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ABSTRACT:

In the geospatial sector big data concept also has already impact. Several studies facing originally computer science techniques applied
in GIS processing of huge amount of geospatial data. In other research studies geospatial data is considered as it were always been big
data (Lee and Kang, 2015). Nevertheless, we can prove data acquisition methods have been improved substantially not only the amount,
but the resolution of raw data in spectral, spatial and temporal aspects as well. A significant portion of big data is geospatial data, and
the size of such data is growing rapidly at least by 20% every year (Dasgupta, 2013). The produced increasing volume of raw data,
in different format, representation and purpose the wealth of information derived from this data sets represents only valuable results.
However, the computing capability and processing speed rather tackle with limitations, even if semi-automatic or automatic procedures
are aimed on complex geospatial data (Kristóf et al., 2014). In late times, distributed computing has reached many interdisciplinary
areas of computer science inclusive of remote sensing and geographic information processing approaches. Cloud computing even more
requires appropriate processing algorithms to be distributed and handle geospatial big data. Map-Reduce programming model and
distributed file systems have proven their capabilities to process non GIS big data. But sometimes it’s inconvenient or inefficient to re-
write existing algorithms to Map-Reduce programming model, also GIS data can not be partitioned as text-based data by line or by bytes.
Hence, we would like to find an alternative solution for data partitioning, data distribution and execution of existing algorithms without
rewriting or with only minor modifications. This paper focuses on technical overview of currently available distributed computing
environments, as well as GIS data (raster data) partitioning, distribution and distributed processing of GIS algorithms. A proof of
concept implementation have been made for raster data partitioning, distribution and processing. The first results on performance have
been compared against commercial software ERDAS IMAGINE 2011 and 2014. Partitioning methods heavily depend on application
areas, therefore we may consider data partitioning as a preprocessing step before applying processing services on data. As a proof of
concept we have implemented a simple tile-based partitioning method splitting an image into smaller grids (NxM tiles) and comparing
the processing time to existing methods by NDVI calculation. The concept is demonstrated using own development open source
processing framework.

1. INTRODUCTION - BIG DATA

Reliable analysis of the geospatial data is extremely important
base for being able to support better decision making with location-
aware data even in our changing World. The challenges for han-
dling geospatial big data include capture, storage, search, shar-
ing, transfer, analysis, and visualization. (D. Jewell et al., 2014).
Furthermore, with newly adapted data management requirements
and initiatives even more open data will appear on the web which
need to be handled, the latent information be shared and extracted
knowledge applied in the level of decision making as well. Big
data, open data and open government has joint interest in location
and in many challanges considered in geospatial aspect will soon
benefit from it. The trend to larger data sets is due to the addi-
tional information that can be derived from analysis of a single
large set of related data, compared to separate smaller sets with
the same total amount of data (D. Jewell et al., 2014). We con-
sider GI analysis as a principal capability in a way to transform
information to knowledge (Fig 1.)

In Geoscience we are aware of data collection and acquire tech-
niques which huge amount of data as introduced before, we are
able to aggregate and report the extracted information from the
datasets by the applied analysis now we are facing how to return
it as applied knowledge to decision support and share the knowl-
edge to everyone in an interactive or dynamic way. The progress
and innovation is no longer hindered by the ability to collect data.

Figure 1: Data Life Cycle in the aspect of transform information
to knowledge (According to R. Piechowski, 2010)

The most important issue is how we exploit these geospatial big
data (Lee and Kang, 2015).

1.1 4 + 1 Dimension: Visualization

One of the major applications of future generation parallel and
distributed systems is in big data analytics (Kambatla et al., 2014).
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Unstructured, distributed and complexity are even more charac-
terization of the big data sets than before (Wu and Chin, 2014).
Four or as we consider five dimensions represents the big data
term: (i) the Volume of information need to be treated; (ii) the
Variety in the range of data types and sources; (iii) the Veracity of
the source data and results; (iv) the Velocity of the processing and
the grow of information; (v) (D. Jewell et al., 2014) and finally the
Visualization especially in GIS world must be emphasized as a
consequence of the first four “V”. The Visualization of the results
is significant in a Geospatial Big Data application if we compare
to text based Big Data processing. GI (Geographic Information)
visualization has great importance in the correct interpretation of
the data, to provide easy information to non experts of GIS in or-
der to empower citizens in location-aware issues. Hence, speed
of visualization geospatial big data, the applied geospatial infor-
mation design may require a great deal of effort. Rather we need
to preprocess and review the incoming data on the fly for real time
support of decision making than create stock on local machines
or in data warehouse and later analyze them in batch. (Lee and
Kang, 2015). Visualization and velocity are highly connected in
geospatial big data processing.

1.2 Dimension: Velocity

The processing of geospatial big data requires computation and
storage time. Currently scalability factor on storage level is not
substantially relevant comparing to computation time, due to the
fact that capacity of hard drives, speed and price are reducing
gradually, therefore the demand of extendability on storage level
of a GIS processing system can be satisfied. Whereas the need to
reduce processing time has been and still is a very crucial factor
in GIS processing even more in Big Data term. For modeling and
visualizing of geospatially enabled contents the high computation
capacity is demanding faster than ever besides the exponential in-
crease of geospatial big data. Even though, it is far the availability
of fully exploit high volume or high velocity gathered spatial data
as a consequence of the finite processing performance (Lee and
Kang, 2015).

Figure 2: The increase of data size has surpassed the capabilities
of computation (C.L. F. Chen and C. Y. Zhang 2014 according to
M. Hilbert and P. López, 2011)

From the late nineties the generated and stored data volume has
overtaken the computation capacity in the aspect of the process-
ing speed (Fig 2.). Since then the applied techniques for fast data
processing are lagging behind the volume of geospatial data to be
stored. In Geoscience, introduction and implementation of new
techniques to extract knowledge for non GIS experts from mas-
sive volume of data are urgent, as the existing tools are unable to
process Big Data that grow so large and complex.

1.3 Dimension: Volume

The management of big geospatial data differ from other big data
types. For further repeatable investigations and spatio-temporal
aspect we need to store data frequently. For ease the transmission
of spatial-temporal data on web map services we need to create
tiles, pyramids as well the data sometimes duplicated in different
formats. In order to find the appropriate dataset we also need to
create, retain and serve metadata for spatial big data. Metadata
creation and service incorporate already elaborated and compli-
cated activity for the growing amount of spatial data. The storage
is becoming cheaper day by day although incapable to scale up
for this increasing volume. Actual answers are lossless compres-
sion and level up the abstraction of high resolution data. Another
disposal is “linked to data over Web which consists of tuples of
data sets which are contextualised, thereby adding value to the in-
dividual data sets” (Dasgupta, 2013). Geospatial big data are not
easily linkable as text based and therefore not visible even if they
are online on internet. Studies focusing on linked geospatial data
are in the beginning (K. Janowicz et al., 2012) which go beyond
sample data stores to model complex workflows and more than
linking location to an event. If we look at the well known figure
(Fig. 3) of Linked Open Data (LOD) Cloud from 2011 a very
narrow sector tagged by Geographic denomination (with yellow
color) even if we go in detail and search for complex geospa-
tial informatic solution we can find some dataprovider and cloud
workspace provider but most of them is “only” facts with loca-
tion data collections. To be part of this model does not require to
provide high level geospatial processing framework or datasets
(informative anyway for the location enabled content).

This image shows datasets that have been published in Linked
Data format which is ”a term used to describe a recommended
best practice for exposing, sharing, and connecting pieces of data,
information, and knowledge on the Semantic Web using URIs
and RDF (Resource Description Framework”)”, by contributors
to the Linking Open Data community project and other individ-
uals and organisations. It is based on metadata collected and cu-
rated by contributors to the Data Hub as well as on metadata
extracted from a crawl of the Linked Data web conducted in
2011 and April 2014 (A. Jentzsch and R.Cyganiak, 2014 ). In
2014, compared to previous stage we can observe taper of the
geographic sector and GeoNames has been enlarged. Today, by
the realization of Spatial Data Infrastructures (SDI) as a standard
provider for publishing, querying, retrieving, and accessing geo-
data via Web services. Additionally, SDIs offer notification and
processing services and, thus, go beyond simple data stores (K.
Janowicz et al., 2012). However, a large percentage of the data
might not be of interest in a particular task. Facilities for filtering
and compressing in order of magnitude are getting more impor-
tant. Intelligent filtering and weighting without discarding data
samples are challenges in a volume of big geospatial data. (D.
Jewell et al., 2014).

1.4 Dimension: Variety

Data availability have been improved a lot, due to technologi-
cal and policy advancements, but raw data itself does not repre-
sent knowledge or information on their own, therefore informa-
tion and knowledge extraction have been applied on these data
with different smart solutions to deal with the amount and variety
of data. As mentioned before now we are in the third quadrant
in the Data Life Cycle ( Fig. 1.) the transition information to
knowledge, the collection and access different kind of data is no
longer a problem. We are struggling with the variety of input
data (different in format, scale, source, accuracy, resolution, ac-
quiring technology, date, purpose, processing environment, etc.)
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to be preprocessed and analysed in order to provide different data
outputs. Also need to be concerned combining a wide range of
data formats that are commonly not located on the same platform,
in the same institution and are continuously changing. “These
unique circumstances resulting several performance and capac-
ity challenges. Most big data projects face more challenges from
variety and fewer from data volumes” (D. Jewell et al., 2014).

1.5 Dimension: Veracity

Veracity cope with uncertanity or imprecise data. According IBM
redbook veracity also means in infrastructure level “To address
the performance and capacity challenges that arise from lack of
veracity, it is important to have data quality strategies and tools
as part of a big data infrastructure (D. Jewell et al., 2014). To
avoid false, fraudulent, or unauthorized data in a system secu-
rity also need to be take into account by authorization and secure
technology (even in a level of governmental level).

We need to consider that all from four or five “Vs” has great im-
pact in GIS but besides the Volume of the raw data to be processed
in the fastest way (Velocity) others are only being introduced as
a consideration in GIS solutions or only in the process of being
required by a GI system, such as the Veracity of the GIS datasets.
However, it is important to have data quality strategies and tools
as part of a geospatial big data infrastructure (D. Jewell et al.,
2014), not to mention the security aspects for the data access
to avoid unreliable results. This situation poses huge challenges
on traditional data processing applications and data management
tools in Geographic Information Science and Systems (Lee and
Kang, 2015). Now we are facing the problem of the spatial big
data processing in the aspects of volume and variety but later on
after new solitons in processing spreaded out the GIS and related
community will face soon the other and new V’s challenges such
as Variability and Value or rapid Visualization.

1.6 Current technologies

Distributed frameworks have been introduced during recent years
like Hadoop (Apache), Spark (Apache), Akka (Typesafe) or Disco
(Nokia), however these frameworks are focusing on distributed
processing of text-based data and heavily rely on Map-Reduce
programming model and distributed file storage. In GIS process-
ing world, Map-Reduce programming model combining with dis-
tributed file systems like Hadoop distributed file system is not
a silver bullet to solve computational tasks. The main reason
behind it is that distributed file systems split data into smaller
chunks, these chunks are replicated and spread among slave nodes,
however we have very little control over this step and splitting
mechanism based on size limitation. As a result data splitting
method will invalidate the GIS input data.

1.7 Goal

Processing of geospatial big data can be time consuming and dif-
ficult. Depends on highly heterogeneous data type and process-
ing methods different aspects need to be considered like speed,
precision and real-time. Our goal is to find a solution for Geo-
processing of big geospatial data in a distributed ecosystem pro-
viding an environment to run algorithms, services, processing
modules without any limitations on implementation programming
language as well as data partitioning strategies and distribution
among computational nodes. As a first step we would like to fo-
cus on (i) data decomposition and (ii) distributed processing. The
challenges associated with each focus area, related methodology
and first results are analyzed and discussed in the paper. The
data decomposition and the NDVI calculation were tested using
Landsat 8 imagery for the territory of Hungary with a ground res-
olution of 30 m.

2. TERMS: DISTRIBUTED AND CLOUD COMPUTING

2.1 Distributed computing

Distributed system is a software system where coputational and
storage components are located networked computers communi-
cating and coordinate their actions by passing messages through
“network socket” endpoints within a network. Components in-
teract with each other to achieve a common goal. Three signif-
icant characteristics of distributed systems are: concurrency of
components, lack of a global clock, and independent failure of
components.

Plainly, a distributed system is a collection of computers within
the same network, working together as one larger computer. Mas-
sive computational power and storage capacity have been gained
due to this archicture. We must note that processes running in
a distributed system does not share memory with each other, like
parallel computing systems. Processes in distributed system com-
municate through message queues.

Two architectural models are suggested for distributed computing
systems:

• Client-Server model, where clients initiate communication
or processing job(s) to the server, which distribute that re-
quest(s) to all processing and storage units if necessary to
do the real work and returning results to client.

• Peer-to-Peer model, where all units involved in distributed
system are the client and server at the same time, without
any distinction between client or server processes.

2.2 Cloud computing

“Cloud computing” or put it simply “Cloud” involves deploying
groups of remote servers and software networks that allow dif-
ferent kinds of data sources be uploaded for real time processing
to generate computing results without the need to store processed
data on the cloud, while focusing on maximizing the effective-
ness of the shared resources. As we see cloud computing system
has evolved from distributed systems (?).

Plainly, a cloud is aiming for scalability and flexibility providing
computational and storage power to customersusers. It’s major
components are:

• Clients (any end device having internet connection can be a
client)

• Datacenter (server farm)

• Distributed servers

The key factor in cloud computing is the power if virtualization
by creating virtual machines on demand

3. TECHNICAL SURVEY

3.1 Exiting distributed computing frameworks

By evaluating existing software components and frameworks, like

Hadoop and HDFS
Core Hadoop distributed computing system based on Map-
Reduce and distributed data file system (HDFS).
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ESRI Hadoop
ESRI solution for handling mainly Vector based data in Hadoop
environment, by converting vector data into GeoJSON for-
mat, then store them on HDFS.

Spatial Hadoop
It supports Hadoop Map-Reduce programming model as well
as HDFS.

Hadoop Image processing interface
HIPI is an image processing library designed to be used
with the Apache Hadoop MapReduce parallel programming
framework.

Akka - Typesafe
A distributed, concurent framework and runtime environ-
ment. Applications are deployed and distributed automat-
ically by the framework.

Disco - Nokia
Distributed computing framework in Python using Map-Reduce
and distributed file system developed by Nokia.

Map-Reduce Geo
Map-Reduce Geo, geospatial toolkit designed to provide raster
based geospatial capabilities that can be performed at scale.
However there is lack of documentation or tutorial on how
to use it.

3.2 Technical limitations

In overall, the above mentioned frameworks, support working
with both vector and raster based data. However, Map-Reduce
programming model must be used, in order to process data and
all the APIs are written in Java language, which leads to several
questions:

1. What if we do not want to re-write our algorithms and ser-
vices to Map-Reduce programming model, but would like to
use the advantages of distributed computing environment?
Is it possible to do so, with small amount of modification on
existing code?

2. What if we would like to implement new algorithms and
services, by using another language then Java?

3. What if we would like to controll the sequence of data dis-
tribution among the nodes?

4. What if we would like to implement our own data partition-
ing methods, depending on processing algorithm’s nature?

5. What if we would like set the way of data distribution to
storage nodes?

6. What if we would like to send functions, modules or classes
to process data, without writing a wrapper application for
every function?

7. What if we would like to run pre-installed executables on
processing nodes without parameterizing mapper and reduces
executables?

3.3 Requirements

Based on these questions, we are able to build the following set
of system requirements:

1. Executing existing programs on distributed environment.

2. Implementing new GIS processing services on any language
and execute them on distributed environment.

3. Full control over data partitioning and distribution.

4. Free from Map-Reduce programming model.

In order to fulfil these requirements, we need to look for an alter-
native distributed computing solution and the right programming
language to implement the “proof of concept” processing system.

3.4 Choosing the right programming language

Before jumping into implementation, a study has been made on
which programming language should be used based on the fol-
lowing criteria:

• Platform dependencies.

• Support on GIS libraries and data types.

• Ease-of-use and descriptive syntax.

• Well documented and community support.

Choosing the right implementation language for processing GIS
data is a delicate matter. On GIS library support, popular third
generation languages like C# or Java, the community support
and documentation for GIS libraries is not really good. Whereas
script languages like Python or Ruby are keeping up with most
of the GIS related programming libraries. However, third gen-
eration languages provides several distributed computing frame-
works, unlike script languages.

For example, almost any modern language is suitable for pro-
cessing vector based data, it does not require a lot of technical
knowledge to use them. Working with raster based data are more
complicated because of the size and variety of data, as well as the
background knowledge developers should gain before beginning
to implement any processing algorithm.

Documentation pages are well maintained in case of python and
ruby, we can not say the same thing for Java or C#. Community
support and activity is also better in case of script languages than
third generation languages.

Indicators shows that scripting languages are the most suitable
for implementing GIS algorithms and services. Github.info and
Redmonk statistics shows that Python is more active and used by
more developers than Ruby. In the end we have chosen to use
Python as the primary implementation language to be used.
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3.5 Distributed computing framework - Dispy

So far, we have selected the programming language to work with,
which is Python. Next, to find a library or framework supporting
distributed computing in Python. Only one suitable candidate is
available currently, based on development activity and commu-
nity support, namely: Dispy.

Dispy is a distributed and parallel computing framework for or
with Python based on asyncoro which is Python library for asyn-
chronous, concurrent, distributed programming. Some of it’s fea-
tures are:

• Computations (both Python and standalone, meaning ex-
ecutables) and their depencies like files, Python methods,
classes or even modules are distributed among all the com-
puting nodes automatically.

• Computation nodes can be on local or remote network.

• Supports SSL communication.

• Ready made Job Scheduler.

• Initialized Jobs have callback functions. This feature can
usefull, when we want to execute a sequence of jobsin batch.

In the next section, we will discuss some of the data decomposi-
tion and distribution methods.

4. DATA MANAGEMENT

In order to achieve distributed processing, data must be available
among all processing units. Mainstream distributed file systems
like HDFS (Hadoop distributed file system) or DDFS (Disco dis-
tributed filesystem) has the following main functionalities:

1. Automatically chunk data by size.

2. Distribute data across storage nodes.

3. Replicate the same data across storage nodes.

However, distributed file systems like Hadoop distributed file sys-
tem (HDFS) does not provide a library or any service to support
data partitioning and distribution, because all these functions are
automatically done by HDFS in a transparent way, thus we have
no control over. HDFS have been designed to process large text-
based data, which can be easily cut and chunked by line or size.
For GIS input data like GeoTIFF, we can not apply cut by file
or by size, because the partitioned files will be corrupted. Work
arounds exists for storing these kind of files on HDFS, like read-
ing the header section of the original unpartitioned file, then read
the partitioned data chunks to process them, but, it’s still a work
around, not an elegant solution. GeoTIFF represents a small seg-
ment of raster data types, therefore other binary based raster data
wiill face the same limitaions. Limitation of HDFS over data par-
titioning on GeoTIFF data leads us to think over and consider-
ing on writing our own data partitioning and distribution module,
namely a data management module.

To implement a data management module, as the first step we
need to decompose data ,then distribute them on processing units.
Replication functionality is not relevant at this stage, therefore
we are not dealing with it. The method for data distribution
may vary on the nature of processing algorithms, not to mention,
sometimes processing algorithms requires information regarding
topologically related data during processing phase, therefore rela-
tions, associations between original source data and decomposed
data should be well defined and searchable at any time.

4.1 Data catalog

To keep track of original files and their partitioned data, associ-
ations as well as additional information, we need to have a data
catalog module. A data catalog should be simple to use and reli-
able. It should able to store spatial data, descriptive data and as-
sociation data. It should be also able to supply stored data to pro-
cessing applications. Data catalog module will be implemented
in the future, for this paper let’s assume that it’s available.

4.2 Data decomposition

To process raster data in distributed environment data decomposi-
tion is crucial. In distributed computing environment access data
in a certain location, decompose to smaller chunks (‘sub-raster
blocks’) to achieve optimal fast processing, collect the result of
the algorithms from processing units and rebuild resulting data.
Many approaches exist with different pattern of coordination and
communication between the processing steps and results. The
main aspect is how to decompose input raster to smaller parti-
tions. A number of alternative methods exist to raster data par-
titioning as well. Single pixel algorithms are processed for each
pixel in isolation. Defined extent algorithms are processed for
each pixel in a context of a pre-determined number of surround-
ing pixels. Region-based algorithms are considered to apply in
a geographical application where a greater neighboring area has
significance where the study area is grouped into homogeneous
segment or stratum. The processing algorithms and parameters
are designed for every homogeneous strata. This stratum con-
sidered as a landscape unit which is homogeneous in aspect of
physical geographical factors, or any targeted application area.

One of the most trivial way to decompose data is to spatially
split the original data into smaller data chunks, which can be
processed independently on processing units. However decom-
position methods are tightly related to processing methods and
the number of processing units available in the distributed envi-
ronment.

As a proof of concept, we have developed a GeoTIFF decomposer
application using GDAL library. Decomposer takes a source file
or directory, looking for GeoTIFF files and decompose them into
smaller partitions. It takes two parameters, namely a predefined
grid size (N x N) and number of processing units available in the
distributed computing system. The number of processing unit is
needed later for data distribution. After decomposition have been
successfully performed, decomposed data are being uploaded to
computation nodes.

In future terms, we would like to implement other partitioning
methods based on the following conditions:

1. spatial relations: data belonging to a partition are spatially
related.

2. logical relations: data belonging to a partition are logically
related.

3. administrative relations: data belonging to a partition are
related to an administrative unit.

To test our data decomposition application, we have selected 36
Landsat 8 images including NIR and VIS bands, covering the area
of Hungary. Each of them is approximately 128Mb, in sum 4.6
GB of data. We have measured the time of data decomposition
for 36 Landsat 8 images into 2 x 2, 3 x 3, 4 x 4 and 6 x 6 grids on
a Dual-Core PC with 4GB of RAM:

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015 
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed.  
Editors: M. Brédif, G. Patanè, and T. Dokken 
doi:10.5194/isprsarchives-XL-3-W3-543-2015 

 
547



Figure 3: Bounding boxes of Landsat 8 images (band 4) of Hun-
gary

Grid size Decomposition time (seconds)
2× 2 187 seconds
3× 3 189 seconds
4× 4 193 seconds
6× 6 215 seconds

We have realized that, between grid size 2 and 3, there is no
difference in decomposition time, however, after increasing the
number of grids to 5 x 5 decomposition time have increased sub-
stantially. In future development, we would like to see, what hap-
pens, when we join all the bands into a single large file, and per-
form decomposition on that particular file.

Figure 4: Data decomposition time increases after 4x4 grid size

4.3 Data distribution and re-distribution

After data have been decomposed, the next step is to distribute
them among processing units. We have required the number of
processing units in the beginning of the data decomposition step,
thus with the knowledge of existing processing units, we have
to choose how we would like to distribute partitions. The eas-
iest method is to distribute partitions equally on all processing
units. However in case of decomposition methods based on spa-
tial, logical or administrative relations, we should distribute par-
titions on the same processing unit or processing units within the
same network sub domain, of course this type of distribution de-
pends on the processing algorithm which iterates from one region
to another. As for the demo application, we have distributed data
evenly on every processing units.

Let’s take a simple example, where data have been decomposed
based on administrative relation as described on Figure 3 - Pn is
the unique identifier for each processing unit. In generally, pro-
cessing algorithms may require spatially or topologically related
regions on the same processing unit for faster processing. In or-
der to achieve this, we need to have full control and access over
data distribution mechanism.

Figure 5: Distribution of the sub raster blocks to a region based
processing aspect

As for data re-distribution, let’s assume that, at first we have dis-
tributed data over N number of processing units, after that we
have attached or removed D number of processing units into/from
the distributed computing system, where D � N. In this case we
have to redistribute data over the distributed computing system
to keep the data distribution balanced. We may assume that data
redistribution will take a lot of time, due to the fact that, we have
to calculate the number of partitions and redistribute data across
processing units. However redistribution of data can be consid-
ered as a maintenance service, therefore it not relevant in terms
of processing algorithms.

4.4 Data associations

Until now, we have seen for every source data, there is at least one
version of decomposed dataset is available on processing units.
Each decomposed version is a bijective representation of the orig-
inal data source, meaning that from decomposed data, we are able
of reconstructing the original data looselessly. However, on algo-
rithmic level, it is important to find the most suitable version of
decomposed data for a particular processing algorithm. In order
to achieve this, we need to have a versioning and tagging mecha-
nism for these data.

Tag is non-hierarchical keyword or term assigned to version of
decomposed dataset. A tag describes a property of that particular
version. A tag is search-able and statistically analyzed if needed.
In other word, tagging is a way of logical indexing decomposed
data. Tag information on a decomposed version of an input data
or output data is stored and managed by Data Catalog module.
For example for one input data, the following tag and additional
information will be available:
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UUID Decomposition Method Tag
ec502529 Administrative - County Except Budapest
87f87caf Simple Grid based Grid size 30km
d3a2b470 Administrative - Regional Eastern Region

Another important aspect should be taken into consideration is
the life lineage of a dataset. A processing algorithm usually uses
at least two input data, resulting at least one output data. The out-
put data should be tag with the name of the two original data and
store it in a graph based database. Neo4j an open graph database
could be used to store lineage information as well as organizing
and managing decomposition information.

Figure 8 has four dataset and two processes. PS1 takes datasets 1
and 2 as input, and after execution DS3 dataset is created. After
that, PS2 process takes DS3 and DS5 dataset to create DS4. If
we would like to know, which dataset are the grand parents of
DS4, without storing dataset metadata a graph structure it could
be really difficult to do so. On the other hand, by integration
tagging functionality to dataset, we will gain an extra dimension
for data search.

5. DISTRIBUTED PROCESSING FRAMEWORK

As we have already stated that, Dispy distributed computing frame-
work have been chosen to run existing and newly implemented
services or applications. In the following subsections some ad-
ditional requirements have been added related to processing and
storage topics.

5.1 Processing related requirements

Primary goal is to develop an environment where processing ser-
vices or applications may run on different processing units at the
same time. We are applying client/server system architecture,
consisting one server unit, called master unit and client process-
ing units.

According to user requirements for the developed solution we
prioritize in certain period of the development, two main factors:

1. the processing time of an existing method compared to the
distributed new approach should be faster (with constant
data set).

2. accuracy of the results considered equal.

5.2 Data related requirements

Data authorization is crucial in a case of sensitive data manage-
ment. Applying authentication on web based dissemination of the
results and source data permit to set up the allowance of the right
person to data. However in distributed file system the authenti-
cation doesn’t give protection to the data storage. In future work
we are going to deal with the delicate permission model allows
different level of accessing data.

5.3 Proof of concept

Dispy gives us the ability to run existing services or applications
on all processing units, with one single condition, that all units
should be the same on software level, meaning that the number
and version of all software dependencies, packages, services, exe-
cutables and applications should be identical on every processing
unit.

And, as a bonus, dispy also support Map-Reduce programming
model, is anyone is missing it.

The architecture has been implemented on prototypical level which
allowed us to process data sets and evaluate the performance. In
the future work we plan further system development and widen
processing test cases as well as its user requirements. Currently
we have implemented a simple normalized difference vegetation
index (NDVI) on country level dataset and made some measure-
ments to see, if running services on distributed environment is
better in performance than a very powerful server or workstation
designed for GIS processing.

6. FIRST RESULTS

We have setup three client machines as processing units with
4GB of RAM and 2 CPUs, and a master unit acting as server.
The server unit is reponsible for decomposing original data into
smaller grids and distribute them among processing units. This
decomposition demo application is a simple Python program us-
ing GDAL API. The NDVI calculation have been designed to
send accross client processing units.

We have run NDVI processing with NIR and VIS bands as in-
put data which have been decomposed into 22 Landsat 8 files on
three processing units. Our first experiment was to detect the av-
erage runtime by running the same NDVI calculation on three
processing units runs on 3× 3 grids consecutively.

Node CPUs Jobs SecJob Node time sec
146.140.214.135 3 38 10.857 412.584
146.140.214.136 3 36 11.521 414.747
146.140.214.141 3 26 16.112 418.920

The average runtime is: 375.18 seconds

Our second experiement is to detect if there is any relation in
decomposition grid size and runtime, therefore we have decom-
posed the input data into 4 × 4 grids resulting 11 Landsat 8 im-
ages containing NIR and VIS bands and run the NDVI calculation
again:

Node CPUs Jobs SecJob Node time sec
146.140.214.135 4 58 5.753 333.675
146.140.214.136 4 57 5.718 325.932
146.140.214.141 4 50 6.565 328.249

By decomposing data into smaller grids, we have successfully
gained some performance numbers, however, we should not for-
get on how much time did we spent on decomposing original
dataset into 4× 4 grids.

Our third experiment is to measure the processing time on the
same dataset with commercial software ERDAS IMAGINE 2011
and 2014 on an average work station having 16GB of RAM and 4
CPUs. The first run is based on ERDAS internal data type: IMG,
the second run is based on GeoTIFF. The outcome is described in
the next diagram:

At last, we have made a comparision of prototype distributed sys-
tem against ERDAS IMAGINE 2011. We have generated a sim-
ple model for calculation of NDVI to test our idea the distribution
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Figure 6: Processing time reduces inversely proportional as the
size of grids increases

Figure 7: Processing time run by Erdas on TIFF, IMG and
Stacked Bands

and process of raster data. The input data of the model were band
4 and band 5 of Landsat8 imagery without any pre-processing.
The model applies virtual stacking of the imagery and after cal-
culates the NDVI for each pixel, the output is geotiff and img.
The results are compared to the developed environment process-
ing time looks promising.

Figure 8: Comparision between Erdas and distributed system in
runtime

The first results for the proof of concept distributed computing
system looks promising, because we have been able to reduce
the processing time to more than half comparing to commercial
ERDAS IMAGINE 2011 and 2014.
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