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ABSTRACT:

Due to the spread of economically priced laser scanning technology nowadays, especially in the field of topographic surveying and
mapping, ever-growing amounts of data need to be handled. Depending on the requirements of the specific application, airborne,
mobile or terrestrial laser scanners are commonly used. Since visualizing this flood of data is not feasible with classical approaches like
raw point cloud rendering, real time decision making requires sophisticated solutions. In addition, the efficient storage and recovery
of 3D measurements is a challenging task. Therefore we propose an approach for the intelligent storage of 3D point clouds using a
spatial database. For a given region of interest, the database is queried for the data available. All resulting point clouds are fused in a
model generation process, utilizing the fact that low density airborne measurements could be used to supplement higher density mobile
or terrestrial laser scans. The octree based modeling approach divides and subdivides the world into cells of varying size and fits one
plane per cell, once a specified amount of points is present. The resulting model exceeds the completeness and precision of every single
data source and enables for real time visualization. This is especially supported by data compression ratios of about 90%.

1. INTRODUCTION

Due to the rapid technological development in recent years, 3D
sensors have found a high degree of dissemination in research
and development. Thus today airborne, mobile or terrestrial laser
scans are collectable with much less effort than a decade ago,
which makes them an easily available data source for topographic
surveying and mapping. As each sensor system has a distinct res-
olution, accuracy and precision and due to the available flood of
data, real time visualization and decision making based on naive
point cloud rendering is not feasible. Current state of the art
workstations are seldom able to visualize larger terrains due to the
sheer mass of millions and billions of points, even if they utilize
multiple graphic cards. In addition to the visualization problem,
the efficient storage and easy recovery, so that for example one
is able to select data based on regions of interest (ROI) or other
spatial parameters, is a challenging task.

As an approach to solve this problem, we propose a method for
the intelligent storage of 3D point clouds in a geodatabase. Along
with the data set, its geolocation and additional meta information
are stored. Because a given ROI is typically a geographically
bounded area, our approach is able to extract the related data
from the database. Additional meta information based search pa-
rameters like date or time enable further query refinement. All
returned point clouds are fused in a model creation process. Due
to the fact that many points could be represented by a common
surface, they could be considered as redundant. As most parts of
an urban environment are flat, we’ve chosen a plane as mostly ex-
pressive representation for a given subset of points. In combina-
tion with this plane-based representation, an octree data structure
is used to handle the huge amounts of data. This approach was
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first presented in (Gordon et al., 2015) and is adapted to incorpo-
rate data sources with different accuracy and precision.

2. RELATED WORK

2.1 Spatial data storage

Working with large quantities of georeferenced spatial data re-
quires efficient management techniques. While classical data-
bases permit searching for information in an efficient way, search
requests based on spatial parameters like regions or the distance
to a given point assume specialized capabilities on the database
side. A spatial database provides special data types for geometric
objects which allow it to store geographic data in regular database
tables. It also provides functions and indexes to query and ma-
nipulate the data using some kind of SQL like language (Obe and
Hsu, 2011). This not only ensures the spatial deposition, but also
enables the analysis of the stored data in terms of complex queries
like ”give me all point clouds ordered by accuracy that are within
range of a camera track that crossed a given region.”

Despite the fact that spatial data storage is a relatively new chap-
ter in the history of databases, a variety of implementations ex-
ists. The following section is focused on a quick overview of the
most common open source solutions. In terms of non-relational
database management systems (DBMS), various solutions like
MongoDB, BigTable, Cassandra and CouchDB provide spatial
support. On the relational side, a lightweight spatial DBMS based
on SQLite is SpatiaLite1. It requires no complex client-server ar-
chitecture and stores the database in a local file. The popular SQL
based DBMS MySQL2 provides a spatial extension since version

1https://www.gaia-gis.it/fossil/libspatialite/index
2http://dev.mysql.com
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4.1, as stated in the official documentation. It is based on the

”OpenGIS R© Implementation Standard for Geographic informa-
tion - Simple feature access - Part 2: SQL option” of the Open
Geospatial Consortium. Unfortunately not all features stated in
the white paper seem to be implemented. PostGIS3 is an exten-
sion of the PostgreSQL4 object-relational DBMS. It is consid-
ered to be the open source spatial DBMS with the largest range
of functions and also seems to be widely used, among others by
the OpenStreetMap project.

2.2 Surface Reconstruction

The surface reconstruction from point clouds is a long standing
problem with different solutions. An overview is given e.g. in
(Remondino, 2003). A related problem is the (iso)surface extrac-
tion from volumetric data (for example generated by computer
tomographs). One class of surface reconstruction algorithms gen-
erates a mesh to connect the points of the point cloud (e.g. (Mar-
ton et al., 2009)). Another way is to generate an implicit function
and to use a surface extraction method afterwards, like march-
ing cubes (Lorensen and Cline, 1987). A similar approach is de-
scribed in (Hoppe et al., 1992).

A different solution is the grouping of points, which have some-
thing in common, like forming a geometric primitive (e.g. plane
or sphere), cf. (Vosselman et al., 2004). A region growing ap-
proach for plane extraction and a subsequent convex hull deter-
mination for polygon generation is presented in (Vaskevicius et
al., 2007). To speed up the plane extraction, the methods in the
following publications separate the points into cells, either grid
or octree, and try to extract a plane per cell: A grid approach with
RANSAC plane extraction is shown in (Hansen et al., 2006). Two
similar solutions using an octree data structure are presented in
(Wang and Tseng, 2004) and (Jo et al., 2013). Both try to ex-
tract a plane in one cell and divide it, until a sufficient solution
is found. In (Wang and Tseng, 2004) least square plane fitting
is used, followed by a merge-strategy during postprocessing. (Jo
et al., 2013) exploit the regular pattern of the TOF camera for
“microplane” estimation and check if all “microplanes” in a cell
match, given an error bound.

2.3 Contribution

Our basic idea is to combine a geospatial database with an exist-
ing model creation approach. The database provides a scaleable
and automatic way to handle the georeferenced data and it has the
ability for easy and fast data selection. To use the supplied data
in the model generation, the existing approach (Gordon et al.,
2015) had to be extended. Therefore a data fusion concept is pre-
sented, which is based on the standard deviation of the different
data sources. The standard deviation of the point positioning ac-
curacy is used for the threshold calculation of the point-to-plane
distance and is also applied as a weighting factor for the principal
component analysis. In this way, 3D data from different sources
can easily be combined.

3. METHOD

Regarding the data used by our approach we assume that it is al-
ready georeferenced and stored in a database. The procedure pre-
sented here consists of two parts: At first all data sets with a max-
imal range from a given position are queried from the database.
Then the resulting point clouds are handed over to the model cre-
ation process.

3http://postgis.net
4http://www.postgresql.org

We continue with an introduction of our Geo Database. After-
wards we give a comprehensive description of the model creation.
The section concludes with a parameter overview and implemen-
tation details.

3.1 Data handling with Geo DB

For georegistered storage, management and easy retrieval of bi-
nary data, such as sensor measurements, we have developed a
geospatial database. This database contains meta information to
describe the binary data. This allows it to fast retrieve sensor data
based on these meta information, which is used as part of our
approach.

Figure 1 shows an entity-relationship (ER) diagram of that part
of our database which is relevant to describe our approach. The
database is organized in elements and collections. Elements are
the smallest units of information. They could be organized in
collections for example to combine all data of one measuring
campaign. There are several specialized types of elements and
collections which are used to fulfill the special requirements with
regard to the meta information we want to store for different types
of data. We store point clouds as a specialized version of an ele-
ment. This means that, for each point cloud, we have one data set
in the ”element” and one in the ”pointcloud” table.

Figure 1. Simplified ER diagram of our database.

For each point cloud, we at least store a geographic position or
coverage. If possible we favor both. These information are stored
using latitude and longitude coordinates. As position we nor-
mally use the sensor location during the acquisition of the point
cloud. The coverage is defined by the bounding box of all points
in the cloud. The database also stores a standard deviation value
as a quality feature representing the inaccuracy of the recording
sensor system. Since each point cloud uses a specific local coor-
dinate system, we also store a transformation matrix to transform
it to the global ECEF (earth centered earth fixed) coordinate sys-
tem.
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3.2 Model creation

The input to the model creation consists of the point clouds que-
ried from the database. They are transformed into a common co-
ordinate system and sorted according to the standard deviation in
ascending order. The latter allows to start with the most detailed
data set and incrementally add the less precise ones. Because the
points of different precision are later brought together in a sin-
gle representation, each one has to contain the standard deviation
associated with the sensor it originates from. Neither the size of
the scene nor the number of points need to be known. This is
achieved by using a dynamically growing data structure in com-
bination with an incremental method. The result is a polygon
model, which represents all input points lying on planar surfaces.
For visualization and other purposes, also points not represented
by the model are preserved. They emerge if their representation
by a plane is not possible (e.g. in the case of vegetation) or their
neighborhood is too sparse.

The employed data structure is an octree, which can be increased
dynamically, if required. Its cell size has a lower bound, which is
e.g. defined in accordance with the most precise input source. It
also permits a computationally cheap plane extraction. For every
cell of the octree, the goal is to have either none or exactly one
plane as a representative. The plane fitting is carried out by using
a RANSAC (cf. (Fischler and Bolles, 1981)) approach. If mainly
outliers are found, that cell is further divided in eight subcells
until a certain level of detail is reached (the minimal octree cell
size). In case a representing plane can be determined, the data
points should additionally be uniformly distributed among this
plane. This test is done at the end of the model creation, after all
points were added.

We want to combine data of different precision and accuracy.
Therefore the value of the standard deviation is incorporated in
the generation of a threshold for the point-to-plane distance. In-
spired by the fact that 68% of normal distributed measurements
lie in an interval around the mean bound by the standard devia-
tion, the allowed point-to-plane distance is determined by mul-
tiplying the standard deviation with a common sample coverage
factor. This allows the combination of points with varying pre-
cision. Additionally 1/σ2 is used as a weighting factor for the
principal component analysis (cf. 3.2.2).

The polygon model itself is created by computing the intersection
of each cubical octree cell with the plane assigned to it. This step
can be done at any time during the model generation. In the next
subsection the details of the point handling are described. Next
to that the test of uniform distribution is explained.

3.2.1 Point handling The model creation handles all points
sequentially. Assuming that a plane was already fitted to an octree
cell, then all points in this cell are divided in a RANSAC manner
into support (S) and contradiction set (C). If a new point is added
to this cell, its destination set is determined based on the point-
to-plane distance. In case of too many outliers, a new plane fit is
carried out or finally, if there are still too many outliers, the octree
cell is divided.

In case of a previously empty cell or a cell without plane (w.p.),
the new point is added to a single set until enough points are
collected in this cell. Then a plane fit is performed, and if it suc-
ceeded, the two sets (support and contradiction) are determined.
Otherwise more points are collected in this cell and the plane fit-
ting is retried. However, if a certain number of points is reached
without successful plane fitting, the octree cell is divided. The
threshold for the plane fitting is based on the point density w.r.t.
the squared cell side length and a minimal required number of

points. The details are given as pseudo-code in Algorithm 1,
where point density is abbreviated with pd.

Algorithm 1 Point handling
1: procedure POINTHANDLING(p)
2: determine octree cell c of p (create, if not existing)
3: if c has plane then
4: if p supports plane then
5: add p to support set (S) of c
6: else
7: add p to contradiction set (C) of c
8: if #C > q ∗#S then
9: calculate plane

10: if !planeFitSuccess then
11: divide c
12: end if
13: end if
14: end if
15: else
16: add p to point set (P) of c
17: if (pd > d and #P > kmin) or #P > kmax then
18: calculate plane
19: if !planeFitSuccess then
20: if d < dmax then
21: d← 2 ∗ d
22: else
23: divide c
24: end if
25: else
26: determine S and C
27: end if
28: end if
29: end if
30: end procedure

3.2.2 Test for point-plane coverage This section describes
the method that we use to test whether or not the points in a given
octree cell are uniformly distributed among the plane assigned
to it. The reason to perform this test is to guarantee that the re-
sulting planar patch will be a best possible representative of the
points it is supposed to replace afterwards. If this constraint is
violated, then the cell is further divided into eight subcells. As a
positive side-effect, a better estimation of the plane parameters is
obtained.

The analysis of the point distribution is carried out using the prin-
cipal component analysis (e.g. (Hoppe et al., 1992)). It is only
applied to the support set. Assuming that these points lie on a
plane, then the two larger eigenvalues (λ1 and λ2) represent the
variance of the point distribution along the two major axes of the
plane. The square root of the eigenvalues yields the correspond-
ing standard deviation.

In case of a one-dimensional uniform distribution, the standard
deviation in the interval [a, b] is (b− a)

/
(2
√
3) . Applied to

our problem and under the assumption of nearly uniformly dis-
tributed points, l

/
(2
√
3) ≈ 0.28 · l (where l stands for the cell

side length) is an upper bound for the square root of the two big-
ger eigenvalues. To allow some variation, a smaller threshold is
used as a test criterion (

√
λ1 > t and

√
λ2 > t). This threshold t

is called minimal variation.

3.2.3 Parameters The approach presented here incorporates
nine parameters. The following list explains them:

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015 
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.  
Editors: M. Brédif, G. Patanè, and T. Dokken 
doi:10.5194/isprsarchives-XL-3-W3-535-2015 

 
537



sample coverage factor f ∗ σ is the maximal allowed point-
to-plane distance for both: the point handling and the
RANSAC plane fitting.

proportion of outliers Maximal allowed proportion of outliers
for both the point handling (cf. q in Algorithm 1) and the
RANSAC plane fitting.

RANSAC iterations Number of RANSAC iterations during the
plane fitting.

minimal cell size The minimal octree cell size.

dstart Minimal point density needed in a cell before starting plane
fitting (cf. d in Algorithm 1).

dmax Upper bound for d (cf. dmax in Algorithm 1).

kmin Minimal number of points needed for plane fitting (cf. kmin

in Algorithm 1).

kmax Upper threshold for number of points, where plane fitting
starts independently of point density (cf. kmax in Algo-
rithm 1).

minimal variation This value t is the criterion for uniform dis-
tribution of points (see section 3.2.2 for details) .

3.3 Implementation details

All parts of our implementation take advantage of the freely avail-
able Point Cloud Library (PCL)5 (Rusu and Cousins, 2011). Es-
pecially its octree implementation was used and extended where
needed. The PCL itself uses the Visualization Toolkit (VTK)6 for
visualization purposes. We additionally utilize the VTK to calcu-
late the intersection between an octree cell and a plane in order to
get the resulting polygon. For the database we use PostgreSQL
and its PostGIS extension.

4. EXPERIMENTS

4.1 Test site

Figure 2. Aerial view of the test site7.

The data acquisition took place in the urban area around the
Fraunhofer IOSB in Ettlingen, partly shown in Figure 2. The site
containing the institute building, supporting structures and trees
is located within a suburban neighborhood. The path driven by
the sensor vehicle MODISSA is shown in Figure 3, along with
the locations of the terrestrial scan locations.

5http://pointclouds.org/
6http://vtk.org/
7Ettlingen, Fraunhofer Institut IOSB by Wolkenkratzer

http://commons.wikimedia.org/wiki/File:Ettlingen,

_Fraunhofer_Institut_IOSB.JPG licensed under http:

//creativecommons.org/licenses/by-sa/3.0

Figure 3. Path driven by the sensor vehicle (MLS data) during
the data acquisition and 23 positions of TLS scanner (Image data:
Google Earth, Image c© 2015 GeoBasis-DE/BKG).

4.2 Experimental setup

The paper describes the fusion of 3D laser scans of distinct ac-
curacy with the purpose of generating a model with maximum
terrain coverage and precision. To examine the model generation
algorithm, multiple data sets were chosen that describe the same
urban terrain, but have been recorded from distinct viewing an-
gles and using multiple LIDAR systems with different accuracy.
Laser scans from airborne, mobile and terrestrial laser scans were
utilized. This section gives a short description of all three sensor
systems used to record the data.

ALS Airborne laser scanning methods usually combine a time-
of-flight LIDAR device with high-precision navigational sensors
mounted on a common sensor platform. The deployed Applanix
POS AV 410 navigation system comprises a GNSS receiver and
a gyro-based inertial measurement unit that measures pitch, roll,
and heading angles. Synchronously, the RIEGL LMS-Q560 laser
scanner generates, deflects, and receives single laser pulses, for
which it measures the time-of-flight to be reflected by a region
on the Earth’s surface. The scanning is performed by a rotat-
ing polygon mirror perpendicular to the direction of flight. In
combination with the forward movement of the aircraft, the un-
derlying terrain is sampled in successive scan lines. The result is
a georeferenced point cloud covering large sections of the terrain
(cf. Figure 4). Unfortunately the precision of the measurements
collected by the described setup (Hebel and Stilla, 2012) is low
when compared to terrestrial measurements due to accumulated
position measurement errors (within 3-10 cm) and requires the
coregistration of multiple clouds.

Figure 4. ALS data of the test site.

MLS As airborne laser scanning is usually accomplished in the
nadir view, environmental details concealed by roofs, bridges and
other natural or manmade structures are not recorded. To obtain
a complete model, the usage of additional ground based systems
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Figure 5. Sensor vehicle used for MLS data recording.

like mobile or terrestrial laser scanners is necessary. The sensor
vehicle MODISSA (cf. Figure 5) used to acquire mobile laser
scans is augmented with an Applanix POS LV inertial naviga-
tion system utilizing two GNSS antennas, an inertial measure-
ment unit (IMU) and a distance measuring indicator (DMI). The
navigational data is post processed to increase accuracy. Two
Velodyne HDL-64E laser scanners are located on the front roof
in a 25 degree angle to guarantee good coverage of both road
and building facades. Each one of the scanners has a 10 Hz rota-
tion rate and collects approximately 1.3 million points per second
(Gordon et al., 2015). In terms of accuracy, the standard devia-
tion of a single sensor measurement is in the range of about 1.7
cm (Gordon and Meidow, 2013).

TLS The most accurate data source used for the experiments is
a Zoller+Fröhlich IMAGER 5003 terrestrial laser scanner based
on the phase difference method. With 100 seconds per scan,
data collection is slower and more time consuming than MLS,
however according to the manufacturer the accuracy is within
the range of less than half a centimeter (Zoller+Fröhlich GmbH,
2005). The accuracy also benefits from the fact that the scanner
is stationary during a scan.

In a post processing step a fine registration using an ICP algo-
rithm is applied to align MLS and ALS, but also to geolocate all
TLS scans (cf. Figure 6).

Figure 6. Multiple coregistrated TLS scans.

Standard deviation The accuracy of the data is mainly affected
by the process of georeferencing. Therefore the assumed standard

deviation of the 3D point positions is larger than the specific sen-
sor error. For the experiments the values in Table 1 are assumed.

data source standard deviation
ALS 0.3 m
MLS 0.3 m
TLS 0.1 m

Table 1. Standard deviation of the utilized data sources.

4.3 Experiments

The method from Section 3. has been evaluated using the data
presented above. Different parameters for the model generation
were applied, whereby in each set only one parameter or parame-
ter pair is modified according to the default values. The different
parameter values and their defaults are given in Table 2.

parameter values
sample coverage factor 0.675, 1.645, 1.960,

2.576, 3.29, 5, 10
proportion of outliers 0.05, 0.1, 0.2, 0.5, 0.75, 0.9
RANSAC iterations 100

minimal cell size 0.1, 0.2, 0.4, 0.8, 1 m
(dstart,dmax) (0.1,2),(0.2,3),(0.5,5),(0.8,6),(1,8),

(2,15),(4,17),(8,33) in points/m2

kmin 3, 5, 7, 10, 12, 15, 18, 20, 50
kmax 100, 200, 500, 1000, 5000, 10000

minimal variation 0.1, 0.15, 0.2, 0.25

Table 2. Evaluated parameter values and their default values.

5. RESULTS AND DISCUSSION

Figure 7 shows exemplary results of the presented model gen-
eration algorithm. The building is located in a region where all
three types of data (ALS, MLS, and TLS) are available. In such
an area a high point density is available and the resulting model
shows many details.

The same building is shown on the left side of Figure 8. In the
periphery only ALS data are available. Since these data have a
far lower point density than the MLS and TLS scans, the polygon
model contains less details in these areas and many gaps. The
gaps result from the inability of the algorithm to fit a plane due
to the sparse point density. Therefore the points in octree cells
without plane are also shown.

Changing the parameters of the algorithm could solve this, how-
ever this would lead to a loss of details in areas for which data
with a high point density are available. These problems could be
solved by using different model generation parameters based on
the point density in a specific area of the model.

Both examples show some issues with the representation of vege-
tation, mainly of trees. The plane fitting is difficult for vegetation
since it normally does not consist of planes. This causes our algo-
rithm to divide the corresponding octree cells until they are very
small. The resulting cells look chaotic and are not optimal with
regard to the data compression ratio.

5.1 Data compression ratio

The data compression ratio is defined by equation (1). It is the
percentage of points represented by planes. The parameter kmax,
dstart and dmax have no impact on the data compression ratio.

s = 1− #points mesh +#C +#points in cells w.p.
#points

(1)
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Figure 7. Exemplary result of the model generation approach.

Figure 8. Larger view of the polygon model extended with points
in cells without plane, where the outer areas contain only sparse
airborne data.

Figure 9 shows the resulting data compression ratio for different
values of sample coverage factor and kmin. Both curves show a
constant high slope at the beginning that is constantly decreasing
at the end. In the middle section the curvatures of both curves
are reaching their maximum. For the sample coverage factor this
point is reached at a value of 2.576, kmin shows it at the value 7.

As shown in Figure 9, a high sample coverage factor leads to a
good compression. But this also results in a high point-to-plane
distance threshold, hence small details get lost. So it is more
reasonable to set the sample coverage factor to the value 2.576 (at
the point with the highest curvature). This is a trade off between
compression ratio and detail preservation.
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Figure 9. Resulting data compression ratio for different values of
the sample coverage factor and kmin.

The influence of the minimal cell size and the allowed propor-
tion of outliers on the data compression ratio is shown in Fig-
ure 10. The maximum of 93.4% is reached for a maximal al-
lowed proportion of outlier of 10%. For higher allowed outlier
rates the data compression ratio has a constant descent until it
reaches nearly 80% with 90% allowed outlier rate. With an out-
lier proportion of 5% the data compression ratio only amounts to
72%.
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Figure 10. Resulting data compression ratio for different values
of minimal cell size and the proportion of outliers.

5.2 ALS data

The two screen shots in Figure 11 demonstrate the advantage of
ALS data: they show the models generated with and without in-
cluding it. While the one without airborne scans contains only
parts of the building roof, the other one shows the whole roof of
the building (cf. Figure 11(b)). This is the main advantage of
airborne laser scans.

(a) Without ALS data (b) With ALS data

Figure 11. Impact of ALS data on the generated model.

6. CONCLUSIONS AND FUTURE WORK

We have presented an ad hoc model generation approach. It re-
trieves point clouds from a geospatial database and uses it in an
enhanced model creation process. The result is a polygon model
of the requested area as well as points not representable by planes.
The model generation is octree-based, which handles the differ-
ent details of the scene. The compression of the model creation
is controlled through parameter selection. An extension to merge
data of different precision was introduced. Therefore the advan-
tages of different LIDAR data sources can be used, for example
the visibility of roofs in ALS data.
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Currently our approach uses the database to easily retrieve all
data around a given position. These kind of queries are only the
simplest way to use a geospatial database. A conceivable option
for the future is to utilize more complex queries which for exam-
ple retrieve all data along a given path, so that a model for that
path could be generated. This could be useful to equip a mobile
system with a minimal amount of data required to travel along
this path or to visualize a planned path to a user.

The data were assumed to be georeferenced, but this is usually
not true for TLS data. Therefore an automatic way of registering
TLS with existing MLS or ALS data is required. This needs to
take the different precisions of the data sources into account. For
the standard deviation of the data to be registered, the accuracy
of the georeferenced data needs to be considered. Also the low
density of the ALS data poses problems to the model creation. To
handle different data densities, further extensions are necessary.
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