visible edges the
number of subdivisions is determined according to the algorithm
of (Cantlay 2011). The basic idea is to project a sphere with a
diameter equal to the edge length and the edge midpoint as center
into screen space and evaluate how many pixels it spans. The size
of the sphere in screen space is divided by the LOD factor. The
result defines the number of times this edge should be divided.

Figure 8: Patch tessellation: Top and side faces are tessellated
differently since they need to undergo different deformations.

As Figure 8 shows, the actual tessellation of a patch also depends
on whether the patch is part of the bottom or the side faces of the
cube. Since the cube shall be tessellated into a cylinder, the side
faces only need to be subdivided horizontally. A vertical subdi-
vision is required by the tessellator stage. The top face generally
requires high tessellation on the edges, but again one face needs
to be added to the center for the tessellator. The values of the
gl TessLevelInner and gl TessLevelOuter arrays are set accord-
ingly. The rest of the output variables are only required once per
patch. They could normally be declared as patch variables, but
this caused problems on Intel HD Graphics. Thus they are passed
as normal per-vertex attributes, but only the attribute at index 0 is
set.

Tessellation Evaluation Shader: In the tessellation evaluation shader
(TES), the newly created vertices are assigned to their final po-
sitions. Therefore, the shader is invoked once per vertex. Inputs
into the TES are the outputs of the TCS, aggregated into arrays.
Each array entry corresponds to one of the output patch vertices
of the TCS. To calculate the position of the inner vertices, the
coordinates of the output patch vertices have to be interpolated.
For that purpose the built-in input variable vec3 gl TessCoord
provides the appropriate linear interpolation weights. For quad
patches, the first two components (u and v) of the vector contain
the horizontal and vertical position of the new vertex, relative to
the input patch. They can be used for bilinear interpolation. For
triangular patches on the other hand all three components would
be used and would contain barycentric coordinates. The interpo-
lated positions are then projected onto the unit circle by normal-
izing their x-z-component. Depending on the type of face, the
final position and the vertex normal (both in local coordinates)
are calculated in the following manner:

• Top face: Here the normal is simply the normal of the cube’s
face. The position of the border vertices (u and v are 0 or 1)
are just their projected position. All other vertices need to
lie inside the circle to prevent degenerated triangles. More
formally: −→x local = (1 − α)−→x interpolated + α−→x projected

with α = max(|2u− 1|, |2v − 1|)

• Side face: For the tail of the glyph, the final positions are
just the projected positions and the normals are simply the
normalized x-z-component. For the head the procedure is a
bit more complicated. The head cylinder has to be tapered
to become a cone. This means that the normals are not just
pointing outwards anymore, but slightly towards the tip of
the arrow head. Figure 9 shows how the normal can be cal-
culated from the dimensions of the cone. The y-component
of the normal can directly be set to 0.5√

1.25
, while the (already

normalized) x-z-component is scaled by 1.25√
1.25

. Now that
the normals are calculated, the vertex positions have to be

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.
Editors: S. Christophe and A. Cöltekin

doi:10.5194/isprsarchives-XL-3-W3-503-2015

507

modified to transform the cylinder into a cone. This means
that the x-z-component of the vertices that will form the tip
has to be scaled to zero, while the other end has to stay the
same width. Here we utilize the fact that the bottom of the
cone is located at y=0 and the tip is located at y=1. Thus the
x-z-component of the vertices is scaled by 1-y.

Figure 9: The cone’s normal is perpendicular to its surface and
can be calculated from its dimensions.

Until now, all calculations were performed in local coordinates.
As a final step, vertex positions have to be scaled, rotated and
moved according to the instance data. The normals have to be
rotated as well. After perspective projection, the glyph is ready
for shading.

Fragment Shader: Since the geometry shader stage is omitted,
the outputs of the TES are passed directly to the fragment shader.
The fragment shader calculates a simple Phong shading using a
head light (the camera position is the light position). The diffuse
color of the glyph is determined by color mapping the attribute
associated with the glyph.

4. CONCLUSION

In this paper we presented our approaches for the interactive vi-
sualization of marine sand dune displacements within the IQmu-
lus project. The described visualization techniques utilize mod-
ern GPU based methods to achieve interactive rates when analyz-
ing the intermediate and final results of the automatic workflow.
These rates are achieved by generating the geometry which is
displayed directly on the GPU. We presented two different ap-
proaches, one for the rendering of LR B-Splines representing a
large point cloud and second the dynamic generation of displace-
ments glyphs based on results from the displacement detection
workflow.

5. FUTURE WORK

The presented visualizations are currently tested and evaluated
by end users within the IQmulus project and the first responses
where positive. We will take the results into account to enhance
the presented approaches. Furthermore, we will work on the fol-
lowing topics in the future: LR B-Splines are not very well suited
for representing terrains with a huge number of elements. In
these cases, it will be important to develop e.g., tiling techniques.
It is important that the tiled representation maintains continuity
between different patches to avoid artifacts on the boundary be-
tween them. Regarding the glyph visualization we will work on
the exploitation of uncertainty (correlation coefficient) and the
incorporation of vertical changes to get a full 3D representation
of the deformation. Another interesting topic is the analysis of
time-series instead of the comparison of only two timesteps.

ACKNOWLEDGEMENTS

Research leading to the results presented here is carried out within
the project IQmulus (A High-volume Fusion and Analysis Plat-
form for Geospatial Point Clouds, Coverages and Volumetric Data

Sets) funded from the 7th Framework Programme of the Euro-
pean Commission, call identifier FP7-ICT-2011-8, under the grant
agreement no. 318787, started in November 2012.

REFERENCES

Burstedde, C., Stadler, G., Alisic, L., Wilcox, L. C., Tan, E.,
Gurnis, M. and Ghattas, O., 2013. Large-scale adaptive mantle
convection simulation. Geophysical Journal International 192(3),
pp. 889–906.

Deseilligny, M.-P., Belveaux, J., Choqueux, G., Deveau, M. and
Girod, L., 2015. MicMac, Apero and Other Beverages in a Nut-
shell. ENSG - Marne-la-Valle.

Dokken, T., Lyche, T. and Pettersen, K. F., 2013. Polynomial
splines over locally refined box-partitions. Computer Aided Ge-
ometric Design 30(3), pp. 331–356.

Duffy, G. P. and Hughes-Clarke, J. E., 2005. Application of spa-
tial cross correlation to detection of migration of submarine sand
dunes. Journal of Geophysical Research: Earth Surface (2003–
2012).

Franzetti, M., Le Roy, P., Delacourt, C., Garlan, T., Cancouët,
R., Sukhovich, A. and Deschamps, A., 2013. Giant dune mor-
phologies and dynamics in a deep continental shelf environment:
example of the banc du four (western brittany, france). Marine
Geology 346, pp. 17–30.

Hjelmervik, J. M. and Fuchs, F. G., 2015. Interactive Pixel-
Accurate Rendering of LR-Splines and T-Splines. In: B. Bickel
and T. Ritschel (eds), EG 2015 - Short Papers, The Eurographics
Association.

Leprince, S., Barbot, S., Ayoub, F. and Avouac, J.-P., 2007. Auto-
matic and precise orthorectification, coregistration, and subpixel
correlation of satellite images, application to ground deformation
measurements. Geoscience and Remote Sensing, IEEE Transac-
tions on 45(6), pp. 1529–1558.

Rosu, A.-M., Pierrot-Deseilligny, M., Delorme, A., Binet, R. and
Klinger, Y., 2015. Measurement of ground displacement from
optical satellite image correlation using the free open-source soft-
ware micmac. ISPRS Journal of Photogrammetry and Remote
Sensing 100, pp. 48–59.

Skytt, V., Barrowclough, O. and Dokken, T., 2015. Locally re-
fined spline surfaces for representation of terrain data. Computers
& Graphics.

Stumpf, A., Cancout, R., Piete, H., Delacourt, Christophe, Spag-
nuolo, Michela, Cerri, Andrea, Sirmacek, Beril, Roderik and
Lindenbergh, Roderik, 2014a. Change detection and dynamics
toolkit. Technical Report D4.5.1, IQmulus consortium, Brest,
France.

Stumpf, A., Malet, J.-P., Allemand, P. and Ulrich, P., 2014b.
Surface reconstruction and landslide displacement measurements
with pléiades satellite images. ISPRS Journal of Photogrammetry
and Remote Sensing 95, pp. 1–12.

Van Landeghem, K. J., Baas, J. H., Mitchell, N. C., Wilcockson,
D. and Wheeler, A. J., 2012. Reversed sediment wave migra-
tion in the irish sea, nw europe: A reappraisal of the validity of
geometry-based predictive modelling and assumptions. Marine
Geology 295, pp. 95–112.

Xu, J., Wong, F. L., Kvitek, R., Smith, D. P. and Paull, C. K.,
2008. Sandwave migration in monterey submarine canyon, cen-
tral california. Marine Geology 248(3), pp. 193–212.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.
Editors: S. Christophe and A. Cöltekin

doi:10.5194/isprsarchives-XL-3-W3-503-2015

508

